Gene Summary

Gene:PPARG; peroxisome proliferator-activated receptor gamma
Aliases: GLM1, CIMT1, NR1C3, PPARG1, PPARG2, PPARgamma
Summary:This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Alternatively spliced transcript variants that encode different isoforms have been described. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:peroxisome proliferator-activated receptor gamma
Source:NCBIAccessed: 28 February, 2015


What does this gene/protein do?
Show (75)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 28 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PPARG (cancer-related)

Takeda S, Ikeda E, Su S, et al.
Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.
Toxicology. 2014; 326:18-24 [PubMed] Free Access to Full Article Related Publications
We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells.

Nikiforov YE, Carty SE, Chiosea SI, et al.
Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay.
Cancer. 2014; 120(23):3627-34 [PubMed] Related Publications
BACKGROUND: Fine-needle aspiration (FNA) cytology is a common approach to evaluating thyroid nodules, although 20% to 30% of FNAs have indeterminate cytology, which hampers the appropriate management of these patients. Follicular (or oncocytic) neoplasm/suspicious for a follicular (or oncocytic) neoplasm (FN/SFN) is a common indeterminate diagnosis with a cancer risk of approximately 15% to 30%. In this study, the authors tested whether the most complete next-generation sequencing (NGS) panel of genetic markers could significantly improve cancer diagnosis in these nodules.
METHODS: The evaluation of 143 consecutive FNA samples with a cytologic diagnosis of FN/SFN from patients with known surgical outcomes included 91 retrospective samples and 52 prospective samples. Analyses were performed on a proprietary sequencer using the targeted ThyroSeq v2 NGS panel, which simultaneously tests for point mutations in 13 genes and for 42 types of gene fusions that occur in thyroid cancer. The expression of 8 genes was used to assess the cellular composition of FNA samples.
RESULTS: In the entire cohort, histologic analysis revealed 104 benign nodules and 39 malignant nodules. The most common point mutations involved the neuroblastoma RAS viral oncogene homolog (NRAS), followed by the Kirsten rat sarcoma viral oncogene homolog (KRAS), the telomerase reverse transcriptase (TERT) gene, and the thyroid-stimulating hormone receptor (TSHR) gene. The identified fusions involved the thyroid adenoma associated (THADA) gene; the peroxisome proliferator-activated receptor γ (PPARG) gene; and the neurotrophic tyrosine kinase, receptor, type 3 (NTRK3) gene. Performance characteristics were similar in the retrospective and prospective groups. Among all FN/SFN nodules, preoperative ThyroSeq v2 performed with 90% sensitivity (95% confidence interval [CI], 80%-99%), 93% specificity (95% CI, 88%-98%), a positive predictive value of 83% (95% CI, 72%-95%), a negative predictive value of 96% (95% CI, 92%-100%), and 92% accuracy (95% CI, 88%-97%).
CONCLUSIONS: The current results indicate that comprehensive genotyping of thyroid nodules using a broad NGS panel provides a highly accurate diagnosis for nodules with FN/SFN cytology and should facilitate the optimal management of these patients.

McFadden DG, Dias-Santagata D, Sadow PM, et al.
Identification of oncogenic mutations and gene fusions in the follicular variant of papillary thyroid carcinoma.
J Clin Endocrinol Metab. 2014; 99(11):E2457-62 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: The diagnosis of the follicular variant of papillary thyroid carcinoma (FVPTC) is increasingly common. Recent studies have suggested that FVPTC is heterogeneous and comprises multiple tumor types with distinct biological behaviors and underlying genetics.
OBJECTIVES: The purpose of this work was to identify the prevalence of mutations and gene fusions in known oncogenes in a panel representative of the common spectrum of FVPTC diagnosed at an academic medical center and correlate the clinical and pathological features obtained at the initial diagnosis with the tumor genotype.
MATERIALS AND METHODS: We performed SNaPshot genotyping on a panel of 129 FVPTCs of ≥1 cm for 90 point mutations or small deletions in known oncogenes and tumor suppressors and identified gene fusions using an anchored multiplex PCR assay targeting a panel of rearranged oncogenes.
RESULTS: We identified a mutation or gene fusion in 70% (89 of 127) of cases. Mutations targeting the RAS family of oncogenes were the most frequently observed class of alterations, present in 36% (46 of 127) of cases, followed by BRAF mutation, present in 30% (38 of 127). We also detected oncogenic rearrangements not previously associated with FVPTC, including TFG-ALK and CREB3L2-PPARγ. BRAF mutation was significantly associated with unencapsulated tumor status.
CONCLUSIONS: These data support the hypothesis that FVPTC is composed of distinct biological entities, with one class being identified by BRAF mutation and support the use of clinical genotyping assays that detect a diverse array of rearrangements involving ALK and PPARγ. Additional studies are necessary to identify genetic drivers in the 30% of FVPTCs with no known oncogenic alteration and to better predict behavior in tumors with known genotypes.

Kansal S, Vaiphei K, Agnihotri N
Alterations in lipid mediated signaling and Wnt/ β -catenin signaling in DMH induced colon cancer on supplementation of fish oil.
Biomed Res Int. 2014; 2014:832025 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Ceramide mediates inhibition of cyclooxygenase-2 (COX-2) which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptor γ (PPAR γ ) and Wnt/ β -catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2), PPAR γ , and β -catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/ β -catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1) and FO : CO(2.5 : 1), respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH)/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPAR γ were observed in postinitiation phase only. On receiving FO+CO(1 : 1)+DMH and FO+CO(2.5 : 1)+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β -catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1)+DMH. Treatment with oils increased PPAR γ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

Cho SJ, Kook MC, Lee JH, et al.
Peroxisome proliferator-activated receptor γ upregulates galectin-9 and predicts prognosis in intestinal-type gastric cancer.
Int J Cancer. 2015; 136(4):810-20 [PubMed] Related Publications
The importance of PPARγ (peroxisome proliferator-activated receptor γ) in gastric cancer (GC) is unclear. We investigated the role of PPARγ in GC cell lines and an animal model, and its prognostic significance of PPARγ in GC patients. We controlled PPARγ and galectin-9 expression by using siRNAs and lentiviral constructs. Interaction between PPARγ and galectin-9 was evaluated using luciferase and chromatin immunoprecipitation assays. PPARγ expression in GCs was determined by immunohistochemical staining of tissue microarrays and survival analysis was done. Overexpression of PPARγ was accompanied by increased galectin-9. Enhanced PPARγ or galectin-9 expression increased E-cadherin expression; decreased expression of N-cadherin, fibronectin, snail, twist and slug and reduced cell invasion and migration. PPARγ bound to the galectin-9 promoter region. Galectin-9 activity increased in PPARγ-overexpressing cells but decreased in PPARγ siRNA-treated cells. In a zebrafish xenograft model, the number of migrated cancer cells and number of fish with AGS cells in the tail vein were reduced in PPARγ-overexpressing GC cells. PPARγ was expressed in 462 of the 688 patients (69.2%) with GC. In 306 patients with intestinal-type GC, those with PPARγ-positive tumors had lower overall and cancer-specific mortalities than those with PPARγ-negative tumors. PPARγ expression was an independent prognostic factor for overall and GC-specific mortality in patients with intestinal-type GC (adjusted hazard ratio, 0.42; 95% CI, 0.22-0.81). PPARγ inhibits cell invasion, migration and epithelial-mesenchymal transition through upregulation of galectin-9 in vitro and in vivo.

Choi W, Czerniak B, Ochoa A, et al.
Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer.
Nat Rev Urol. 2014; 11(7):400-10 [PubMed] Related Publications
Whole-genome analyses have revealed that muscle-invasive bladder cancers (MIBCs) are heterogeneous and can be grouped into basal and luminal subtypes that are highly reminiscent of those found in breast cancer. Basal MIBCs are enriched with squamous and sarcomatoid features and are associated with advanced stage and metastatic disease at presentation. Like basal breast cancers, basal bladder tumours contain a claudin-low subtype that is enriched with biomarkers characteristic of epithelial-to-mesenchymal transition. The stem cell transcription factor ΔNp63α controls basal MIBC gene expression, just as it does in basal breast cancers. Luminal MIBCs are enriched with activating FGFR3 and ERBB3 mutations and ERBB2 amplifications, and their gene expression profiles are controlled by peroxisome proliferator activator receptor γ (PPARγ) and possibly also by oestrogen receptor activation. Luminal bladder cancers can be further subdivided into two subtypes, p53-like and luminal, which can be distinguished from one another by different levels of biomarkers that are characteristic of stromal infiltration, cell cycle progression, and proliferation. Importantly, basal bladder cancers are intrinsically aggressive, but are highly sensitive to cisplatin-based combination chemotherapy. Although the luminal subtypes are not as intrinsically aggressive as basal cancers, p53-like tumours are resistant to chemotherapy and might, therefore, represent a problem for treated patients.

Hann SS, Tang Q, Zheng F, et al.
Repression of phosphoinositide-dependent protein kinase 1 expression by ciglitazone via Egr-1 represents a new approach for inhibition of lung cancer cell growth.
Mol Cancer. 2014; 13:149 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: Peroxisome proliferator-activated receptors gamma (PPARγ) ligands have been shown to inhibit the growth of non-small cell lung cancer (NSCLC) cells. However, the mechanisms underlying this effect remain incompletely elucidated.
METHODS: Cell proliferation and apoptosis were measured by cell viability, MTT and caspase3/7 activity assays. Phosphorylation/protein expression and gene silence/overexpression of AMPKα, phosphoinositide-dependent protein kinase 1 (PDK1), Egr-1 and PPARγ were performed by Western blot and siRNA/transfection assays. Dual-Luciferase Reporter Kit was used to measure the PPAR response elements (PPRE) reporter and PDK1 promoter activities, and ChIP assay was used to detect the Egr-1 protein binding to the DNA site in the PDK1 gene promoter.
RESULTS: We found that ciglitazone, one synthetic PPARγ ligand, inhibited growth and induced apoptosis of NSCLC cells through decreased expression of PDK1, which was not blocked by GW9662 (a specific PPARγ antagonist). Overexpression of PDK1 overcame the effect of ciglitazone on cell growth and caspase 3/7 activity. Ciglitazone increased the phosphorylation of AMPKα and c-Jun N-terminal kinase (JNK), and the inhibitor of AMPK (compound C), but not JNK (SP600125), reversed the effect of ciglitazone on PDK1 protein expression. Ciglitazone reduced PDK1 gene promoter activity, which was not observed in cells exposed to compound C, but not silenced of PPARγ siRNA. Combination of ciglitazone and metformin further reduced PDK1 expression and promoter activity. Furthermore, we showed that ciglitazone induced the protein expression of Egr-1, which was not observed in cells silencing of AMPKα. Moreover, silencing of Egr-1 abrogated the effect of ciglitazone on PDK1 promoter activity and cell growth. On the contrary, overexpression of Egr-1 enhanced the effect of ciglitazone on PDK1 gene promoter activity. ChIP assays demonstrated that ciglitazone induced Egr-1 protein bind to the specific DNA site in the PDK1 gene promoter.
CONCLUSION: Collectively, our results demonstrate that ciglitazone inhibits PDK1 expression through AMPKα-mediated induction of Egr-1 and Egr-1 binding to the specific DNA site in the PDK1 gene promoter, which is independent of PPARγ. Activation of AMPKα by metformin enhances the effect of ciglitazone. In turn, this leads to inhibition of NSCLC cell proliferation.

Nagao M, Sato Y, Yamauchi A
A meta-analysis of the association of PPARγ rs1801282 polymorphism and NSAID usage with the risk of developing cancer.
Biol Pharm Bull. 2014; 37(6):1062-7 [PubMed] Related Publications
Use of nonsteroidal anti-inflammatory drugs (NSAIDs) is correlated with a reduced risk of cancer through the reduction of inflammation, which is an important risk factor. Several studies have investigated polymorphisms in the peroxisome proliferator-activated receptor gamma (PPARγ) gene and NSAID use in association with cancer risk. However, these studies yielded mixed results. Therefore, we performed a meta-analysis to evaluate the association of PPARγ polymorphisms and NSAID usage with cancer risk. We conducted a comprehensive search of PubMed through May 2013. Odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated using the fixed-effect or random-effect model. A comprehensive search of the database revealed 6 studies that fulfilled the inclusion criteria. NSAID use was significantly associated with decreased cancer risk regardless of PPARγ rs1801282 genotypes. In a stratified analysis by cancer type, NSAID users who were minor allele carriers had significantly decreased colon cancer risk compared to non-NSAID users (OR=0.73, 95% CI=0.57-0.93), whereas NSAID users homozygous for the major allele had significantly decreased risk for cancers other than colon cancer compared to non-NSAID users (OR=0.79, 95% CI=0.69-0.91). Our results suggest that the association of PPARγ rs1801282 polymorphism and NSAID use with the risk of cancer may differ according to cancer type.

Relógio A, Thomas P, Medina-Pérez P, et al.
Ras-mediated deregulation of the circadian clock in cancer.
PLoS Genet. 2014; 10(5):e1004338 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

Yan S, Yang X, Chen T, et al.
The PPARγ agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells.
Cancer Gene Ther. 2014; 21(5):188-93 [PubMed] Related Publications
Bladder cancer is a major public health problem worldwide, with relatively high morbidity. However, there are few studies on drug development for bladder cancer. Troglitazone (TZ) is a synthetic ligand of peroxisome proliferator-activated receptor-γ, and it can induce apoptosis and autophagy in a variety of cancer cells. Several studies have indicated that TZ affects both cell growth and differentiation progress and has an inhibitory effect on urinary cancer cells. However, this drug's effect on bladder cancer cells remains largely unknown. Here, we report that TZ induced autophagy and enhanced apoptosis in T24 cells. Autophagic blockage resulted in the attenuation of TZ-dependent apoptosis. Necrostatin-1, an inhibitor of necroptosis, was found to reduce light chain 3 (LC3)-II accumulation and partially rescue the loss of cell viability induced by TZ. It was demonstrated that TZ activated autophagy concurrent with the activation of the adenosine monophosphate-dependent protein kinase (AMPK) signaling pathway. AMPK inhibition led to a reduction in LC3-II levels, which were responsive to TZ treatment. Overall, TZ induced multiple types of programmed cell death in bladder cancer cells, and while the autophagy induced by the agonist contributed to the apoptotic process, crosstalk or switching between the different types of cell death likely occurred.

Qin L, Gong C, Chen AM, et al.
Peroxisome proliferator‑activated receptor γ agonist rosiglitazone inhibits migration and invasion of prostate cancer cells through inhibition of the CXCR4/CXCL12 axis.
Mol Med Rep. 2014; 10(2):695-700 [PubMed] Related Publications
It has been indicated that the C‑X‑C chemokine receptor type 4/C‑X‑C chemokine ligand 12 (CXCR4/CXCL12) axis is involved in promoting invasion and metastasis in tumors. Therefore, novel drugs capable of downregulating the CXCR4/CXCL12 axis may demonstrate potential for the treatment of metastatic prostate cancer (PCa). Rosiglitazone (RSG), a thiazolidinedione ligand of the peroxisome proliferator‑activated receptor (PPAR) γ, has been found to inhibit proliferation, induce apoptosis, suppress angiogenesis and inhibit metastasis. However, the precise mechanisms by which RSG regulates CXCR4 gene expression and the consequent effects on prostate cell migration and invasion are not fully understood. In this study, it was observed that RSG is capable of downregulating the expression of CXCR4 in PCa cells in a dose‑, time‑ and PPARγ‑dependent manner. Furthermore, it was observed that the downregulation of CXCR4 expression occurred at a transcriptional level, as indicated by a reduction in CXCR4 mRNA expression. Suppression of CXCR4 expression by RSG further correlated with the inhibition of CXCL12‑induced migration and invasion in PCa cells. Analysis of the predominant intracellular signaling pathways that act downstream of the activated CXCR4/CXCL12 axis, namely the phosphatidyl inositol 3‑kinase (PI3K)‑protein kinase B (Akt) cascades, revealed that RSG rapidly interferes with the phosphorylation/activation of Akt, which mediates CXCL12‑stimulated migration and invasion. Overall, the findings of this study suggest that RSG represents a novel inhibitor of CXCR4 expression and, thus, has significant potential as a powerful therapeutic agent for the treatment of metastatic PCa.

Giordano TJ, Beaudenon-Huibregtse S, Shinde R, et al.
Molecular testing for oncogenic gene mutations in thyroid lesions: a case-control validation study in 413 postsurgical specimens.
Hum Pathol. 2014; 45(7):1339-47 [PubMed] Related Publications
Molecular testing for oncogenic gene alterations provides clinically actionable information essential for the optimal management of follicular cell thyroid cancer. We aimed to establish the distribution and frequency of common oncogenic gene mutations and chromosomal rearrangements in a comprehensive set of benign and malignant thyroid lesions. A case-control study was conducted in 413 surgical cases comprising 17 distinct histopathologic categories, 244 malignant, 169 benign, and 304 double-blinded specimens. Seventeen alterations of BRAF, HRAS, KRAS, NRAS, PAX8, and RET genes were evaluated using a single validated technology platform. Following verification of analytical sensitivity, accuracy, and precision in model and surgical specimens, 152 molecular positive results were generated in lesions representing multiple stages of progression and epithelial differentiation as well as rare subtypes of primary, secondary, or recurring tumors. Single mutations were found in 58% of primary malignant lesions and 12% of benign (P < .001). In the blinded validation set, mutation distribution and frequency were distinct across variants of follicular and papillary carcinomas. BRAF or RET-PTC was detected exclusively in malignant lesions but not in follicular carcinomas (P < .001). RAS or PAX8-PPARG were present in 23% of adenomas, and NRAS was found in a single nonneoplastic lesion (P = .0014). These data substantiate the diagnostic utility of molecular testing for oncogenic mutations and validate its performance in a variety of surgical specimens. Standardized and validated multianalyte molecular panels can complement the preoperative and postoperative assessment of thyroid nodules and support a growing number of clinical and translational applications with potential diagnostic, prognostic, or theranostic utility.

Jia Y, Viswakarma N, Reddy JK
Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.
Gene Expr. 2014; 16(2):63-75 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic diseases associated with increased energy combustion in liver.

Zurlo D, Assante G, Moricca S, et al.
Cladosporol A, a new peroxisome proliferator-activated receptor γ (PPARγ) ligand, inhibits colorectal cancer cells proliferation through β-catenin/TCF pathway inactivation.
Biochim Biophys Acta. 2014; 1840(7):2361-72 [PubMed] Related Publications
BACKGROUND: Cladosporol A, a secondary metabolite from Cladosporium tenuissimum, exhibits antiproliferative properties in human colorectal cancer cells by modulating the expression of some cell cycle genes (p21(waf1/cip1), cyclin D1).
METHODS: PPARγ activation by cladosporol A was studied by overexpression and RNA interference assays. The interactions between PPARγ and Sp1 were investigated by co-immunoprecipitation and ChIp assays. β-Catenin subcellular distribution and β-catenin/TCF pathway inactivation were analyzed by western blot and RTqPCR, respectively. Cladosporol A-induced β-catenin proteasomal degradation was examined in the presence of the specific inhibitor MG132.
RESULTS: Cladosporol A inhibits cell growth through upregulation of p21(waf1/cip1) gene expression mediated by Sp1-PPARγ interaction. Exposure of HT-29 cells to cladosporol A causes β-catenin nuclear export, proteasome degradation and reduced expression of its target genes. Upon treatment, PPARγ also activates E-cadherin gene at the mRNA and protein levels.
CONCLUSION: In this work we provide evidence that PPARγ mediates the anti-proliferative action of cladosporol A in colorectal cancer cells. Upon ligand activation, PPARγ interacts with Sp1 and stimulates p21(waf1/cip1) gene transcription. PPARγ activation causes degradation of β-catenin and inactivation of the downstream target pathway and, in addition, upregulates E-cadherin expression reinforcing cell-cell interactions and a differentiated phenotype.
GENERAL SIGNIFICANCE: We elucidated the molecular mechanisms by which PPARγ mediates the anticancer activity of cladosporol A.

Keller E, Chazenbalk GD, Aguilera P, et al.
Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys.
Endocrinology. 2014; 155(7):2696-703 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Metabolic characteristics of polycystic ovary syndrome women and polycystic ovary syndrome-like, prenatally androgenized (PA) female monkeys worsen with age, with altered adipogenesis of sc abdominal adipose potentially contributing to age-related adverse effects on metabolism. This study examines whether adipocyte morphology and gene expression in sc abdominal adipose differ between late reproductive-aged PA female rhesus monkeys compared with age-matched controls (C). Subcutaneous abdominal adipose of both groups was obtained for histological imaging and mRNA determination of zinc finger protein 423 (Zfp423) as a marker of adipose stem cell commitment to preadipocytes, and CCAAT/enhancer binding protein (C/EBP)α/peroxisome proliferator-activated receptor (PPAR)δ as well as C/EBPα/PPARγ as respective markers of early- and late-stage differentiation of preadipocytes to adipocytes. In all females combined, serum testosterone (T) levels positively correlated with fasting serum levels of total free fatty acid (r(2) = 0.73, P < .002). PA females had a greater population of small adipocytes vs C (P < .001) in the presence of increased Zfp423 (P < .025 vs C females) and decreased C/EBPα (P < .003, vs C females) mRNA expression. Moreover, Zfp423 mRNA expression positively correlated with circulating total free fatty acid levels during iv glucose tolerance testing (P < .004, r(2) = 0.66), whereas C/EBPα mRNA expression negatively correlated with serum T levels (P < .02, r(2) = 0.43). Gene expression of PPARδ and PPARγ were comparable between groups (P = .723 and P = .18, respectively). Early-to-mid gestational T excess in female rhesus monkeys impairs adult preadipocyte differentiation to adipocytes in sc abdominal adipose and may constrain the ability of this adipose depot to safely store fat with age.

Chu TH, Chan HH, Kuo HM, et al.
Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN.
Oncotarget. 2014; 5(6):1475-90 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Celecoxib, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, can prevent several types of cancer, including hepatocellular carcinoma (HCC). Here we show that celecoxib suppressed the self-renewal and drug-pumping functions in HCC cells. Besides, celecoxib depleted CD44+/CD133+ hepatic cancer stem cells (hCSC). Prostaglandin E2 (PGE2) and CD133 overexpression did not reverse the celecoxib-induced depletion of hCSC. Also, celecoxib inhibited progression of rat Novikoff hepatoma. Moreover, a 60-day celecoxib program increased the survival rate of rats with hepatoma. Histological analysis revealed that celecoxib therapy reduced the abundance of CD44+/CD133+ hCSCs in hepatoma tissues. Besides, the hCSCs depletion was associated with elevated apoptosis and blunted proliferation and angiogenesis in hepatoma. Celecoxib therapy activated peroxisome proliferator-activated receptor γ (PPARγ) and up-regulated PTEN, thereby inhibiting Akt and disrupting hCSC expansion. PTEN gene delivery by adenovirus reduced CD44/CD133 expression in vitro and hepatoma formation in vivo. This study suggests that celecoxib suppresses cancer stemness and progression of HCC via activation of PPARγ/PTEN signaling.

Chen HM, Zhang DG, Wu JX, et al.
Ubiquitination of p53 is involved in troglitazone induced apoptosis in cervical cancer cells.
Asian Pac J Cancer Prev. 2014; 15(5):2313-8 [PubMed] Related Publications
Peroxisome proliferator-activated receptor gamma (PPAR-γ), a ligand-dependent nuclear transcription factor, has been found to widely exist in tumor tissues and plays an important role in affecting tumor cell growth. In this study, we investigated the effect of PPAR-γ on aspects of the cervical cancer malignant phenotype, such as cell proliferation and apoptosis. Cell growth assay, Western blotting, Annexin V and flow cytometry analysis consistently showed that treatment with troglitazone (TGZ, a PPAR-γ agonist) led to dose-dependent inhibition of cervical cancer cell growth through apoptosis, whereas T0070907 (another PPAR-γ antagonist???) had no effect on Hela cell proliferation and apoptosis. Furthermore, we also detected the protein expression of p53, p21 and Mdm2 to explain the underlying mechanism of PPAR-γ on cellular apoptosis. Our work, finally, demonstrated the existence of the TGZ-PPAR-γ-p53 signaling pathway to be a critical regulator of cell apoptosis. These results suggested that PPAR-γ may be a potential therapeutic target for cervical cancer.

Pellerito O, Notaro A, Sabella S, et al.
WIN induces apoptotic cell death in human colon cancer cells through a block of autophagic flux dependent on PPARγ down-regulation.
Apoptosis. 2014; 19(6):1029-42 [PubMed] Related Publications
Cannabinoids have been reported to possess anti-tumorigenic activity in cancer models although their mechanism of action is not well understood. Here, we show that the synthetic cannabinoid WIN55,212-2 (WIN)-induced apoptosis in colon cancer cell lines is accompanied by endoplasmic reticulum stress induction. The formation of acidic vacuoles and the increase in LC3-II protein indicated the involvement of autophagic process which seemed to play a pro-survival role against the cytotoxic effects of the drug. However, the enhanced lysosomal membrane permeabilization (LMP) blocked the autophagic flux after the formation of autophagosomes as demonstrated by the accumulation of p62 and LC3, two markers of autophagic degradation. Data also provided evidence for a role for nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in cannabinoid signalling. PPARγ expression, at both protein and mRNA levels, was significantly down-regulated after WIN treatment and its inhibition, either by specific antagonists or by down-regulation via gene silencing, induced effects on cell viability as well as on ER stress and autophagic markers similar to those obtained in the presence of WIN. Moreover, the observation that the increase in p62 level and the induction of LMP were also modified by PPARγ antagonists seemed to indicate that PPARγ down-regulation was crucial to determinate the block of autophagic flux, thus confirming the critical role of PPARγ in WIN action. In conclusion, at our knowledge, our results are the first to show that the reduction of PPARγ levels contributes to WIN-induced colon carcinoma cell death by blocking the pro-survival autophagic response of cells.

Koyama N, Nishida Y, Ishii T, et al.
Telmisartan induces growth inhibition, DNA double-strand breaks and apoptosis in human endometrial cancer cells.
PLoS One. 2014; 9(3):e93050 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Telmisartan, an angiotensin II receptor type 1 blocker, is often used as an antihypertension drug, and it has also been characterized as a peroxisome proliferator-activated receptor-gamma (PPARγ) ligand. The purpose of this study was to elucidate the antitumor effects of telmisartan on endometrial cancer cells. We treated three endometrial cancer cell lines with various concentrations of telmisartan, and we investigated the effects of the telmisartan on the cell proliferation, apoptosis, and their related measurements in vitro. We also administered telmisartan to nude mice with experimental tumors to determine its in vivo effects and toxicity. All three endometrial cancer cell lines were sensitive to the growth-inhibitory effect of telmisartan. The induction of apoptosis was confirmed in concert with the altered expression of genes and proteins related to the apoptosis. We also observed that DNA double-strand breaks (DSBs) were induced in HHUA (human endometrial cancer) cells by telmisartan treatment. In addition, experiments in nude mice showed that telmisartan significantly inhibited human endometrial tumor growth, without toxic side effects. Our results suggest that telmisartan might be a new therapeutic option for the treatment of endometrial cancers.

Lin C, Wang L, Wang H, et al.
Lithocarpus polystachyus REHD leaf aqueous extract inhibits human breast cancer growth in vitro and in vivo.
Nutr Cancer. 2014; 66(4):613-24 [PubMed] Related Publications
Lithocarpus polystachyus leaves have been used as tea beverage and folk medicine for healthy care in the Southwest of China. The purpose of this study is to investigate the anticancer activity of Lithocarpus polystachyus Rehd leaf aqueous extract (LPAE) and to explore the possible mechanism of its activity. Growth inhibition effects of LPAE breast cancer were tested in vitro and in vivo. The possible mechanism of its activity was analyzed with cell biological and molecular biological assays. After LPAE treatment, the proliferation and colony formation of cancer cells decreased; apoptotic cells increased; DNA fragmentations were evident; mRNA and protein expressions of PPARγ, Bax, and caspase-3 genes increased and expressions of cyclin D1 and Bcl-2 genes decreased; in vivo experiment, LPAE inhibited human beast cancer growth. The findings in this experimental study suggested that LPAE has potential cytotoxic and apoptotic effects on human breast cancer cells in vitro and inhibits the cancer growth in vivo, and its mechanism of activity might be associated with apoptosis induction of cancer cells through upregulation of the mRNA and protein expressions of PPARγ, Bax, and capase-3 genes and downregulation of the expressions of cyclin D1 and Bcl-2 genes.

Morrison JA, Pike LA, Sams SB, et al.
Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer.
Mol Cancer. 2014; 13:62 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
BACKGROUND: Thyroid cancer is the most common endocrine malignancy, and many patients with metastatic differentiated thyroid cancer (DTC), poorly differentiated thyroid cancer (PDTC), and anaplastic thyroid cancer (ATC) fail to respond to conventional therapies, resulting in morbidity and mortality. Additional therapeutic targets and treatment options are needed for these patients. We recently reported that peroxisome proliferator-activated receptor gamma (PPARγ) is highly expressed in ATC and confers an aggressive phenotype when overexpressed in DTC cells.
METHODS: Microarray analysis was used to identify downstream targets of PPARγ in ATC cells. Western blot analysis and immunohistochemistry (IHC) were used to assess thioredoxin interacting protein (TXNIP) expression in thyroid cancer cell lines and primary tumor specimens. Retroviral transduction was used to generate ATC cell lines that overexpress TXNIP, and assays that assess glucose uptake, viable cell proliferation, and invasion were used to characterize the in vitro properties of these cells. An orthotopic thyroid cancer mouse model was used to assess the effect of TXNIP overexpression in ATC cell lines in vivo.
RESULTS: Using microarray analysis, we show that TXNIP is highly upregulated when PPARγ is depleted from ATC cells. Using Western blot analysis and IHC, we show that DTC and ATC cells exhibit differential TXNIP expression patterns. DTC cell lines and patient tumors have high TXNIP expression in contrast to low or absent expression in ATC cell lines and tumors. Overexpression of TXNIP decreases the growth of HTh74 cells compared to vector controls and inhibits glucose uptake in the ATC cell lines HTh74 and T238. Importantly, TXNIP overexpression in T238 cells results in attenuated tumor growth and decreased metastasis in an orthotopic thyroid cancer mouse model.
CONCLUSIONS: Our findings indicate that TXNIP functions as a tumor suppressor in thyroid cells, and its downregulation is likely important in the transition from differentiated to advanced thyroid cancer. These studies underscore the potential of TXNIP as a novel therapeutic target and prognostic indicator in advanced thyroid cancer.

Panza A, Votino C, Gentile A, et al.
Peroxisome proliferator-activated receptor γ-mediated induction of microRNA-145 opposes tumor phenotype in colorectal cancer.
Biochim Biophys Acta. 2014; 1843(6):1225-36 [PubMed] Related Publications
UNLABELLED: MicroRNAs (miRNAs) regulate diverse biological processes by inhibiting translation or inducing degradation of target mRNAs. miR-145 is a candidate tumor suppressor in colorectal carcinoma (CRC). Colorectal carcinogenesis involves deregulation of cellular processes controlled by a number of intertwined chief transcription factors, such as PPARγ and SOX9. Since PPAR family members are able to modulate complex miRNAs networks, we hypothesized a role of miRNA-145 in the interaction between PPARγ and SOX9 in colorectal carcinogenesis. To address this issue, we evaluated gene expression in tissue specimens of CRC patients and we took advantage of invitro models represented by CRC derived cell lines (CaCo2, SW480, HCT116, and HT-29), employing PPARγ activation and/or miRNA-145 ectopic overexpression to analyze how their interplay impact the expression of SOX9 and the development of a malignant phenotype.
RESULTS: PPARγ regulates the expression of miR-145 by directly binding to a PPAR response element (PPRE) in its promoter at -1207/-1194bp from the transcription start site. The binding is essential for miR-145 upregulation by PPARγ upon rosiglitazone treatment. Ectopic expression of miR-145, in turn, regulates SOX9 expression through the binding to specific seed motifs. The PPARγ-miR-145-SOX9 axis overarches cell cycle progression, invasiveness and differentiation of CRC derived cell lines. Together, these results suggest that miR-145 is a novel target of PPARγ, acts as a tumor suppressor in CRC cell lines and is a key regulator of intestinal cell differentiation by directly targeting SOX9, a marker of undifferentiated progenitors in the colonic crypts.

Liu S, Lin SJ, Li G, et al.
Differential roles of PPARγ vs TR4 in prostate cancer and metabolic diseases.
Endocr Relat Cancer. 2014; 21(3):R279-300 [PubMed] Related Publications
Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity. Second, PPARγ attenuates atherosclerosis but TR4 might increase the risk of atherosclerosis. Third, PPARγ suppresses prostate cancer (PCa) development and TR4 suppresses prostate carcinogenesis yet promotes PCa metastasis. Importantly, the deregulation of either PPARγ or TR4 in PCa alone might then alter the other receptor's influences on PCa progression. Knocking out PPARγ altered the ability of TR4 to promote prostate carcinogenesis and knocking down TR4 also resulted in TZD treatment promoting PCa development, indicating that both PPARγ and TR4 might coordinate with each other to regulate PCa initiation, and the loss of either one of them might switch the other one from a tumor suppressor to a tumor promoter. These results indicate that further and detailed studies of both receptors at the same time in the same cells/organs may help us to better dissect their distinct physiological roles and develop better drug(s) with fewer side effects to battle PPARγ- and TR4-related diseases including tumor and cardiovascular diseases as well as metabolic disorders.

Papi A, De Carolis S, Bertoni S, et al.
PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche.
J Cell Physiol. 2014; 229(11):1595-606 [PubMed] Related Publications
Cancer stem cells (CSCs) are affected by the local micro-environment, the niche, in which inflammatory stimuli and hypoxia act as steering factors. Here, two nuclear receptors (NRs) agonists, i.e. pioglitazone (PGZ), a ligand of peroxisome proliferator activated receptor-γ, and 6-OH-11-O-hydroxyphenanthrene (IIF), a ligand of retinoid X receptors, were investigated for their capability to interference with the cross-talk between breast CSCs and the niche compartment. We found that IIF potentiates the ability of PGZ to hamper the mammospheres-forming capability of human breast tumours and MCF7 cancer cells, reducing the expression of CSCs regulatory genes (Notch3, Jagged1, SLUG, Interleukin-6, Apolipoprotein E, Hypoxia inducible factor-1α and Carbonic anhydrase IX). Notably, these effects are not observed in normal-MS obtained from human breast tissue. Importantly, NRs agonists abolish the capability of hypoxic MCF7 derived exosomes to induce a pro-inflammatory phenotype in mammary glands fibroblasts. Moreover, NRs agonist also directly acts on breast tumour associated fibroblasts to downregulate nuclear factor-κB pathway and metalloproteinases (MMP2 and MMP9) expression and activity. In conclusion, NRs agonists disrupt the inflammatory cross-talk of the hypoxic breast CSCs niche.

Zhao F, Xie P, Jiang J, et al.
The effect and mechanism of tamoxifen-induced hepatocyte steatosis in vitro.
Int J Mol Sci. 2014; 15(3):4019-30 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
The aim of this study was to determine the effect and mechanism of tamoxifen (TAM)-induced steatosis in vitro. HepG 2 (Human hepatocellular liver carcinoma cell line) cells were treated with different concentrations of TAM for 72 h. Steatosis of hepatocytes was determined after Oil Red O staining and measurement of triglyceride (TG) concentration. The expressions of genes in the TG homeostasis pathway, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD), carnitine palmitoyltransferase 1 (CPT1) and microsomal triglyceride transfer protein (MTP), were examined using quantitative real-time PCR and Western blot analysis. Cell proliferation was examined using the cell counting kit-8 (CCK-8) assay. We found that hepatocytes treated with TAM had: (1) induced hepatocyte steatosis and increased hepatocyte TG; (2) upregulation of SREBP-1c, FAS, ACC, SCD and MTP mRNA expressions (300%, 600%, 70%, 130% and 160%, respectively); (3) corresponding upregulation of protein expression; and (4) no difference in HepG 2 cell proliferation. Our results suggest that TAM can induce hepatocyte steatosis in vitro and that the enhancement of fatty acid synthesis through the upregulations of SREBP-1c and its downstream target genes (FAS, ACC and SCD) may be the key mechanism of TAM-induced hepatocyte steatosis.

Shashni B, Sharma K, Singh R, et al.
Coffee component hydroxyl hydroquinone (HHQ) as a putative ligand for PPAR gamma and implications in breast cancer.
BMC Genomics. 2013; 14 Suppl 5:S6 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
BACKGROUND: Coffee contains several compounds that have the potential to influence breast cancer risk and survival. However, epidemiologic data on the relation between coffee compounds and breast cancer survival are sparse and inconsistent.
RESULTS: We show that coffee component HHQ has significant apoptotic effect on MDA-MB-231 and MCF-7 cells in vitro, and that ROS generation, change in mitochondrial membrane permeability, upregulation of Bax and Caspase-8 as well as down regulation of PGK1 and PKM2 expression may be important apoptosis-inducing mechanisms. The results suggest that PPARγ ligands may serve as potential therapeutic agents for breast cancer therapy. HHQ was also validated as a ligand for PPARγ by docking procedure.
CONCLUSION: This is the first report on the anti-breast cancer (in vitro) activity of HHQ.

Chen C, Wang L, Liao Q, et al.
Association between six genetic polymorphisms and colorectal cancer: a meta-analysis.
Genet Test Mol Biomarkers. 2014; 18(3):187-95 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
OBJECTIVE: The aim of this study was to determine whether six genetic polymorphisms confer susceptibility to colorectal cancer (CRC).
METHODS: A systematic search for candidate genes of CRC was performed among several online databases, including PubMed, Embase, Web of Science, the Cochrane Library, CNKI, and Wanfang online libraries. After a comprehensive filtering procedure, we harvested five genes, including MGMT (rs12917 and rs2308321), ADH1B (rs1229984), SOD2 (rs4880), XPC (rs2228001), and PPARG (rs1801282). Using the REVMAN and Stata software, six meta-analyses were conducted for associations between CRC and the just-mentioned genetic variants.
RESULTS: A total of 34 comparative studies among 17,289 cases and 54,927 controls were involved in our meta-analyses. Significant association was found between ADH1B rs1229984 polymorphism and CRC (p=0.03, odds ratio [OR]=1.18, 95% confidence interval [CI]=1.01-1.36). We also found significant association between PPARG rs1801282 polymorphism and CRC (p=0.004, OR=1.498, 95% CI=1.139-1.970), and this significant association is specific in Caucasians (p=0.004, OR=1.603, 95% CI=1.165-2.205).
CONCLUSIONS: The current meta-analysis has established that ADH1B (rs1229984) and PPARG (rs1801282) are two risk variants of CRC.

Yang MH, Kim J, Khan IA, et al.
Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents.
Life Sci. 2014; 100(2):75-84 [PubMed] Related Publications
Natural products are rich sources of gene modulators that may be useful in prevention and treatment of cancer. Recently, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a target of action against diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural agents have been reported to play a pivotal role in regulation of NAG-1 through multiple transcriptional mechanisms. The aim of this paper is to review the NAG-1 modulators derived from natural products including plants, marine organisms, and microorganisms. Plant extracts belonging to the families of Fabaceae (Astragalus membranaceus), Ranunculaceae (Coptis chinensis), Menispermaceae (Coscinium fenestratum), Umbelliferae (Pleurospermum kamtschaticum), Lamiaceae (Marubium vulgare), and Rosaceae (Prunus serotina) increased the protein expression of NAG-1 in human colon cancer or hepatocarcinoma cells. Phytochemicals in the class of flavonoids (apigenin, quercetin, isoliquiritigenin, and 2'-hydroxyflavanone), isoflavonoids (formononetin and genistein), catechins (epigallocatechin gallate and epicatechin gallate), stilbenoids (resveratrol and pinosylvin), phenolics (6-gingerol), phloroglucinols (rottlerin and aspidin PB), terpenoids (18 α-glycyrrhetinic acid, platycodin D, pseudolaric acid B, and xanthorrhizol), alkaloids (berberine, capsaicin, and indole-3-carbinol), lignans (isochaihulactone), anthraquinones (damnacanthal), and allyl sulfides (diallyl disulfide) elicited NAG-1 overexpression in various cancer cells. Pectenotoxin-2 from marine organisms and prodigiosin and anisomycin from microorganisms were also reported as NAG-1 modulators. Several transcription factors including EGR-1, p53, ATF-3, Sp1 and PPARγ were involved in natural products-induced NAG-1 transcriptional signaling pathway.

Choi W, Porten S, Kim S, et al.
Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy.
Cancer Cell. 2014; 25(2):152-65 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Muscle-invasive bladder cancers (MIBCs) are biologically heterogeneous and have widely variable clinical outcomes and responses to conventional chemotherapy. We discovered three molecular subtypes of MIBC that resembled established molecular subtypes of breast cancer. Basal MIBCs shared biomarkers with basal breast cancers and were characterized by p63 activation, squamous differentiation, and more aggressive disease at presentation. Luminal MIBCs contained features of active PPARγ and estrogen receptor transcription and were enriched with activating FGFR3 mutations and potential FGFR inhibitor sensitivity. p53-like MIBCs were consistently resistant to neoadjuvant methotrexate, vinblastine, doxorubicin and cisplatin chemotherapy, and all chemoresistant tumors adopted a p53-like phenotype after therapy. Our observations have important implications for prognostication, the future clinical development of targeted agents, and disease management with conventional chemotherapy.

Caria P, Frau DV, Dettori T, et al.
Optimizing detection of RET and PPARg rearrangements in thyroid neoplastic cells using a home-brew tetracolor probe.
Cancer Cytopathol. 2014; 122(5):377-85 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BACKGROUND: Fluorescence in situ hybridization (FISH) to identify specific DNA target sequences in the nuclei of nondividing cells of numerous solid neoplasms has contributed to the introduction of molecular cytogenetics as a useful adjunct to cytology, leading recently to the "marriage" of the 2 disciplines. Numerous cancer molecular markers can now be investigated using different technical approaches, at both the gene and expression levels, in biopsies of various suspected cancers, including differentiated thyroid carcinoma. The limited amount of bioptic material is often insufficient to carry out multiple tests, and optimizing handling of the biopsy is desirable.
METHODS: We have developed a home-brew tetracolor break-apart probe able to simultaneously identify the 2 most common genetic alterations in differentiated thyroid carcinoma: RET/PTC variants in papillary thyroid carcinoma and PAX8/PPARg fusion and variants in follicular thyroid carcinoma.
RESULTS: The probe had 100% specificity, 99.5% sensitivity, and ≥ 3% cutoff. The probe was tested on RET/PTC and PAX8/PPARg RT-PCR positive controls, and feasibility was assessed in 368 thyroid nodule fine-needle aspirations (FNA). In the latter analysis, 24 FNAs had split RET signal, and 9 had split PPARg signal. FISH analysis of available surgically removed nodules confirmed the sensitivity of FISH in detecting abnormal clones and oligoclones.
CONCLUSIONS: The home-brew tetracolor probe showed high feasibility, optimizing the use of the biological material in relation to the available molecular tests and maximizing the FISH experimental and slide-scoring times. This probe may be considered an alternative to RT-PCR when recovery and quality of RNA amplification from FNA are insufficient.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PPARG gene, Cancer Genetics Web: http://www.cancer-genetics.org/PPARG.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 28 February, 2015     Cancer Genetics Web, Established 1999