CAV1

Gene Summary

Gene:CAV1; caveolin 1
Aliases: CGL3, PPH3, BSCL3, LCCNS, VIP21, MSTP085
Location:7q31.2
Summary:The scaffolding protein encoded by this gene is the main component of the caveolae plasma membranes found in most cell types. The protein links integrin subunits to the tyrosine kinase FYN, an initiating step in coupling integrins to the Ras-ERK pathway and promoting cell cycle progression. The gene is a tumor suppressor gene candidate and a negative regulator of the Ras-p42/44 mitogen-activated kinase cascade. Caveolin 1 and caveolin 2 are located next to each other on chromosome 7 and express colocalizing proteins that form a stable hetero-oligomeric complex. Mutations in this gene have been associated with Berardinelli-Seip congenital lipodystrophy. Alternatively spliced transcripts encode alpha and beta isoforms of caveolin 1.[provided by RefSeq, Mar 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:caveolin-1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (107)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CAV1 (cancer-related)

Gao Y, Li L, Li T, et al.
Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1.
Int J Oncol. 2019; 54(6):2054-2068 [PubMed] Free Access to Full Article Related Publications
The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.

Freire PP, Fernandez GJ, Cury SS, et al.
The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis.
Int J Mol Sci. 2019; 20(8) [PubMed] Free Access to Full Article Related Publications
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/

Sengupta D, Deb M, Kar S, et al.
miR-193a targets MLL1 mRNA and drastically decreases MLL1 protein production: Ectopic expression of the miRNA aberrantly lowers H3K4me3 content of the chromatin and hampers cell proliferation and viability.
Gene. 2019; 705:22-35 [PubMed] Related Publications
Mixed-lineage leukaemia 1 (MLL1) enzyme plays major role in regulating genes associated with vertebrate development. Cell physiology and homeostasis is regulated by microRNAs in diverse microenvironment. In this investigation we have identified conserved miR-193a target sites within the 3'-UTR of MLL1 gene transcript. Utilizing wild type and mutated 3'-UTR constructs and luciferase reporter assays we have clearly demonstrated that miR-193a directly targets the 3'-UTR region of the MLL1 mRNA. Ectopic expression of miR-193a modulated global H3K4 mono-, di- and tri-methylation levels and affects the expression of CAV1, a gene which is specifically modulated by H3K4me3. To determine the implications of this in vitro finding in aberrant physiological conditions we analyzed prostate cancer tissue samples. In this context miR-193a RNA was undetectable and MLL1 was highly expressed with concomitantly high levels of H3K4me, H3K4me2, and H3K4me3 enrichment in the promoters of MLL1 responsive genes. Finally, we showed that prolonged ectopic expression of miR-193a inhibits growth and cell migration, and induces apoptosis. Thus, while our study unveils amplitude of the epigenome, including miRnome it establishes that; (i) miR-193a directly target MLL1 mRNA, (ii) miR-193a impair MLL1 protein production, (iii) miR-193a reduces the overall methylation marks of the genome.

Yin J, Zeng A, Zhang Z, et al.
Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma.
EBioMedicine. 2019; 42:238-251 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Although temozolomide (TMZ) resistance is a significant clinical problem in glioblastoma (GBM), its underlying molecular mechanisms are poorly understood. In this study, we identified the role of exosomal microRNAs (miRNAs) from TMZ-resistant cells as important mediators of chemoresistance in GBM cells.
METHODS: Exosomes were isolated from TMZ-resistant GBM cells and characterized via scanning electron microscopy (SEM). Expression levels of miR-1238 in GBM cell lines and their exosomes, clinical tissues, and sera were evaluated by RT-qPCR. In vitro and in vivo experiments were performed to elucidate the function of exosomal miR-1238 in TMZ resistance in GBM cells. Co-immunoprecipitation assays and western blot analysis were used to investigate the potential mechanisms of miR-1238/CAV1 that contribute to TMZ resistance.
FINDINGS: MiR-1238 levels were higher in TMZ-resistant GBM cells and their exosomes than in sensitive cells. Higher levels of miR-1238 were found in the sera of GBM patients than in healthy people. The loss of miR-1238 may sensitize resistant GBM cells by directly targeting the CAV1/EGFR pathway. Furthermore, bioactive miR-1238 may be incorporated into the exosomes shed by TMZ-resistant cells and taken up by TMZ-sensitive cells, thus disseminating TMZ resistance.
INTERPRETATION: Our findings establish that miR-1238 plays an important role in mediating the acquired chemoresistance of GBM and that exosomal miR-1238 may confer chemoresistance in the tumour microenvironment. These results suggest that circulating miR-1238 serves as a clinical biomarker and a promising therapeutic target for TMZ resistance in GBM. FUND: This study was supported by the National Natural Science Foundation of China (No·81402056, 81472362, and 81772951) and the National High Technology Research and Development Program of China (863) (No·2012AA02A508).

Chuang PK, Hsiao M, Hsu TL, et al.
Signaling pathway of globo-series glycosphingolipids and β1,3-galactosyltransferase V (β3GalT5) in breast cancer.
Proc Natl Acad Sci U S A. 2019; 116(9):3518-3523 [PubMed] Free Access to Full Article Related Publications
The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme β1,3-galactosyltransferase V (β3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of β3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of β3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.

Wang B, Xu X, Yang Z, et al.
POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1.
EBioMedicine. 2019; 41:320-332 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hyper-activation of TGF-β signaling is critically involved in progression of hepatocellular carcinoma (HCC). However, the events that contribute to the dysregulation of TGF-β pathway in HCC, especially at the post-translational level, are not well understood.
METHODS: Associations of deubiquitinase POH1 with TGF-β signaling activity and the outcomes of HCC patients were examined by data mining of online HCC datasets, immunohistochemistry analyses using human HCC specimens, spearman correlation and survival analyses. The effects of POH1 on the ubiquitination and stability of the TGF-β receptors (TGFBR1 and TGFBR2) and the activation of downstream effectors were tested by western blotting. Primary mouse liver tissues from polyinosinic:polycytidylic acid (poly I:C)- treated Mx-Cre+, poh1
FINDINGS: Here we show that POH1 is a critical regulator of TGF-β signaling and promotes tumor metastasis. Integrative analyses of HCC subgroups classified with unsupervised transcriptome clustering of the TGF-β response, metastatic potential and outcomes, reveal that POH1 expression positively correlates with activities of TGF-β signaling in tumors and with malignant disease progression. Functionally, POH1 intensifies TGF-β signaling delivery and, as a consequence, promotes HCC cell metastatic properties both in vitro and in vivo. The expression of the TGF-β receptors was severely downregulated in POH1-deficient mouse hepatocytes. Mechanistically, POH1 deubiquitinates the TGF-β receptors and CAV1, therefore negatively regulates lysosome pathway-mediated turnover of TGF-β receptors.
CONCLUSION: Our study highlights the pathological significance of aberrantly expressed POH1 in TGF-β signaling hyperactivation and aggressive progression in HCC.

Sun Y, Xiaoyan H, Yun L, et al.
Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis
Asian Pac J Cancer Prev. 2019; 20(1):145-155 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer is one of the three major gynecologic cancers in the world. The aim of this study is to find the relationship between ovarian cancer and diabetes mellitus by using the genetic screening technique. By GEO database query and related online tools of analysis, we analyzed 185 cases of ovarian cancer and 10 control samples from GSE26712, and a total of 379 different genes were identified, including 104 up-regulated genes and 275 down-regulated genes. The up-regulated genes were mainly enriched in biological processes, including cell adhesion, transcription of nucleic acid and biosynthesis, and negative regulation of cell metabolism. The down-regulated genes were enriched in cell proliferation, migration, angiogenesis and macromolecular metabolism. Protein-protein interaction was analyzed by network diagram and module synthesis analysis. The top ten hub genes (CDC20, H2AFX, ENO1, ACTB, ISG15, KAT2B, HNRNPD, YWHAE, GJA1 and CAV1) were identified, which play important roles in critical signaling pathways that regulate the process of oxidation-reduction reaction and carboxylic acid metabolism. CTD analysis showed that the hub genes were involved in 1,128 distinct diseases (bonferroni-corrected P<0.05). Further analysis by drawing the Kaplan-Meier survival curve indicated that CDC20 and ISG15 were statistically significant (P<0.05). In conclusion, glycometabolism was related to ovarian cancer and genes and proteins in glycometabolism could serve as potential targets in ovarian cancer treatment.

Li X, Huang Q, Long H, et al.
A new gold(I) complex-Au(PPh
EBioMedicine. 2019; 39:159-172 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ubiquitin-proteasome system (UPS) is integral to cell survival by maintaining protein homeostasis, and its dysfunction has been linked to cancer and several other human diseases. Through counteracting ubiquitination, deubiquitinases (DUBs) can either positively or negatively regulate UPS function, thereby representing attractive targets of cancer therapies. Previous studies have shown that metal complexes can inhibit tumor growth through targeting the UPS; however, novel metal complexes with higher specificity for cancer therapy are still lacking.
METHODS: We synthesized a new gold(I) complex, Au(PPh
FINDINGS: Here we report that (i) a new gold(I) complex-pyrithione, i.e., Au(PPh
INTERPRETATION: Together, this study discovers a new gold(I) complex to be an effective inhibitor of the DUBs and a potential anti-cancer drug. FUND: The National High Technology Research and Development Program of China, the project of Guangdong Province Natural Science Foundation, the projects from Foundation for Higher Education of Guangdong, the project from Guangzhou Medical University for Doctor Scientists, the Medical Scientific Research Foundation of Guangdong Province, and the Guangzhou Key Medical Discipline Construction Project Fund.

Pereira PMR, Sharma SK, Carter LM, et al.
Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy.
Nat Commun. 2018; 9(1):5137 [PubMed] Free Access to Full Article Related Publications
Human epidermal growth factor receptor 2 (HER2) gene amplification and/or protein overexpression in tumors is a prerequisite for initiation of trastuzumab therapy. Although HER2 is a cell membrane receptor, differential rates of endocytosis and recycling engender a dynamic surface pool of HER2. Since trastuzumab must bind to the extracellular domain of HER2, a depressed HER2 surface pool hinders binding. Using in vivo biological models and cultures of fresh human tumors, we find that the caveolin-1 (CAV1) protein is involved in HER2 cell membrane dynamics within the context of receptor endocytosis. The translational significance of this finding is highlighted by our observation that temporal CAV1 depletion with lovastatin increases HER2 half-life and availability at the cell membrane resulting in improved trastuzumab binding and therapy against HER2-positive tumors. These data show the important role that CAV1 plays in the effectiveness of trastuzumab to target HER2-positive tumors.

Fiscon G, Conte F, Paci P
SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines.
BMC Bioinformatics. 2018; 19(Suppl 15):436 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: It is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to sustain tumor growth. These cells - called cancer stem-like cells - share certain phenotypic characteristics with untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies.
METHODS: Recently, we developed SWIM, a software able to unveil a small pool of genes - called switch genes - critically associated with drastic changes in cell phenotype. Here, we applied SWIM to the expression profiling of glioblastoma stem-like cells and conventional glioma cell lines, in order to identify switch genes related to stem-like phenotype.
RESULTS: SWIM identifies 171 switch genes that are all down-regulated in glioblastoma stem-like cells. This list encompasses genes like CAV1, COL5A1, COL6A3, FLNB, HMMR, ITGA3, ITGA5, MET, SDC1, THBS1, and VEGFC, involved in "ECM-receptor interaction" and "focal adhesion" pathways. The inhibition of switch genes highly correlates with the activation of genes related to neural development and differentiation, such as the 4-core OLIG2, POU3F2, SALL2, SOX2, whose induction has been shown to be sufficient to reprogram differentiated glioblastoma into stem-like cells. Among switch genes, the transcription factor FOSL1 appears as the brightest star since: it is down-regulated in stem-like cells; it highly negatively correlates with the 4-core genes that are all up-regulated in stem-like cells; the promoter regions of the 4-core genes harbor a consensus binding motif for FOSL1.
CONCLUSIONS: We suggest that the inhibition of switch genes in stem-like cells could induce the deregulation of cell communication pathways, contributing to neoplastic progression and tumor invasiveness. Conversely, their activation could restore the physiological equilibrium between cell adhesion and migration, hampering the progression of cancer. Moreover, we posit FOSL1 as promising candidate to orchestrate the differentiation of cancer stem-like cells by repressing the 4-core genes' expression, which severely halts cancer growth and might affect the therapeutic outcome. We suggest FOSL1 as novel putative therapeutic and prognostic biomarker, worthy of further investigation.

Kanlikilicer P, Bayraktar R, Denizli M, et al.
Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer.
EBioMedicine. 2018; 38:100-112 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Circulating miRNAs are known to play important roles in intercellular communication. However, the effects of exosomal miRNAs on cells are not fully understood.
METHODS: To investigate the role of exosomal miR-1246 in ovarian cancer (OC) microenvironment, we performed RPPA as well as many other in vitro functional assays in ovarian cancer cells (sensitive; HeyA8, Skov3ip1, A2780 and chemoresistant; HeyA8-MDR, Skov3-TR, A2780-CP20). Therapeutic effect of miR-1246 inhibitor treatment was tested in OC animal model. We showed the effect of OC exosomal miR-1246 uptake on macrophages by co-culture experiments.
FINDINGS: Substantial expression of oncogenic miR-1246 OC exosomes was found. We showed that Cav1 gene, which is the direct target of miR-1246, is involved in the process of exosomal transfer. A significantly worse overall prognosis were found for OC patients with high miR-1246 and low Cav1 expression based on TCGA data. miR-1246 expression were significantly higher in paclitaxel-resistant OC exosomes than in their sensitive counterparts. Overexpression of Cav1 and anti-miR-1246 treatment significantly sensitized OC cells to paclitaxel. We showed that Cav1 and multi drug resistance (MDR) gene is involved in the process of exosomal transfer. Our proteomic approach also revealed that miR-1246 inhibits Cav1 and acts through PDGFβ receptor at the recipient cells to inhibit cell proliferation. miR-1246 inhibitor treatment in combination with chemotherapy led to reduced tumor burden in vivo. Finally, we demonstrated that when OC cells are co-cultured with macrophages, they are capable of transferring their oncogenic miR-1246 to M2-type macrophages, but not M0-type macrophages.
INTERPRETATION: Our results suggest that cancer exosomes may contribute to oncogenesis by manipulating neighboring infiltrating immune cells. This study provide a new mechanistic therapeutic approach to overcome chemoresistance and tumor progression through exosomal miR-1246 in OC patients.

Kamposioras K, Tsimplouli C, Verbeke C, et al.
Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model.
Int J Oncol. 2019; 54(2):537-549 [PubMed] Free Access to Full Article Related Publications
Caveolin‑1 (Cav‑1) expression has been shown to be associated with tumor growth and resistance to chemotherapy in pancreatic cancer. The primary aim of this study was to explore the significance of Cav‑1 expression in pancreatic cancer cells as compared to fibroblasts in relation to cancer cell proliferation and chemoresistance, both in vitro and in vivo, in an immunodeficient mouse model. We also aimed to evaluate the immunohistochemical expression of Cav‑1 in the epithelial and stromal component of pancreatic cancer tissue specimens. The immunohistochemical staining of poorly differentiated tissue sections revealed a strong and weak Cav‑1 expression in the epithelial tumor cells and stromal fibroblasts, respectively. Conversely, the well‑differentiated areas were characterized by a weak epithelial Cav‑1 expression. Cav‑1 downregulation in cancer cells resulted in an increased proliferation in vitro; however, it had no effect on chemoresistance and growth gain in vivo. By contrast, the decreased expression of Cav‑1 in fibroblasts resulted in a growth advantage and the chemoresistance of cancer cells when they were co‑injected into immunodeficient mice to develop mixed fibroblast/cancer cell xenografts. On the whole, the findings of this study suggest that the downregulation of Cav‑1 in fibroblasts is associated with an increased tumor proliferation rate in vivo and chemoresistance. Further studies are warranted to explore whether the targeting of Cav‑1 in the stroma may represent a novel therapeutic approach in pancreatic cancer.

Wang X, Liu Z, Yang Z
Expression and clinical significance of Caveolin-1 in prostate Cancer after transurethral surgery.
BMC Urol. 2018; 18(1):102 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer is a common malignancy of the male genitourinary system that occurs worldwide. The current research aims to investigate caveolin-1 expression in prostate cancer tissue and its relationship with pathological grade, clinical pathologic staging, and preoperative prostate-specific antigen (PSA) levels.
METHODS: From January 2012 to December 2014, samples from 47 patients with prostate cancer who had received transurethral prostatic resection (TURP) and 20 patients with benign prostatic hyperplasia were collected at the First Affiliated Hospital of Guangxi Medical University. Caveolin-1 was detected by streptavidin-perosidase (SP) immunohistochemical staining in pathological tissue slices. The results were statistically analyzed for pathological grade, clinical stage, and preoperative PSA level.
RESULTS: The expression of caveolin-1 was significantly higher in prostate cancer samples than in benign prostatic hyperplasia samples (P < 0.05), and caveolin-1 expression was significantly different among the pathological grades of poorly, moderately and well-differentiated prostate cancer (P < 0.05). The difference in caveolin-1 expression was significant for different clinical stages (T1-T2 and T3-T4) of prostate cancer (P < 0.05). The difference in caveolin-1 expression was not significant among samples with different preoperative PSA levels (0-10, 10-100 and > 100 μg/L) (P > 0.05).
CONCLUSIONS: Caveolin-1 is closely related to the pathological grade and clinical stage of prostate cancer after transurethral surgery, and it may be a novel tumor marker for prostate cancer. The expression of caveolin-1 is not associated with preoperative serum PSA levels.

Karagianni F, Kataki A, Koniaris E, et al.
Distinctive expression profiles of Caveolin-1 and Notch-1 protein in patients with nasal polyps or sinonasal inverted papillomas.
Pathol Res Pract. 2018; 214(12):2004-2010 [PubMed] Related Publications
BACKGROUND: Nasal polyposis (NP) and sinonasal inverted papillomas (SIP) are considered benign lesions capable of recurrence or malignant transformation although not with the same prevalence. Since fluctuations of Caveolin-1 and Notch-1 proteins expression have been reported in many pathologies, the current study aimed to investigate their involvement in the epithelial transformation observed in SIPs compared to NP.
METHODS: Immunohistochemical expression of Caveolin-1 and Notch-1 proteins was assessed in 104 patients with sinonasal lesions (45 NP, 45 SIP and 14 NP with SIP), semiquantively (percentage times intensity). Proteins expression profiles were evaluated statistically for their correlation with patients demographic and clinicopathological variables (grade of dysplasia, inflammation, recurrence) as well as with markers of proliferation (Ki67) and apoptosis (7-AAD) as determined by flow cytometry analysis.
RESULTS: SIP lesions presented increased Caveolin-1 immunopositivity compared to NP (62.2%, vs 40.9%; p = 0.045). Cytoplasmic staining was observed only in epithelium's basal and suprabasal layers. Caveolin-1 positivity was not related to Ki67 expression, apoptosis, inflammation or dysplasia, eventhough 81.8% of highly immunopositive lesions were dysplastic (p = 0.03). Also, smokers presented significantly increased immunopositivy (p = 0.03). In contrast SIP lesions presented reduced Notch-1 expression compared to NP (68.9% vs 100%; p < 0.001). Dysplastic lesions presented low Notch-1 immunopositivity (p < 0.001). Enhancement of Notch-1 gene expression was also associated with inflammation.
CONCLUSIONS: The herein presented data suggest that the expression profiles of Caveolin-1 and Notch-1 proteins in sinonasal pathologies are distinctive and that could be explored as potential targets for the development of alternative therapeutic approaches.

Dhawan D, Hahn NM, Ramos-Vara JA, Knapp DW
Naturally-occurring canine invasive urothelial carcinoma harbors luminal and basal transcriptional subtypes found in human muscle invasive bladder cancer.
PLoS Genet. 2018; 14(8):e1007571 [PubMed] Free Access to Full Article Related Publications
There is growing evidence that molecular subtypes (e.g. luminal and basal subtypes) affect the prognosis and treatment response in patients with muscle invasive urinary bladder cancer (invasive urothelial carcinoma, iUC). Modeling these subtypes in pre-clinical animal studies is essential, but it is challenging to produce these subtypes, along with other critical host and tumor features, in experimentally-induced animal models. This study was conducted to determine if luminal and basal molecular subtypes are present in naturally-occurring canine iUC, a cancer that mimics the human condition in other key aspects. RNA sequencing was performed on 29 canine treatment naive iUC tissue samples and on four normal canine bladder mucosal samples. Data were aligned to CanFam 3.1, and differentially expressed genes were identified. Unsupervised hierarchical clustering of these genes revealed two distinct groups (n = 13, n = 16). When genes that distinguish basal and luminal subtypes in human cancer (n = 2015) were used to probe genes differentially expressed between normal canine bladder and iUC, 829 enriched signature genes were identified. Unsupervised hierarchical clustering of these genes revealed two distinct groups comprised of 18 luminal subtype tumors and 11 basal subtype tumors. The enriched genes included MMP9, SERPINE2, CAV1, KRT14, and RASA3 in basal tumors, and PPARG, LY6E, CTSE, CDK3, and TBX2 in luminal tumors. In supervised clustering, additional genes of importance in human iUC were identified in canine iUC associated with claudin-low and infiltrated tumors. A smaller panel of genes (n = 60) was identified that distinguished canine luminal and basal iUC with overall 93.1% accuracy. Immune signature patterns similar to those in human iUC were also identified with the greatest enrichment of immune genes being in the basal subtype tumors. These findings provide additional compelling evidence that naturally-occurring canine iUC is a highly relevant and much needed model of human iUC for translational research.

Gu Y, Cai R, Zhang C, et al.
miR-132-3p boosts caveolae-mediated transcellular transport in glioma endothelial cells by targeting PTEN/PI3K/PKB/Src/Cav-1 signaling pathway.
FASEB J. 2019; 33(1):441-454 [PubMed] Related Publications
Blood-brain tumor barrier (BTB) impedes the transportation of antitumor therapeutic drugs into brain tumors. Its mechanism is still unknown, but learning how to improve the BTB permeability is critical for drug intervention. Recently, microRNAs (miRNAs) have appeared as regulation factors of numerous biologic processes and therapeutic targets of diverse diseases. In this study, we have identified that miR-132-3p is an essential miRNA by increasing the transcellular transport through the BTB. We found that miR-132-3p expression was significantly up-regulated in glioma endothelial cells (GECs). Furthermore we showed that miR132-3p

Maiuthed A, Bhummaphan N, Luanpitpong S, et al.
Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: A new regulatory mechanism for cancer stem cell formation.
J Biol Chem. 2018; 293(35):13534-13552 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells (CSCs) are unique populations of cells that can self-renew and generate different cancer cell lineages. Although CSCs are believed to be a promising target for novel therapies, the specific mechanisms by which these putative therapeutics could intervene are less clear. Nitric oxide (NO) is a biological mediator frequently up-regulated in tumors and has been linked to cancer aggressiveness. Here, we search for targets of NO that could explain its activity. We find that it directly affects the stability and function of octamer-binding transcription factor 4 (Oct4), known to drive the stemness of lung cancer cells. We demonstrated that NO promotes the CSC-regulatory activity of Oct4 through a mechanism that involves complex formation between Oct4 and the scaffolding protein caveolin-1 (Cav-1). In the absence of NO, Oct4 forms a molecular complex with Cav-1, which promotes the ubiquitin-mediated proteasomal degradation of Oct4. NO promotes Akt-dependent phosphorylation of Cav-1 at tyrosine 14, disrupting the Cav-1:Oct4 complex. Site-directed mutagenesis and computational modeling studies revealed that the hydroxyl moiety at tyrosine 14 of Cav-1 is crucial for its interaction with Oct4. Both removal of the hydroxyl via mutation to phenylalanine and phosphorylation lead to an increase in binding free energy (Δ

Guerrero S, Díaz-García VM, Contreras-Orellana P, et al.
Gold nanoparticles as tracking devices to shed light on the role of caveolin-1 in early stages of melanoma metastasis.
Nanomedicine (Lond). 2018; 13(12):1447-1462 [PubMed] Related Publications
AIM: To track early events during lung metastasis, we labeled cells expressing (B16F10
METHODS: B16F10 expressing or lacking CAV1 were labeled with AuNPs-PEG-TAT. The physicochemical properties and cytotoxicity of these nanoparticles, as well as their effects on migration and invasiveness of B16F10 cells in vitro were evaluated. Ex vivo lung distribution of the labeled cells after tail vein injection into C57BL/6 mice was examined.
RESULTS: AuNPs-PEG-TAT did not affect B16F10 viability, migration and invasiveness. The metastatic and tumorigenic capability of the labeled B16F10 was also not modified in comparison to unlabeled B16F10 cells. CAV1 expression favored the retention of B16F10 cells in the lungs of mice 2 h post injection, suggesting CAV1 promoted adherence to endothelial cells and transendothelial migration.
CONCLUSIONS: We developed a protocol to label B16F10 cells with AuNPs-PEG-TAT that permits subsequent tracking of cells in mice. CAV1 overexpression was found to increase retention and transendothelial migration of B16F10 cells in the lung.

Becceneri AB, Popolin CP, Plutin AM, et al.
The trans-[Ru(PPh
J Inorg Biochem. 2018; 186:70-84 [PubMed] Related Publications
Triple negative breast cancer (TNBC) is a heterogeneous subtype of breast tumors that does not exhibit the expression of estrogen and progesterone receptors, neither the amplification of the human epidermal growth factor receptor 2 (HER-2) gene. Despite all the advances in cancer treatments, the development of new anticancer drugs for TNBC tumors is still a challenge. There is an increasing interest in new agents to be used in cancer treatment. Ruthenium is a metal that has unique characteristics and important in vivo and in vitro results achieved for cancer treatment. Thus, in this work, with the aim to develop anticancer drugs, three new ruthenium complexes containing acylthiourea ligands have been synthesized and characterized: trans-[Ru(PPh

Gerstenberger W, Wrage M, Kettunen E, et al.
Stromal Caveolin-1 and Caveolin-2 Expression in Primary Tumors and Lymph Node Metastases.
Anal Cell Pathol (Amst). 2018; 2018:8651790 [PubMed] Free Access to Full Article Related Publications
The expression of caveolin-1 (CAV1) in both tumor cell and cancer-associated fibroblasts (CAFs) has been found to correlate with tumor aggressiveness in different epithelial tumor entities, whereas less is known for caveolin-2 (CAV2). The aim of this study was to investigate the clinicopathological significance and prognostic value of stromal CAV1 and CAV2 expression in lung cancer. The expression of these two genes was investigated at protein level on a tissue microarray (TMA) consisting of 161 primary tumor samples. 50.7% of squamous cell lung cancer (SCC) tumors showed strong expression of CAV1 in the tumor-associated stromal cells, whereas only 15.1% of adenocarcinomas (AC) showed a strong CAV1 expression (

da Costa PE, Batista WL, Moraes MS, et al.
Src kinase activation by nitric oxide promotes resistance to anoikis in tumour cell lines.
Free Radic Res. 2018; 52(5):592-604 [PubMed] Related Publications
Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases.

Ketteler J, Klein D
Caveolin-1, cancer and therapy resistance.
Int J Cancer. 2018; 143(9):2092-2104 [PubMed] Related Publications
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.

Wu J, Di D, Zhao C, et al.
Clinical Significance of Gli-1 And Caveolin-1 Expression in the Human Small Cell Lung Cancer
Asian Pac J Cancer Prev. 2018; 19(2):401-406 [PubMed] Free Access to Full Article Related Publications
Background: Lung cancer is the leading causes of cancer-related deaths around the world. Abnormal activation of the hedgehog (Hh) signaling pathway has been found to be involved in the occurrence, invasion, and metastasis of cancers. Autophagy also plays a significant role in the growth and metastasis of cancers. However, the correlation between the Hh signaling pathway and autophagy in small cell lung cancer (SCLC) is still poorly understood. This study aimed to investigate the significance of Hh signaling pathway and autophagy in SCLC. Materials and Methods: The expression of the Hh-induced transcriptional factor, glioma associated oncogene-1 (Gli-1) and the autophagy-related molecule caveolin-1 (Cav-1) and their clinical significance was performed to detect and assay by immunohistochemistry in tissue microarray including 70 patients with SCLC. Results: In our study, 47 (67.1%) patients had positive Gli-1 expression, 49 (70.0%) patients had positive Cav-1 expression, and 44 (62.9%) patients had negative fibroblastic Cav-1 expression. In SCLC, Gli-1 expression increased markedly, and was closely associated with decreased fibroblastic Cav-1 expression. Furthermore, we also found that Gli-1 expression was closely associated with increased Cav-1 expression. Conclusions: Our findings suggested that abnormal activation of the Hh signaling pathway is closely related to autophagy in SCLC. We envision that novel targets may come with the further investigation of Gli-1 and Cav-1 in carcinogenesis of SCLC.

Pellinen T, Blom S, Sánchez S, et al.
ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer.
Sci Rep. 2018; 8(1):2338 [PubMed] Free Access to Full Article Related Publications
Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFβ signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFβ in tumour biology.

Yang J, Zhu T, Zhao R, et al.
Caveolin-1 Inhibits Proliferation, Migration, and Invasion of Human Colorectal Cancer Cells by Suppressing Phosphorylation of Epidermal Growth Factor Receptor.
Med Sci Monit. 2018; 24:332-341 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Although downregulation of caveolin-1 (Cav-1), which is a key constituent of membrane caveolae and a regulator of cellular processes, is associated with colorectal cancer (CRC), its involvement in the disease progression is largely unknown. This study aimed to explore the role of Cav-1 in CRC and the associated mechanisms. MATERIAL AND METHODS Fresh tissues from patients with CRC and human CRC SW480 cells were used to evaluate Cav-1 and Ki-67 expression using immunohistochemistry and Western blotting. The MTS and Transwell assays were performed to determine the effects of Cav-1 overexpression via pcDNA3.1/Cav-1 plasmid on cell proliferation and metastasis. The effect of Cav-1 on the epidermal growth factor receptor (EGFR) activation was evaluated by Western blotting. The correlation of Cav-1 expression with clinicopathological factors was statistically analyzed. RESULTS Overexpression of Cav-1 significantly reduced proliferation, migration, and invasion of SW480 cancer cells in vitro. The EGF-induced phosphorylation of EGFR and activations of the RAF-MEK-ERK and PI3K-AKT pathways were adversely regulated by Cav-1 overexpression in vitro. In 76 cases of CRC patients with EGFR expression, a negative correlation was observed between the level of Cav-1 and tumor-node-metastasis stage, lymph node metastasis, and distant metastasis (All p<0.05). Finally, the expression level of Cav-1 was negatively correlated with that of Ki-67. CONCLUSIONS This report is the first to show that overexpression of Cav-1significantly inhibits the proliferation, migration, and invasion potential of SW480 cells, possibly through reducing EGF-induced EGFR activation. High Cav-1 expression level may be a predictor of positive outcomes in patients with colorectal cancer.

Zhou LN, Li SC, Li XY, et al.
Identification of differential protein-coding gene expressions in early phase lung adenocarcinoma.
Thorac Cancer. 2018; 9(2):234-240 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The diagnosis of early phase lung adenocarcinoma (LADC) is associated with therapeutic strategy, effect, and survival time. However, the sensitive biomarkers of early phase LADC are still unclear. This study aimed to identify protein-coding genes that can be used as biomarkers of early stage LADC.
METHODS: Gene microarray analysis was performed to identify key hub genes that show different expression in lung adenocarcinoma compared to normal tissues. The microarray data of lung adenocarcinoma in stages IA, IB, IIA, IIB, and normal tissues (GSE10072) were downloaded from a free online database, Gene Expression Omnibus (GEO).
RESULTS: A total of 572 differentially expressed genes (DEGs) were identified between early phase lung adenocarcinoma and normal tissues using R software. Database for Annotation, Visualization and Integrated Discovery online tools were used to obtain Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes was used to analyze DEGs. Cytoscape software was used to express the protein-protein interaction network. We found that some cancer-related Gene Ontology terms and pathways (e.g. cell adhesion, cell surface receptor signaling pathway, PI3K-Akt signaling pathway) were significantly enriched in DEGs.
CONCLUSION: Protein-coding genes JUN, FYN, CAV1, and SFN may play vital roles in the progress of early-stage lung adenocarcinoma. Consequently, through bioinformatics analysis, the key genes could be established to provide more potential references for the therapeutic targets of lung adenocarcinoma.

Volonte D, Vyas AR, Chen C, et al.
Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence.
J Biol Chem. 2018; 293(5):1794-1809 [PubMed] Free Access to Full Article Related Publications
Oncogene-induced senescence (OIS) is considered a powerful tumor suppressor mechanism. Caveolin-1 acts as a scaffolding protein to functionally regulate signaling molecules. We demonstrate that a lack of caveolin-1 expression inhibits oncogenic K-Ras (K-Ras

Ryu BK, Lee MG, Kim NH, et al.
Bidirectional alteration of Cav-1 expression is associated with mitogenic conversion of its function in gastric tumor progression.
BMC Cancer. 2017; 17(1):766 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Expression of caveolin-1 (Cav-1) is frequently altered in many human cancers and both tumor suppression and promotion functions of Cav-1 have been suggested based on its expression status. However, it remains unanswered how Cav-1 provokes opposite effects in different cancers or different phases of tumor progression.
METHODS: To explore the implication of Cav-1 alteration in gastric tumorigenesis, the expression and mutational status of Cav-1 and its effects on tumor cell growth were characterized.
RESULTS: A substantial fraction of primary tumors and cell lines displayed abnormally low or high Cav-1 mRNA expression, indicating the bidirectional alteration of Cav-1 in gastric cancers. While allelic imbalance and mutational alterations of the Cav-1 gene were rarely detected, aberrant promoter hyper- or hypo-methylation showed a tight correlation with bidirectional alteration of its expression. Abnormally low and high Cav-1 expression was more frequently observed in early and advanced cancers, respectively, suggesting the oncogenic switch of its function in tumor progression. Cell cycle progression, DNA synthesis, and colony forming ability were markedly decreased by Cav-1 transfection in low-expressing tumor cells but by its depletion in high-expressing cells. Interestingly, Cav-1 exerted opposite effects on MEK-ERK signaling in these two cell types through the reciprocal regulation of the RAF-ERK negative feedback loop. A feedback inhibition of RAF by ERK was stimulated by restoration of Cav-1 expression in low-expressing cells but by it depletion in high-expressing cells. As predicted, the opposite effects of Cav-1 on both tumor cell growth and inhibitory RAF phosphorylation were abolished if ERK is depleted.
CONCLUSION: Bidirectional alteration of Cav-1 is linked to its opposite effects on gastric tumor cell growth, which stem from the reciprocal control on the RAF-ERK negative feedback loop.

Cui Y, Zhu T, Song X, et al.
Downregulation of caveolin-1 increased EGFR-TKIs sensitivity in lung adenocarcinoma cell line with EGFR mutation.
Biochem Biophys Res Commun. 2018; 495(1):733-739 [PubMed] Related Publications
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib and erlotinib, have shown notable effects in lung adenocarcinoma patients harboring EGFR mutations, there are significant differences between individual patients in the degree of benefits provided by EGFR-TKIs. Some evidence supports a role for caveolin-1 (Cav-1) in modulating drug sensitivity. This study aimed to investigate whether Cav-1 plays an important role in sensitivity to EGFR-TKIs in lung adenocarcinoma cells. Downregulation of Cav-1 in PC-9 cells were performed to investigate changes in sensitivity to EGFR-TKIs in vitro and in vivo. Knockdown of Cav-1 dramatically enhanced sensitivity to EGFR-TKIs by down-regulating phosphorylation of EGFR. These results suggest that Cav-1 may be a predictor of the poor efficacy of EGFR-TKIs treatment in lung adenocarcinoma with EGFR mutations.

Xiong J, Wang D, Wei A, et al.
Deregulated expression of miR-107 inhibits metastasis of PDAC through inhibition PI3K/Akt signaling via caveolin-1 and PTEN.
Exp Cell Res. 2017; 361(2):316-323 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) displays a highly aggressive malignancy and is considered to be an incurable and rapidly lethal disease. MicroRNAs (miRNAs) are small non-coding RNAs of approximately nucleotides that regulate several aspects of tumors pathogenesis, including migration, invasion, metastasis and epithelial-mesenchymal transition. We have found that miR-107 was significantly high expression in PDAC tissues and cells. High miR-107 expression is associated with poor clinicopathological parameters and prognosis in PDAC patients. Deregulated expression of miR-107 in PDAC cells (AsPC-1 and Panc-1) is sufficient to reduce cell migration and invasion, and to induce upregulation of epithelial markers (β-catenin, ZO-1 and E-cadherin) and a decrease of mesenchymal marker expression (ZEB-1 and vimentin). We also found that the caveolin-1, PTEN and p-Akt expression are modulated by miR-107 in PDAC cells. Moreover, our study clearly demonstrated that deregulated expression of miR-107 inhibited cell migration and invasion and EMT by up-regulation of caveolin-1 and PTEN, and inhibition of PI3K/Akt signaling in PDAC cells. Our study suggested that miR‑107 expression might both be a useful indicator of the metastatic potential and provided a new potential therapeutic target in PDAC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CAV1, Cancer Genetics Web: http://www.cancer-genetics.org/CAV1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999