Gene Summary

Gene:S100P; S100 calcium binding protein P
Aliases: MIG9
Summary:The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21; however, this gene is located at 4p16. This protein, in addition to binding Ca2+, also binds Zn2+ and Mg2+. This protein may play a role in the etiology of prostate cancer. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein S100-P
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: S100P (cancer-related)

Sarcognato S, Gringeri E, Fassan M, et al.
Prognostic role of BAP-1 and PBRM-1 expression in intrahepatic cholangiocarcinoma.
Virchows Arch. 2019; 474(1):29-37 [PubMed] Related Publications
Intrahepatic cholangiocarcinoma (ICC) has universally poor outcome, mainly due to its late clinical presentation. Identification of specific biomarkers and development of effective treatment are still urgently required. Mutations in PBRM-1 and BAP-1 genes, and the expression of S100P have been related to survival in ICC. miR-31 seems also to play important regulatory functions in ICC and it directly regulates BAP-1 expression in lung cancer. In this study, tissue expression of BAP-1, PBRM-1, S100P, and miR-31 was investigated in ICC and correlated with clinical-pathological features. Sixty-one consecutive patients who underwent curative hepatic resection for ICC were enrolled. None received any therapy prior to surgery. Immunostaining for BAP-1, PBRM-1, and S100P, and in situ hybridization for miR-31 were performed, using tissue microarray slides. A strong retained expression of BAP-1 and PBRM-1 was associated with a reduced overall (p = 0.04 and p = 0.002, respectively) and disease-free survival (p = 0.05 and p = 0.02, respectively). An overexpression of S100P was related to a reduced overall survival (p = 0.005). The multivariate analyses identified the presence of perineural invasion and the retained PBRM-1 expression as independent predictors of worse overall [p = 0.02, hazard ratio (HR) = 2.25 (1.16-4.39) and p = 0.001, HR = 3.13 (1.56-6.28), respectively] and disease-free survivals [p = 0.03, HR = 2.43 (1.09-5.4) and p = 0.03, HR = 2.51 (1.11-5.67), respectively]. An overexpression of S100P was predictive of a worse overall survival [p = 0.02, HR = 1.66 (1.08-2.55)]. High levels of miR-31 were significantly associated to a low expression of BAP-1 protein (p = 0.03). In ICC, a retained expression of BAP-1 and PBRM-1, and an overexpression of S100P are related to a poor prognosis.

Kikuchi K, McNamara KM, Miki Y, et al.
S100P and Ezrin promote trans-endothelial migration of triple negative breast cancer cells.
Cell Oncol (Dordr). 2019; 42(1):67-80 [PubMed] Related Publications
PURPOSE: Triple negative breast cancer (TNBC) patients generally have an adverse clinical outcome because their tumors often recur and metastasize to distant sites in the first 3 years after surgery. Therefore, it has become pivotal to identify potential factors associated with metastasis. Here, we focused on the effects of S100P and Ezrin on the trans-endothelial migration (TEM) of TNBC cells, as they have both been suggested to play a role in this process in other malignancies.
METHODS: The expression of S100P and Ezrin was examined by immunohistochemistry in 58 primary TNBC samples. The mRNA and protein levels of S100P and Ezrin were assessed in breast cancer-derived cell lines using qRT-PCR and Western blotting, respectively. Proliferation and migration assays were performed using TNBC-derived MFM-223 and SUM-185-PE cells transfected with S100P and Ezrin siRNAs. Two different timeframes were employed for TEM assays using TNBC-derived cells and human umbilical vein endothelial-derived cells, respectively. Correlations between the status of Ezrin
RESULTS: We found that S100P and Ezrin double negative TNBC cases were significantly associated with a better disease-free survival. We also found that single and double siRNA-mediated knockdown of S100P and Ezrin in TNBC-derived cells significantly inhibited their TEM and destabilized the intercellular junctions of endothelial cells. In addition, we found that Ezrin
CONCLUSIONS: From our data we conclude that S100P, Ezrin and Ezrin

Xiong TF, Pan FQ, Li D
Expression and clinical significance of S100 family genes in patients with melanoma.
Melanoma Res. 2019; 29(1):23-29 [PubMed] Free Access to Full Article Related Publications
Genes in the S100 family are abnormally expressed in a variety of tumor cells and are associated with clinical pathology, but their prognostic value in melanoma patients has not yet been fully elucidated. In this study, we extracted and profiled S100 family mRNA expression data and corresponding clinical data from the Gene Expression Omnibus database to analyze how expression of these genes correlates with clinical pathology. Compared with normal skin, S100A1, S100A13, and S100B were expressed at significantly higher levels in melanoma samples. S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, and S100P were all highly expressed in primary melanoma samples but were expressed at low levels in metastatic melanoma, and all of these genes were strongly correlated with each other (P<0.001). We found the expression of these S100 family genes to be significantly correlated with both lymphatic and distant melanoma metastasis, as well as with American Joint Committee on Cancer grade but not with Clark's grade, age, or sex. This suggests that expression of these genes may be related to the degree of tumor invasion. Although further validation through basic and clinical trials is needed, our results suggest that the S100 family genes have the potential to play an important role in the diagnosis of melanoma. S100 expression may be related to tumor invasion and may facilitate the early diagnosis of melanoma, allowing for a more accurate prognosis. Targeted S100 therapies are also potentially viable strategies in the context of melanoma.

Hou T, Zhou L, Wang L, et al.
Leupaxin Promotes Bladder Cancer Proliferation, Metastasis, and Angiogenesis Through the PI3K/AKT Pathway.
Cell Physiol Biochem. 2018; 47(6):2250-2260 [PubMed] Related Publications
BACKGROUND/AIMS: Leupaxin (LPXN) is a member of the paxillin protein family. Several studies have reported that LPXN regulates cancer development; however, the role of LPXN in bladder cancer remains unknown.
METHODS: The expression of LPXN in bladder cancer cells and tissues was determined by real-time PCR, western blotting, and immunohistochemistry, respectively. The biological role of LPXN in bladder cancer cell proliferation, invasion, and angiogenesis was explored both in vitro and in vivo.
RESULTS: LPXN expression was elevated in bladder cancer tissues and cell lines compared to adjacent non-tumor tissues and normal urothelial cells. High LPXN expression was correlated with large tumor size, advanced tumor stage, and poor survival in bladder cancer patients. Overexpression of LPXN significantly promoted the proliferation, invasion, and angiogenesis of bladder cancer cells, while suppressing LPXN had the opposite effects. The impact on tumor progression was abolished by inhibiting PI3K/ AKT signaling pathway. We further demonstrated that LPXN probably up-regulated S100P via the PI3K/AKT pathway.
CONCLUSIONS: LPXN may facilitate bladder cancer progression by upregulating the expression of S100P via PI3K/AKT pathway. These results provide a novel insight into the role of LPXN in tumorigenesis and progression of bladder cancer and potential therapeutic target of bladder cancer.

Ni X, Chen J, Lu F, et al.
Anti-Cancer Effect of α-Solanine by Down-Regulating S100P Expression in Colorectal Cancer Cells.
Recent Pat Anticancer Drug Discov. 2018; 13(2):240-247 [PubMed] Related Publications
BACKGROUND: α-Solanine, the most important and active component of Solanum nigrum, was found to have anti-cancer activity on multiple cancer cells. However, its effects on colorectal cancer (CRC) and associated molecular mechanisms remain to be further elucidated.
OBJECTIVE: In this study, we investigated the anti-cancer effects of α-solanine against CRC cells in vitro and in vivo.
MATERIALS & METHODS: Cell viability was measured using Cell Counting Kit-8 (CCK-8) assay; cell cycle was analyzed with a Cycletest Plus DNA Reagent Kit; cell apoptosis was detected by flow cytometer; cell migration and invasive ability was determined by Transwell assays; S100P protein expression was also analyzed by western blotting; lentiviral vectors expressing shRNA targeting the S100P gene.
RESULTS: We demonstrated that α-solanine inhibited CRC cell (SW480, SW620 and HT-29) growth as well as migration and invasion, induced cell cycle arrest and apoptosis in vitro, and suppressed tumor growth in vivo. Moreover, we observed that S100P expression was downregulated by α-solanine. Overexpression of S100P partially reversed the α-solanine-induced growth inhibition of CRC cells. Conversely, knockdown of S100P by lentiviral-mediated RNAi resulted in significantly promoting the α-solanine-induced growth inhibition.
CONCLUSION: These findings suggest that α-solanine is a potential agent for the treatment of CRC, and the anti-tumor effect of α-solanine in the CRC cells may be mediated at least partly by the downregulation of S100P.

Piltti J, Bygdell J, Qu C, Lammi MJ
Effects of long-term low oxygen tension in human chondrosarcoma cells.
J Cell Biochem. 2018; 119(2):2320-2332 [PubMed] Related Publications
The cell-based therapies could be potential methods to treat damaged cartilage tissues. Instead of native hyaline cartilage, the current therapies generate mainly weaker fibrocartilage-type of repair tissue. A correct microenvironment influences the cellular phenotype, and together with external factors it can be used, for example, to aid the differentiation of mesenchymal stem cells to defined types of differentiated adult cells. In this study, we investigated the effect of long-term exposure to 5% low oxygen atmosphere on human chondrosarcoma HCS-2/8 cells. This atmosphere is close to normal oxygen tension of cartilage tissue. The proteome was analyzed with label-free mass spectrometric method and further bioinformatic analysis. The qRT-PCR method was used to gene expression analysis, and ELISA and dimethylmethylene blue assays for type II collagen and sulfated glycosaminoglycan measurements. The 5% oxygen atmosphere did not influence cell proliferation, but enhanced slightly ACAN and COL2A1 gene expression. Proteomic screening revealed a number of low oxygen-induced protein level responses. Increased ones included NDUFA4L2, P4HA1, NDRG1, MIF, LDHA, PYGL, while TXNRD1, BAG2, TXN2, AQSTM1, TNFRSF1B, and EPHX1 decreased during the long-term low oxygen atmosphere. Also a number of proteins previously not related to low oxygen tension changed during the treatment. Of those S100P, RPSS26, NDUFB11, CDV3, and TUBB8 had elevated levels, while ALCAM, HLA-B, EIF1, and ACOT9 were lower in the samples cultured at low oxygen tension. In conclusion, low oxygen condition causes changes in the cellular amounts of several proteins.

Horváth J, Szabó A, Tar I, et al.
Oral Health May Affect the Performance of mRNA-Based Saliva Biomarkers for Oral Squamous Cell Cancer.
Pathol Oncol Res. 2018; 24(4):833-842 [PubMed] Related Publications
Oral squamous cell carcinoma (OSCC) has a dismal 50% five-year survival rate, emphasizing the need to develop reliable and sensitive tools for early diagnosis. In this study we evaluated the performance of 7 previously identified, potential mRNA biomarkers of OSCC in saliva samples of Hungarian patients. Expression of the putative OSCC biomarkers (DUSP1, OAZ1, H3F3A, IL1B, IL8, SAT and S100P), 2 biomarkers of inflammation (IL6 and TNFα) and 8 putative normalizing genes was quantified from each sample using real-time quantitative PCR. In contrast with previous studies, the expression pattern of the 7 mRNA biomarkers was similar between OSCC patients and age-matched control patients in the Hungarian patient population. On the other hand, 5 of the 7 mRNA biomarkers were present at significantly higher levels in saliva samples of OSCC patients when compared to young control patients. The best biomarker combination could distinguish only the OSCC vs. young control patients, but not the OSCC vs. age-matched control patients. In conclusion, the significant differences between our results and previous studies, and the clinical characteristics of the patients suggest that inflammatory processes in the oral cavity may affect the performance of the 7 putative salivary mRNA biomarkers. Lastly, since IL6 mRNA was quantifiable in the majority of OSCC cases, but only in a few control samples, salivary IL6 mRNA may be utilized as part of a biomarker combination to detect OSCC.

De Marco C, Laudanna C, Rinaldo N, et al.
Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer.
PLoS One. 2017; 12(6):e0178865 [PubMed] Free Access to Full Article Related Publications
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.

Shen S, Gui T, Ma C
Identification of molecular biomarkers for pancreatic cancer with mRMR shortest path method.
Oncotarget. 2017; 8(25):41432-41439 [PubMed] Free Access to Full Article Related Publications
The high mortality rate of pancreatic cancer makes it one of the most studied diseases among all cancer types. Many researches have been conducted to understand the mechanism underlying its emergence and pathogenesis of this disease. Here, by using minimum-redundancy-maximum-relevance (mRMR) method, we studied a set of transcriptome data of pancreatic cancer. As we gradually added features to achieve the most accurate classification results of Jackknife, a gene set of 9 genes was identified. They were NHS, SCML2, LAMC2, S100P, COL17A1, AMIGO2, PTPRR, KPNA7 and KCNN4. Through STRING 2.0 protein-protein interactions (PPIs) analysis, 40 proteins were identified in the shortest paths between genes in the gene set, 30 of them passed the permutation test, which indicated they were hubs in the background network. Those genes in the protein-protein interaction network were enriched to 37 functional modules, such as: negative regulation of transcription from RNA polymerase II promoter, negative regulation of ERK1 and ERK2 cascade and BMP signaling pathway. Our study indicated new mechanism of pancreatic cancer, suggesting potential therapeutic targets for further study.

Rhee H, Ko JE, Chung T, et al.
Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma.
Liver Int. 2018; 38(1):113-124 [PubMed] Related Publications
BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous entity with diverse aetiologies, morphologies and clinical outcomes. Recently, histopathological distinction of cholangiolocellular differentiation (CD) of iCCA has been suggested. However, its genome-wide molecular features and clinical significance remain unclear.
METHODS: Based on CD status, we stratified iCCAs into iCCA with CD (n=20) and iCCA without CD (n=102), and performed an integrative analysis using transcriptomic and clinicopathological profiles.
RESULTS: iCCA with CD revealed less aggressive histopathological features compared to iCCA without CD, and iCCA with CD showed favourable clinical outcomes of overall survival and time to recurrence than iCCA without CD (P<.05 for all). Transcriptomic profiling revealed that iCCA with CD resembled an inflammation-related subtype, while iCCA without CD resembled a proliferation subtype. In addition, we identified a CD signature that can predict prognostic outcomes of iCCA (CD_UP, n=486 and CD_DOWN, n=308). iCCAs were subgrouped into G1 (positivity for CRP and CDH2, 7%), G3 (positivity for S100P and TFF1, 32%) and G2 (the others, 61%). Prognostic outcomes for overall survival (P=.001) and time to recurrence (P=.017) were the most favourable in G1-iCCAs, intermediate in G2-iCCAs and the worst in G3-iCCAs. Similar result was confirmed in the iCCA set from GSE26566 (n=68).
CONCLUSIONS: CD signature was identified to predict the prognosis of iCCA. The combined evaluation of histology of CD and protein expression status of CRP, CDH2, TFF1 and S100P might help subtyping and predicting clinical outcomes of iCCA.

Lin F, Zhang P, Zuo Z, et al.
Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P.
Cancer Lett. 2017; 401:1-10 [PubMed] Related Publications
Thioredoxin-1 (Trx-1) is a small redox-regulating protein, which plays an important role in several cellular functions. Despite recent advances in understanding the biology of Trx-1, the role of Trx-1 and its underlying signaling mechanism in colorectal cancer (CRC) metastasis have not been extensively studied. In this study, we observed that Trx-1 expression is increased in CRC tissues compared to the paired non-cancerous tissues and is significantly correlated with clinical staging, lymph node metastasis and poor survival. Overexpression of Trx-1 enhanced CRC cell invasion and metastasis in vitro and in vivo. Conversely, suppression of Trx-1 expression decreased cell invasion and metastasis in vitro and in vivo. Moreover, Trx-1 activates S100P gene transcription. S100P, in turn, promotes Trx-1 expression and nuclear localization by upregulating p-ERK1/2 and downregulating TXNIP expression. Our finding provides new insight into the mechanism of Trx-1/S100P axis in the promotion of CRC metastasis, and suggests that the Trx-1/S100P axis and their related signaling pathways could be novel targets for the treatment of metastatic CRC.

Yang R, Stöcker S, Schott S, et al.
The association between breast cancer and S100P methylation in peripheral blood by multicenter case-control studies.
Carcinogenesis. 2017; 38(3):312-320 [PubMed] Related Publications
Breast cancer (BC) is the leading cancer in women worldwide. Changes in DNA methylation in peripheral blood could be associated with malignant diseases. Making use of screening results by llumina 27K Methylation Assay, we validated demethylation of five CpG sites of S100P gene in blood cell DNA of BC patients by three independent retrospective studies with subjects from different centers (Validation I: 235 familial BC case and 206 controls, odds ratio per -1% methylation > 1.03, and P < 6.00 × 10-8 for all five CpG sites; Validation II: 189 sporadic BC case and 189 controls, odds ratio per -1% methylation > 1.03, P < 8.0 × 10-5 for four CpG sites; Validation III: 156 sporadic BC case and 151 controls, odds ratio per -1% methylation > 1.03, P < 6.0 × 10-4 for four CpG sites). In addition, the blood-based S100P methylation pattern was similar among BC patients with differential clinical characteristics regardless of stage, receptor status and menopause status. The observed BC-associated decreased S100P methylation in blood mainly originates from the leucocytes subpopulations but not B cells. The methylation levels of most S100P CpG sites were inversely correlated with the expression of S100P in leucocytes (P < 1.2 × 10-4) and in tissue (P < 1.1 × 10-4). This study reveals significant association between blood-based decreased S100P methylation and BC, and provides another proof for the application of altered DNA methylation signatures from blood cells as potential markers for the detection of BC, especially for the early stage.

Chiba M, Imazu H, Kato M, et al.
Novel quantitative analysis of the S100P protein combined with endoscopic ultrasound-guided fine needle aspiration cytology in the diagnosis of pancreatic adenocarcinoma.
Oncol Rep. 2017; 37(4):1943-1952 [PubMed] Free Access to Full Article Related Publications
Specimens obtained with endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) are often tiny and fragmented leading to an inconclusive and doubtful diagnosis. To overcome the limitations of EUS-FNA in the cytological diagnosis of pancreatic adenocarcinoma (PCA), we evaluated whether quantification of the S100P protein combined with EUS-FNA reliably discriminated between PCA and benign pancreatic lesions (BPL). A high sensitivity sandwich ELISA for S100P protein was developed to aid in the detection of PCA in small samples obtained using EUS-FNA. After experimental verification of the sandwich ELISA with cell lines and mouse xenograft tumors, 27 consecutive patients with suspicious PCA who underwent EUS-FNA were enrolled in the present study examining the combination of S100P protein assessment and EUS-FNA cytology. The concentration of the S100P protein in EUS-FNA samples from the PCA group was significantly higher than that in the BPL group (P=0.04). Using receiver operating characteristic curve analysis, we determined the S100P protein cut-off value for PCA diagnosis to be 99.8 ng/ml. The S100P protein levels combined with EUS-FNA cytology to detect PCA showed the following diagnostic values: sensitivity, 94.4% [95% confidence interval (CI), 75.7-99.1%]; specificity, 88.9% (95% CI, 51.8-99.7%); positive predictive value, 94.4% (95% CI, 72.7-99.9%); negative predictive value, 88.9% (95% CI, 51.8-99.7%); accuracy, 92.6% (95% CI, 75.7‑99.1%); and area under the curve, 0.92 (95% CI, 0.79-1.00). We established a novel quantitative analysis for the S100P protein in EUS-FNA samples which, when combined with EUS-FNA cytology, could provide promising results for the reliable diagnosis of PCA.

Alonso S, Mayol X, Nonell L, et al.
Peripheral blood leucocytes show differential expression of tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection: a prospective matched cohort study.
Colorectal Dis. 2017; 19(5):O115-O125 [PubMed] Related Publications
AIM: Anastomotic leak is associated with higher rates of recurrence after surgery for colorectal cancer. However, the mechanisms responsible are unknown. We hypothesized that the infection-induced inflammatory response may induce overexpression of tumour progression-related genes in immune cells. The aim was to investigate the effect of postoperative intra-abdominal infection on the gene expression patterns of peripheral blood leucocytes (PBL) after surgery for colorectal cancer.
METHOD: Prospective matched cohort study. Patients undergoing surgery for colorectal cancer were included. Patients who had anastomotic leak or intra-abdominal abscess were included in the infection group (n = 23) and matched with patients without complications for the control group (n = 23). PBL were isolated from postoperative blood samples. Total RNA was extracted and hybridized to the Affymetrix Human Gene 1.0 ST microarray.
RESULTS: Patients in the infection group displayed 162 upregulated genes and 146 downregulated genes with respect to the control group. Upregulated genes included examples coding for secreted cytokines involved in tumour growth and invasion (S100P, HGF, MMP8, MMP9, PDGFC, IL1R2). Infection also upregulated some proangiogenic genes (CEP55, TRPS1) and downregulated some inhibitors of angiogenesis (MME, ALOX15, CXCL10). Finally, some inhibitors (HP, ORM1, OLFM4, IRAK3) and activators (GNLY, PRF1, FGFBP2) of antitumour immunity were upregulated and downregulated, respectively, suggesting that the inflammatory environment caused by a postoperative infection favours immune evasion mechanisms of the tumour.
CONCLUSION: Analysis of PBL shows differential expression of certain tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection, which in turn may promote the growth of residual cancer cells to become recurrent tumours.

Zhang S, Wang Z, Liu W, et al.
Distinct prognostic values of S100 mRNA expression in breast cancer.
Sci Rep. 2017; 7:39786 [PubMed] Free Access to Full Article Related Publications
S100 family genes encode low molecular weight, acidic-Ca

Ismail TM, Bennett D, Platt-Higgins AM, et al.
S100A4 Elevation Empowers Expression of Metastasis Effector Molecules in Human Breast Cancer.
Cancer Res. 2017; 77(3):780-789 [PubMed] Free Access to Full Article Related Publications
Many human glandular cancers metastasize along nerve tracts, but the mechanisms involved are generally poorly understood. The calcium-binding protein S100A4 is expressed at elevated levels in human cancers, where it has been linked to increased invasion and metastasis. Here we report genetic studies in a Drosophila model to define S100A4 effector functions that mediate metastatic dissemination of mutant Ras-induced tumors in the developing nervous system. In flies overexpressing mutant Ras

Jiang H, Hu H, Lin F, et al.
S100P is Overexpressed in Squamous Cell and Adenosquamous Carcinoma Subtypes of Endometrial Cancer and Promotes Cancer Cell Proliferation and Invasion.
Cancer Invest. 2016; 34(10):477-488 [PubMed] Related Publications
S100P is known to affect tumor development and metastasis of various cancers, but its role in endometrial cancer is unclear. We reported that S100P expression was dramatically elevated in both endometrial squamous cell carcinoma and adenosquamous carcinoma, but not in adenocarcinoma and normal endometrial samples. Moreover, we revealed an oncogenic role of S100P promoting cell proliferation, invasion, and migration while reducing apoptosis, possibly via its upregulation and/or activation of receptors of advanced glycation end products and consequently the oncogenic PI3K-AKT and MAPK pathways. Therefore, S100P might be a specific biomarker and a potential drug target for squamous cell and adenosquamous carcinoma subtypes of endometrial cancer.

Makoukji J, Makhoul NJ, Khalil M, et al.
Gene expression profiling of breast cancer in Lebanese women.
Sci Rep. 2016; 6:36639 [PubMed] Free Access to Full Article Related Publications
Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER

Ezzat NE, Tahoun NS, Ismail YM
The role of S100P and IMP3 in the cytologic diagnosis of pancreatic adenocarcinoma.
J Egypt Natl Canc Inst. 2016; 28(4):229-234 [PubMed] Related Publications
PURPOSE: The aim of this study was to assess the role of the two markers, S100P and IMP3, in differentiating between pancreatic ductal adenocarcinoma (PDA) and non-neoplastic pancreatic tissue in (fine needle aspiration cytology) FNAC.
PATIENTS AND METHODS: This is a retrospective study that included 72 cases presented with pancreatic mass, where endoscopic guided FNAC was taken from pancreatic lesions. The final histopathologic diagnosis was considered the gold standard. Cell blocks were stained with anti S100P, and IMP3. Nuclear immunoreactivity with or without cytoplasmic staining for the first marker, and cytoplasmic staining for the second marker was considered specific. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and total accuracy of the two markers, as well as the combined accuracy of both markers were calculated.
RESULTS: S100P achieved 96.4% sensitivity, 93.3% specificity, 98.2% PPV, 87.5% NPV and 95.8% total accuracy, while IMP3 achieved 91.2% sensitivity, 86.7% specificity, 96.2% PPV, 72.2% NPV and 90.3% total accuracy for PDA. Both markers showed a total combined accuracy of 89%. S100P showed strong and diffuse staining pattern in most of cases, while the staining pattern for IMP3 was moderate and focal in most of cases.
CONCLUSION: Both markers were sensitive and specific for diagnosis of PDA. The staining pattern for S100P was easier to evaluate than IMP3.

Day TF, Mewani RR, Starr J, et al.
Transcriptome and Proteome Analyses of TNFAIP8 Knockdown Cancer Cells Reveal New Insights into Molecular Determinants of Cell Survival and Tumor Progression.
Methods Mol Biol. 2017; 1513:83-100 [PubMed] Related Publications
Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is the first discovered oncogenic and an anti-apoptotic member of a conserved TNFAIP8 or TIPE family of proteins. TNFAIP8 mRNA is induced by NF-kB, and overexpression of TNFAIP8 has been correlated with poor prognosis in many cancers. Downregulation of TNFAIP8 expression has been associated with decreased pulmonary colonization of human tumor cells, and enhanced sensitivities of tumor xenografts to radiation and docetaxel. Here we have investigated the effects of depletion of TNFAIP8 on the mRNA, microRNA and protein expression profiles in prostate and breast cancers and melanoma. Depending on the tumor cell type, knockdown of TNFAIP8 was found to be associated with increased mRNA expression of several antiproliferative and apoptotic genes (e.g., IL-24, FAT3, LPHN2, EPHA3) and fatty acid oxidation gene ACADL, and decreased mRNA levels of oncogenes (e.g., NFAT5, MALAT1, MET, FOXA1, KRAS, S100P, OSTF1) and glutamate transporter gene SLC1A1. TNFAIP8 knockdown cells also exhibited decreased expression of multiple onco-proteins (e.g., PIK3CA, SRC, EGFR, IL5, ABL1, GAP43), and increased expression of the orphan nuclear receptor NR4A1 and alpha 1 adaptin subunit of the adaptor-related protein complex 2 AP2 critical to clathrin-mediated endocytosis. TNFAIP8-centric molecules were found to be predominately implicated in the hypoxia-inducible factor-1α (HIF-1α) signaling pathway, and cancer and development signaling networks. Thus TNFAIP8 seems to regulate the cell survival and cancer progression processes in a multifaceted manner. Future validation of the molecules identified in this study is likely to lead to new subset of molecules and functional determinants of cancer cell survival and progression.

Mao X, Wong SY, Tse EY, et al.
Mechanisms through Which Hypoxia-Induced Caveolin-1 Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma.
Cancer Res. 2016; 76(24):7242-7253 [PubMed] Related Publications
In solid tumors, hypoxia triggers an aberrant vasculogenesis, enhances malignant character, and elevates metastatic risk. The plasma membrane organizing protein caveolin-1 (Cav1) is increased in a variety of cancers, including hepatocellular carcinoma (HCC), where it contributes to metastatic capability. However, the reason for elevation of Cav1 in tumor cells and the mechanistic basis for its contributions to metastatic risk are not fully understood. Here, we show that in HCC cells, hypoxia elevates expression of Cav1, which then acts through the calcium-binding protein S100P to promote metastasis. Hypoxic regions of HCC xenografts displayed elevated expression of Cav1. Hypoxia promoted HCC cell migration and invasion and distant pulmonary metastases, whereas Cav1 silencing abolished these effects. Gene expression profiling revealed that hypoxia-induced Cav1 functioned as a positive regulator of S100P via activation of the NF-κB pathway. S100P elevation under hypoxic conditions was abrogated by silencing of Cav1 or NF-κB function. Conversely, restoring S100P in Cav1-silenced cells rescued the migratory potential of HCC cells along with tumor formation and lung metastasis. In clinical specimens of HCC, we observed S100P overexpression to correlate with venous invasion, microsatellites, direct liver invasion, and absence of tumor encapsulation. Collectively, our findings demonstrated how hypoxia-induced expression of Cav1 in HCC cells enhances their invasive and metastatic potential. Cancer Res; 76(24); 7242-53. ©2016 AACR.

Cheng YL, Jordan L, Chen HS, et al.
Chronic periodontitis can affect the levels of potential oral cancer salivary mRNA biomarkers.
J Periodontal Res. 2017; 52(3):428-437 [PubMed] Free Access to Full Article Related Publications
BACKGROUND AND OBJECTIVE: More than 100 salivary constituents have been found to show levels significantly different in patients with oral squamous cell carcinoma (OSCC) from those found in healthy controls, and therefore have been suggested to be potential salivary biomarkers for OSCC detection. However, many of these potential OSCC salivary biomarkers are also involved in chronic inflammation, and whether the levels of these biomarkers could be affected by the presence of chronic periodontitis was not known. The objective of this pilot study was therefore to measure the levels of seven previously reported potential OSCC salivary mRNA biomarkers in patients with chronic periodontitis and compare them to levels found in patients with OSCC and healthy controls. The seven salivary mRNAs were interleukin (IL)-8, IL-1β, dual specificity phosphatase 1, H3 histone family 3A, ornithine decarboxylase antizyme 1, S100 calcium-binding protein P (S100P) and spermidine/spermine N1-acetyltransferase 1.
MATERIAL AND METHODS: Unstimulated whole saliva samples were collected from a total of 105 human subjects from the following four study groups: OSCC; CPNS (chronic periodontitis, moderate to severe degree, non-smokers); CPS (chronic periodontitis, moderate to severe degree, smokers); and healthy controls. Levels of each mRNA in patient groups (OSCC or chronic periodontitis) relative to the healthy controls were determined by a pre-amplification reverse transcription-quantitative polymerase chain reaction approach with nested gene-specific primers. Results were recorded and analyzed by the Bio-Rad CFX96 Real-Time System. Mean fold changes between each pair of patient vs. control groups were analyzed by the Mann-Whitney U-test with Bonferroni corrections.
RESULTS: Only S100P showed significantly higher levels in patients with OSCC compared to both patients with CPNS (p = 0.003) and CPS (p = 0.007). The difference in S100P levels between patients with OSCC and healthy controls was also marginally significant (p = 0.009). There was no significant difference in the levels of salivary IL-8, IL-1β and dual specificity phosphatase 1 mRNAs between patients with OSCC and patients with CPNS (p = 0.510, 0.058 and 0.078, respectively); no significant difference in levels of salivary ornithine decarboxylase antizyme 1 and spermine N1-acetyltransferase mRNAs between patients with OSCC and patients with CPS (p = 0.318 and 0.764, respectively); and no significant difference in levels of the H3 histone family 3A mRNA between patients with OSCC and either CPS (p = 0.449) or healthy controls (p = 0.107).
CONCLUSIONS: Salivary S100P mRNA could be a reliable biomarker for OSCC detection, regardless of the presence of chronic periodontitis. The presence of chronic periodontitis could significantly affect the levels of the other six mRNAs, and negatively influence reliability for using them as biomarkers for oral cancer detection.

Merry CR, McMahon S, Forrest ME, et al.
Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer.
Oncotarget. 2016; 7(33):53230-53244 [PubMed] Free Access to Full Article Related Publications
Approximately, 25-30% of early-stage breast tumors are classified at the molecular level as HER2-positive, which is an aggressive subtype of breast cancer. Amplification of the HER2 gene in these tumors results in a substantial increase in HER2 mRNA levels, and consequently, HER2 protein levels. HER2, a transmembrane receptor tyrosine kinase (RTK), is targeted therapeutically by a monoclonal antibody, trastuzumab (Tz), which has dramatically improved the prognosis of HER2-driven breast cancers. However, ~30% of patients develop resistance to trastuzumab and recur; and nearly all patients with advanced disease develop resistance over time and succumb to the disease. Mechanisms of trastuzumab resistance (TzR) are not well understood, although some studies suggest that growth factor signaling through other receptors may be responsible. However, these studies were based on cell culture models of the disease, and thus, it is not known which pathways are driving the resistance in vivo. Using an integrative transcriptomic approach of RNA isolated from trastuzumab-sensitive and trastuzumab-resistant HER2+ tumors, and isogenic cell culture models, we identified a small set of mRNAs and lincRNAs that are associated with trastuzumab-resistance (TzR). Functional analysis of a top candidate gene, S100P, demonstrated that inhibition of S100P results in reversing TzR. Mechanistically, S100P activates the RAS/MEK/MAPK pathway to compensate for HER2 inhibition by trastuzumab. Finally, we demonstrated that the upregulation of S100P appears to be driven by epigenomic changes at the enhancer level. Our current findings should pave the path toward new therapies for breast cancer patients.

Martin JL
Validation of Reference Genes for Oral Cancer Detection Panels in a Prospective Blinded Cohort.
PLoS One. 2016; 11(7):e0158462 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Reference genes are needed as internal controls to determine relative expression for clinical application of gene expression panels. Candidate constitutively expressed genes must be validated as suitable reference genes in each body fluid and disease entity. Prior studies have predominantly validated oral squamous cell carcinoma associated messenger RNAs (mRNAs) based on quantitative polymerase chain reaction (qPCR) quantification cycle (Cq) values without adjustment for housekeeping genes.
METHODS: One hundred sixty eight patients had saliva collected before clinically driven biopsy of oral lesions suspicious for cancer. Seven potential housekeeping mRNAs and six pre-specified oral cancer associated mRNAs were measured with qPCR by personnel blinded to tissue diagnosis. Housekeeping gene stability was determined with the NormFinder program in a training set of 12 randomly selected cancer and 24 control patients. Genes with stability indices <0.02 were then tested in the validation set consisting of the remaining cancer and control patients and were further validated by the geNorm program. Cancer gene delta Cqs were compared in case and control patients after subtracting the geometric mean of the reference gene raw Cqs.
RESULTS: B2M and UBC had stability indices >0.02 in the training set and were not further tested. MT-ATP6, RPL30, RPL37A, RPLP0 and RPS17 all had stability indices <0.02 in the training set and in the verification set. The geNorm M values were all ≤1.10. All six pre-specified cancer genes (IL8, IL1, SAT, OAZ1, DUSP1 and S100P) were up-regulated in cancer versus control patients with from nearly twofold to over threefold higher levels (p<0.01 for all based on delta Cq values).
CONCLUSIONS: Five reference genes are validated for use in oral cancer salivary gene expression panels. Six pre-specified oral carcinoma associated genes are demonstrated to be highly significantly up-regulated in cancer patients based on delta Cq values. These cancer and reference genes are suitable for inclusion in gene expression panels for research and clinical applications.
TRIAL REGISTRATION: ClinicalTrials.gov NCT01587573.

Zakaria R, Platt-Higgins A, Rathi N, et al.
Metastasis-inducing proteins are widely expressed in human brain metastases and associated with intracranial progression and radiation response.
Br J Cancer. 2016; 114(10):1101-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Understanding the factors that drive recurrence and radiosensitivity in brain metastases would improve prediction of outcomes, treatment planning and development of therapeutics. We investigated the expression of known metastasis-inducing proteins in human brain metastases.
METHODS: Immunohistochemistry on metastases removed at neurosurgery from 138 patients to determine the degree and pattern of expression of the proteins S100A4, S100P, AGR2, osteopontin (OPN) and the DNA repair marker FANCD2. Validation of significant findings in a separate prospective series with the investigation of intra-tumoral heterogeneity using image-guided sampling. Assessment of S100A4 expression in brain metastatic and non-metastatic primary breast carcinomas.
RESULTS: There was widespread staining for OPN, S100A4, S100P and AGR2 in human brain metastases. Positive staining for S100A4 was independently associated with a shorter time to intracranial progression after resection in multivariate analysis (hazard ratio for negative over positive staining=0.17, 95% CI: 0.04-0.74, P=0.018). S100A4 was expressed at the leading edge of brain metastases in image guided sampling and overexpressed in brain metastatic vs non-brain metastatic primary breast carcinomas. Staining for OPN was associated with a significant increase in survival time after post-operative whole-brain radiotherapy in retrospective (OPN negative 3.43 months, 95% CI: 1.36-5.51 vs OPN positive, 11.20 months 95% CI: 7.68-14.72, Log rank test, P<0.001) and validation populations.
CONCLUSIONS: Proteins known to be involved in cellular adhesion and migration in vitro, and metastasis in vivo are significantly expressed in human brain metastases and may be useful biomarkers of intracranial progression and radiosensitivity.

Shen ZY, Fang Y, Zhen L, et al.
Analysis of the predictive efficiency of S100P on adverse prognosis and the pathogenesis of S100P-mediated invasion and metastasis of colon adenocarcinoma.
Cancer Genet. 2016; 209(4):143-53 [PubMed] Related Publications
Elevated expression of S100P has been detected in several tumor types. To analyze the potential use of S100P for the prediction of colorectal cancer (CRC) metastasis and prognosis, S100P expression was detected in 125 patients with colon adenocarcinoma by immunohistochemistry, followed by correlation and survival analysis. High S100P expression was correlated with metastasis, as demonstrated by clinically relevant data, and predicted poor survival more effectively than preoperative serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels in colon adenocarcinoma. Stable S100P knockdown CRC cell lines were established to elucidate the relationship between S100P expression and tumor progression in vitro and in vivo. S100P knockdown resulted in reductions in the invasiveness and metastasis of CRC cells. Xenograft growth in nude mice also demonstrated that down-regulated S100P dramatically inhibited peritoneal metastasis of CRC cells. S100P promoted the invasion and metastasis of CRC by activating RAGE/ERK signaling and promoting the epithelial-mesenchymal transition (EMT). RAGE was found to be crucial for S100P-mediated EMT in colon cancer. Knockdown of RAGE in S100P-overexpressing colon cancer cells dramatically suppressed EMT process. Our results indicate that overexpression of S100P is related with an invasive and metastatic phenotype of CRC which is EMT-involved and RAGE dependent.

Li Z, Chen Y, Wang X, et al.
LASP-1 induces proliferation, metastasis and cell cycle arrest at the G2/M phase in gallbladder cancer by down-regulating S100P via the PI3K/AKT pathway.
Cancer Lett. 2016; 372(2):239-50 [PubMed] Related Publications
LASP-1 is an actin-binding protein that regulates cytoskeletal dynamics and cell migration. LASP-1 was previously identified in a cDNA library from metastatic breast cancer samples. This protein has since been detected in multiple human cancers, including liver cancer, gastric cancer and pancreatic cancer. S100P is a small calcium-binding protein in the S100 protein family that regulates cellular, physiological and pathological processes in various cancers. However, the clinical significance of LASP-1 and S100P expression in gallbladder cancer (GBC) is not yet clear. In our study, we focused on the clinical significance, biological function and mechanism of LASP-1 in gallbladder cancer and detected LASP-1 and S100P overexpression in GBC tissues. The expression of LASP-1 was significantly correlated with poor prognosis in GBC patients (P < 0.05). Furthermore, down-regulation of LASP-1 expression resulted in the obvious inhibition of proliferation and migration and caused cell cycle arrest by down-regulating S100P via the PI3K/AKT pathway; in mice, tumor volume was significantly decreased. In conclusion, LASP-1 may act as an oncogene to regulate the expression of S100P to influence cellular functions in GBC. LASP-1 could serve as a genetic treatment target in GBC patients.

Tian W, Liu J, Pei B, et al.
Identification of miRNAs and differentially expressed genes in early phase non-small cell lung cancer.
Oncol Rep. 2016; 35(4):2171-6 [PubMed] Related Publications
To explore the potential therapeutic targets of early‑stage non-small cell lung cancer (NSCLC), gene microarray analysis was conducted. The microarray data of NSCLC in stage IA, IB, IIA, and IIB (GSE50081), were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in IB vs. IA, IIA vs. IB, IIB vs. IIA were screened out via R. ToppGene Suite was used to get the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs. The GeneCoDis3 database and Cytoscape software were used to construct the transcriptional regulatory network. In total, 25, 17 and 14 DEGs were identified in IB vs. IA, IIA vs. IB, IIB vs. IIA of NSCLC, respectively. Some GO terms and pathways (e.g., extracellular space, alveolar lamellar body, bioactivation via cytochrome P450 pathway) were found significantly enriched in DEGs. Genes S100P, ALOX15B, CCL11, NLRP2, SERPINA3, FoxO4 and hsa-miR-491 may play important roles in the development of early-stage NSCLC. Thus, by bioinformatics analysis the key genes and biological processes involving in the development of early-stage NSCLC could be established, providing more potential references for the therapeutic targets.

Hu R, Huffman KE, Chu M, et al.
Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer.
J Proteome Res. 2016; 15(2):477-86 [PubMed] Free Access to Full Article Related Publications
Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.

Chen L, Huang K, Himmelfarb EA, et al.
Diagnostic value of maspin in distinguishing adenocarcinoma from benign biliary epithelium on endoscopic bile duct biopsy.
Hum Pathol. 2015; 46(11):1647-54 [PubMed] Related Publications
Histopathologic distinction between benign and malignant epithelia on endoscopic bile duct biopsy can be extremely challenging due to small sample size, crush artifact, and a propensity for marked inflammatory and reactive changes after stent placement. Our previous studies have shown that the insulin-like growth factor II mRNA-binding protein 3, S100P, and the von Hippel-Lindau gene product (pVHL) can help the distinction. This study analyzed 134 endoscopic bile duct biopsy specimens (adenocarcinoma 45, atypical 31, and benign 58) by immunohistochemistry for the expression of maspin, a serine protease inhibitor. The results demonstrated that (1) maspin expression was more frequently detected in malignant than in benign biopsies; (2) malignant biopsies frequently showed diffuse, strong/intermediate, and combined nuclear/cytoplasmic staining patterns for maspin, which were much less commonly seen in benign biopsies; (3) the malignant staining patterns for maspin observed in atypical biopsies were consistent with follow-up data showing that 67% of these patients were subsequently diagnosed with adenocarcinoma; (4) a maspin+/S100P+/pVHL- staining profile was seen in 75% of malignant biopsies but in none of the benign cases. These observations demonstrate that maspin is a useful addition to the diagnostic immunohistochemical panel (S100P, pVHL, and insulin-like growth factor II mRNA-binding protein 3) to help distinguish malignant from benign epithelia on challenging bile duct biopsies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. S100P, Cancer Genetics Web: http://www.cancer-genetics.org/S100P.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999