CXCL11

Gene Summary

Gene:CXCL11; C-X-C motif chemokine ligand 11
Aliases: IP9, H174, IP-9, b-R1, I-TAC, SCYB11, SCYB9B
Location:4q21.1
Summary:Chemokines are a group of small (approximately 8 to 14 kD), mostly basic, structurally related molecules that regulate cell trafficking of various types of leukocytes through interactions with a subset of 7-transmembrane, G protein-coupled receptors. Chemokines also play fundamental roles in the development, homeostasis, and function of the immune system, and they have effects on cells of the central nervous system as well as on endothelial cells involved in angiogenesis or angiostasis. Chemokines are divided into 2 major subfamilies, CXC and CC. This antimicrobial gene is a CXC member of the chemokine superfamily. Its encoded protein induces a chemotactic response in activated T-cells and is the dominant ligand for CXC receptor-3. The gene encoding this protein contains 4 exons and at least three polyadenylation signals which might reflect cell-specific regulation of expression. IFN-gamma is a potent inducer of transcription of this gene. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-X-C motif chemokine 11
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (8)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: CXCL11 (cancer-related)

Liu Y, Zhu D, Xing H, et al.
A 6‑gene risk score system constructed for predicting the clinical prognosis of pancreatic adenocarcinoma patients.
Oncol Rep. 2019; 41(3):1521-1530 [PubMed] Free Access to Full Article Related Publications
Pancreatic adenocarcinoma (PAC) is the most common type of pancreatic cancer, which commonly has an unfavorable prognosis. The present study aimed to develop a novel prognostic prediction strategy for PAC patients. mRNA sequencing data of PAC (the training dataset) were extracted from The Cancer Genome Atlas database, and the validation datasets (GSE62452 and GSE79668) were acquired from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between good and poor prognosis groups were analyzed by limma package, and then prognosis‑associated genes were screened using Cox regression analysis. Subsequently, the risk score system was constructed and confirmed using Kaplan‑Meier (KM) survival analysis. After the survival associated‑clinical factors were screened using Cox regression analysis, they were performed with stratified analysis. Using DAVID tool, the DEGs correlated with risk scores were conducted with enrichment analysis. The results revealed that there were a total of 242 DEGs between the poor and good prognosis groups. Afterwards, a risk score system was constructed based on 6 prognosis‑associated genes (CXCL11, FSTL4, SEZ6L, SPRR1B, SSTR2 and TINAG), which was confirmed in both the training and validation datasets. Cox regression analysis showed that risk score, targeted molecular therapy, and new tumor (the new tumor event days after the initial treatment according to the TCGA database) were significantly related to clinical prognosis. Under the same clinical condition, 6 clinical factors (age, history of chronic pancreatitis, alcohol consumption, radiation therapy, targeted molecular therapy and new tumor (event days) had significant associations with clinical prognosis. Under the same risk condition, only targeted molecular therapy was significantly correlated with clinical prognosis. In conclusion, the 6‑gene risk score system may be a promising strategy for predicting the outcome of PAC patients.

Chen L, Lu D, Sun K, et al.
Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
Gene. 2019; 692:119-125 [PubMed] Related Publications
BACKGROUND: The current study aimed to identify potential diagnostic and prognostic gene biomarkers for colorectal cancer (CRC) based on the Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) dataset.
METHODS: Microarray data of gene expression profiles of CRC from GEO and RNA-sequencing dataset of CRC from TCGA were downloaded. After screening overlapping differentially expressed genes (DEGs) by R software, functional enrichment analyses of the DEGs were performed using the DAVID database. Then, the STRING database and Cytoscape were used to construct a protein-protein interaction (PPI) network and identify hub genes. The receiver operating characteristic (ROC) curves were conducted to assess the diagnostic values of the hub genes. Cox proportional hazards regression was performed to screen the potential prognostic genes. Kaplan-Meier curve and the time-dependent ROC curve were used to assess the prognostic values of the potential prognostic genes for CRC patients.
RESULTS: Integrated analysis of GEO and TCGA databases revealed 207 common DEGs in CRC. A PPI network consisted of 70 nodes and 170 edges were constructed and top 10 hub genes were identified. The area under curve (AUC) of the ROC curves of the hub genes were 0.900, 0.927, 0.869, 0.863, 0.980, 0.682, 0.903, 0.790, 0.995, and 0.989 for CCL19, CXCL1, CXCL5, CXCL11, CXCL12, GNG4, INSL5, NMU, PYY, and SST, respectively. A prognostic gene signature consisted of 9 genes including SLC4A4, NFE2L3, GLDN, PCOLCE2, TIMP1, CCL28, SCGB2A1, AXIN2, and MMP1 was constructed with a good performance in predicting overall survivals of CRC patients. The AUC of the time-dependent ROC curve was 0.741 for 5-year survival.
CONCLUSION: The results in this study might provide some directive significance for further exploring the potential biomarkers for diagnosis and prognosis prediction of CRC patients.

De Silva P, Garaud S, Solinas C, et al.
FOXP1 negatively regulates tumor infiltrating lymphocyte migration in human breast cancer.
EBioMedicine. 2019; 39:226-238 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: FOXP1, a transcriptional regulator of lymphocyte development, is abnormally expressed in some human tumors. This study investigated FOXP1-mediated regulation of tumor infiltrating lymphocytes (TIL) in untreated primary breast cancer (BC).
METHODS: FOXP1 expression was analyzed in tissues from primary untreated breast tumors, BC cell lines and the METABRIC gene expression BC dataset. Cytokine and chemokine expression and lymphocyte migration in response to primary tumor supernatants (SN) was compared between FOXP1
FINDING: FOXP1 expression was higher in estrogen receptor positive compared to negative BC. FOXP1
INTERPRETATION: These data identify FOXP1 as an important negative regulator of immune responses in BC via its regulation of cytokine and chemokine expression. FUND: Belgian Fund for Scientific Research (FNRS 3.4513.12F) and Opération Télévie (7.4636.13F and 7.4609.15F), Fonds J.C. Heuson and Fonds Lambeau-Marteaux.

Juric V, O'Sullivan C, Stefanutti E, et al.
MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors.
PLoS One. 2018; 13(11):e0207255 [PubMed] Free Access to Full Article Related Publications
Matrix metalloproteinase-9 (MMP-9), whose expression is frequently dysregulated in cancer, promotes tumor growth, invasion, and metastasis by multiple mechanisms, including extracellular matrix remodeling and growth-factor and cytokine activation. We developed a monoclonal antibody against murine MMP-9, which we found decreased growth of established primary tumors in an orthotopic model of HER2-driven breast cancer (HC11-NeuT) in immunocompetent mice. RNA sequencing (RNAseq) profiling of NeuT tumors and additional mouse model tumors revealed that anti-MMP-9 treatment resulted in upregulation of immune signature pathways associated with cytotoxic T-cell response. As there is a need to boost the low response rates observed with anti-PDL1 antibody treatment in the clinical setting, we assessed the potential of anti-MMP-9 to improve T-cell response to immune checkpoint inhibitor anti-PDL1 in NeuT tumors. Anti-MMP-9 and anti-PDL1 cotreatment reduced T-cell receptor (TCR) clonality and increased TCR diversity, as detected by TCR sequencing of NeuT tumors. Flow cytometry analyses of tumors showed that the combination treatment increased the frequency of CD3+ T cells, including memory/effector CD4 and CD8 T cells, but not regulatory T cells, among tumor-infiltrating leukocytes. Moreover, in vitro enzymatic assays corroborated that MMP-9 cleaves key T-cell chemoattractant CXC receptor 3 ligands (CXC ligand [CXCL] 9, CXCL10, and CXCL11) and renders them inactive in T-cell migration assays. Consistent with our in vitro experiments, analysis of NeuT tumor protein lysates showed that anti-MMP-9 treatment increases expression of CXCL10 and other T cell-stimulating factors, such as interleukin (IL)-12p70 and IL-18. We show that inhibition of MMP-9, a key component of the tumor-promoting and immune-suppressive myeloid inflammatory milieu, increases T-helper cell 1 type cytokines, trafficking of effector/memory T cells into tumors, and intratumoral T-cell diversity.

Braun SA, Baran J, Schrumpf H, et al.
Ingenol mebutate induces a tumor cell-directed inflammatory response and antimicrobial peptides thereby promoting rapid tumor destruction and wound healing.
Eur J Med Res. 2018; 23(1):45 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ingenol mebutat (IM)-gel is effective for the topical treatment of epithelial tumors, including actinic keratoses (AKs) or anogenital warts (AGW). AK patients treated with IM develop intensified inflammatory reactions on sights of prior clinical visible or palpable AKs as compared to the surrounding actinically damaged skin, suggesting the induction of a tumor cell-directed inflammation. AGW patients treated with IM develop even stronger inflammatory reactions with large erosions, suggesting a directed inflammatory response against HPV-infected keratinocytes. Of note, even widespread erosions heal very fast without any superinfections. Here, we set out to elucidate underlying molecular and cellular mechanisms of these clinical observations.
METHODS: The effects of IM (10
RESULTS: Ingenol mebutat significantly and dose-dependently induced the expression of proinflammatory chemokines (CXCL8, CCL2) and AMP (RNase7, HBD3) in HEK and epithelial cancer cell lines. A significantly stronger induction of CXCL8 and CCL2 was observed in our tested tumor cells as compared to HEK. We did not observe any significant effect of IM on HEK migration, respectively wound healing responses in vitro for any tested concentration (10
CONCLUSIONS: Our data suggest that tumor cells are more susceptible to IM as compared to differentiated HEK. This is evident by a stronger IM-mediated induction of proinflammatory chemokines in tumor cells, which may result in a tumor cell-directed inflammatory response and rapid tumor destruction. In addition, IM induces AMP in keratinocytes and seems not to severely interfere with keratinocyte migration, which contributes to a fast and uncomplicated wound healing. Surprising is a selective inhibition of keratinocyte migration by IM at the concentration of 10

Benhadjeba S, Edjekouane L, Sauvé K, et al.
Feedback control of the CXCR7/CXCL11 chemokine axis by estrogen receptor α in ovarian cancer.
Mol Oncol. 2018; 12(10):1689-1705 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer (OC) is one of the most intractable diseases, exhibiting tremendous molecular heterogeneity and lacking reliable methods for screening, resulting in late diagnosis and widespread peritoneal dissemination. Menopausal estrogen replacement therapy is a well-recognized risk factor for OC, but little is known about how estrogen might contribute to this disease at the cellular level. This study identifies chemokine receptor CXCR7/ACKR3 as an estrogen-responsive gene, whose expression is markedly enhanced by estrogen through direct recruitment of ERα and transcriptional active histone modifications in OC cells. The gene encoding CXCR7 chemokine ligand I-TAC/CXCL11 was also upregulated by estrogen, resulting in Ser-118 phosphorylation, activation, and recruitment of estrogen receptor ERα at the CXCR7 promoter locus for positive feedback regulation. Both CXCR7 and CXCL11, but not CXCR3 (also recognized to interact with CXCL11), were found to be significantly increased in stromal sections of microdissected tumors and positively correlated in mesenchymal subtype of OC. Estrogenic induction of mesenchymal markers SNAI1, SNAI2, and CDH2 expression, with a consequent increase in cancer cell migration, was shown to depend on CXCR7, indicating a key role for CXCR7 in mediating estrogen upregulation of mesenchymal markers to induce invasion of OC cells. These findings identify a feed-forward mechanism that sustains activation of the CXCR7/CXCL11 axis under ERα control to induce the epithelial-mesenchymal transition pathway and metastatic behavior of OC cells. Such interplay underlies the complex gene profile heterogeneity of OC that promotes changes in tumor microenvironment and metastatic acquisition.

Zhang C, Li Z, Xu L, et al.
CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer.
BMC Cancer. 2018; 18(1):462 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Programmed death-ligand 1 (PD-L1) is an immunosuppressor that plays an important role in cancer treatments. Although majority of the studies demonstrated that PD-L1 expression was regulated by cellular intrinsic and extrinsic controls, and IFN-γ was a key molecule of extrinsic control, other studies imply that other cytokines play important roles in PD-L1 expression. In this study, we investigated the regulation of PD-L1 by chemokine signaling pathway in gastric cancer (GC) cells.
METHODS: Bioinformatics was used to explore the PD-L1-related genes in GC and propose a hypothesis. PD-L1 and CXCR3 expression were detected by western blot in SGC7901 and MKN74 cell lines. Meanwhile, PD-L1 and CXCR3 expressions were immunohistochemically assessed for their relevance. Moreover, PD-L1, pSTAT3 and pAkt were detected after treatment with CXCL9/10/11. Furthermore,PD-L1, pSTAT3 and pAkt were evaluated after blocking chemokine signaling in SGC7901 cells.
RESULTS: Based on online database analysis, CXCL9/10/11-CXCR3 is proposed to upregulate PD-L1 expression by activating the STAT and PI3K-Akt pathways. This hypothesis was confirmed by in vitro and vivo experiments. CXCR3 and PD-L1 were expressed in GC cell lines and tissues, and the expression of CXCR3 and PD-L1 was positively related. PD-L1 was upregulated after treatment with CXCL9/10/11, accompanied by activation of STAT3 and Akt. After blocking chemokine signaling, upregulation of PD-L1 and activation of STAT3 and Akt were diminished.
CONCLUSIONS: CXCL9/10/11-CXCR3 upregulated the expression of PD-L1 by activating the STAT and PI3K-Akt signaling pathways in GC cells. There was a significant positive correlation between the expression of PD-L1 and CXCR3 in gastric cancer patient tissues.

Liu X, Jin G, Qian J, et al.
Digital gene expression profiling analysis and its application in the identification of genes associated with improved response to neoadjuvant chemotherapy in breast cancer.
World J Surg Oncol. 2018; 16(1):82 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: This study aimed to screen sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.
METHODS: In this study, Illumina digital gene expression sequencing technology was applied and differentially expressed genes (DEGs) between patients presenting pathological complete response (pCR) and non-pathological complete response (NpCR) were identified. Further, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed. The genes in significant enriched pathways were finally quantified by quantitative real-time PCR (qRT-PCR) to confirm that they were differentially expressed. Additionally, GSE23988 from Gene Expression Omnibus database was used as the validation dataset to confirm the DEGs.
RESULTS: After removing the low-quality reads, 715 DEGs were finally detected. After mapping to KEGG pathways, 10 DEGs belonging to the ubiquitin proteasome pathway (HECTD3, PSMB10, UBD, UBE2C, and UBE2S) and cytokine-cytokine receptor interactions (CCL2, CCR1, CXCL10, CXCL11, and IL2RG) were selected for further analysis. These 10 genes were finally quantified by qRT-PCR to confirm that they were differentially expressed (the log
CONCLUSION: Our results suggested that these 10 genes belonging to these two pathways might be useful as sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.

Rahman MM, Hazan A, Selway JL, et al.
A Novel Mechanism for Activation of GLI1 by Nuclear SMO That Escapes Anti-SMO Inhibitors.
Cancer Res. 2018; 78(10):2577-2588 [PubMed] Related Publications
Small-molecule inhibitors of the Hedgehog (HH) pathway receptor Smoothened (SMO) have been effective in treating some patients with basal cell carcinoma (BCC), where the HH pathway is often activated, but many patients respond poorly. In this study, we report the results of investigations on PTCH1 signaling in the HH pathway that suggest why most patients with BCC respond poorly to SMO inhibitors. In immortalized human keratinocytes, PTCH1 silencing led to the generation of a compact, holoclone-like morphology with increased expression of SMO and the downstream HH pathway transcription factor GLI1. Notably, although siRNA silencing of SMO in PTCH1-silenced cells was sufficient to suppress GLI1 activity, this effect was not phenocopied by pharmacologic inhibition of SMO, suggesting the presence of a second undefined pathway through which SMO can induce GLI1. Consistent with this possibility, we observed increased nuclear localization of SMO in PTCH1-silenced cells as mediated by a putative SMO nuclear/nucleolar localization signal [N(o)LS]. Mutational inactivation of the N(o)LS ablated this increase and suppressed GLI1 induction. Immunohistologic analysis of human and mouse BCC confirmed evidence of nuclear SMO, although the pattern was heterogeneous between tumors. In PTCH1-silenced cells, >80% of the genes found to be differentially expressed were unaffected by SMO inhibitors, including the putative BCC driver gene CXCL11. Our results demonstrate how PTCH1 loss results in aberrant regulation of SMO-independent mechanisms important for BCC biology and highlights a novel nuclear mechanism of SMO-GLI1 signaling that is unresponsive to SMO inhibitors.

Budczies J, Denkert C, Győrffy B, et al.
Chromosome 9p copy number gains involving PD-L1 are associated with a specific proliferation and immune-modulating gene expression program active across major cancer types.
BMC Med Genomics. 2017; 10(1):74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Inhibition of the PD-L1/PD-1 immune checkpoint axis represents one of the most promising approaches of immunotherapy for various cancer types. However, immune checkpoint inhibition is successful only in subpopulations of patients emphasizing the need for powerful biomarkers that adequately reflect the complex interaction between the tumor and the immune system. Recently, recurrent copy number gains (CNG) in chromosome 9p involving PD-L1 were detected in many cancer types including lung cancer, melanoma, bladder cancer, head and neck cancer, cervical cancer, soft tissue sarcoma, prostate cancer, gastric cancer, ovarian cancer, and triple-negative breast cancer.
METHODS: Here, we applied functional genomics to analyze global mRNA expression changes associated with chromosome 9p gains. Using the TCGA data set, we identified a list of 75 genes that were strongly up-regulated in tumors with chromosome 9p gains across many cancer types.
RESULTS: As expected, the gene set was enriched for chromosome 9p and in particular chromosome 9p24 (36 genes and 23 genes). Furthermore, we found enrichment of two expression programs derived from genes within and beyond 9p: one implicated in cell cycle regulation (22 genes) and the other implicated in modulation of the immune system (16 genes). Among these were specific cytokines and chemokines, e.g. CCL4, CCL8, CXCL10, CXCL11, other immunoregulatory genes such as IFN-G and IDO1 as well as highly expressed proliferation-related kinases and genes including PLK1, TTK, MELK and CDC20 that represent potential drug targets.
CONCLUSIONS: Collectively, these data shed light on mechanisms of immune escape and stimulation of proliferation in cancer with PD-L1 CNG and highlight additional vulnerabilities that may be therapeutically exploitable.

Febvre-James M, Lecureur V, Augagneur Y, et al.
Repression of interferon β-regulated cytokines by the JAK1/2 inhibitor ruxolitinib in inflammatory human macrophages.
Int Immunopharmacol. 2018; 54:354-365 [PubMed] Related Publications
Ruxolitinib is a Janus kinase (JAK) 1/2 inhibitor, currently used in the treatment of myeloproliferative neoplasms. It exerts potent anti-inflammatory activity, but the involved molecular and cellular mechanisms remain poorly understood. In order to gain insights about this point, ruxolitinib effects towards expression of main inflammatory cytokines were studied in human macrophages, which constitute a key-cell type implicated in inflammation. Analysis of mRNA expression of cytokines (n=84) by PCR array indicated that, among those induced by the pro-inflammatory stimulus lipopolysaccharide (LPS) (n=44), 61.4% (n=27) were repressed by 5μM ruxolitinib. The major inflammatory cytokines, interleukin (IL) 6 and tumor necrosis factor α, were notably down-regulated by ruxolitinib at both the mRNA and protein level. Other repressed cytokines included IL27 and the chemokines CCL2, CXCL9, CXCL10 and CXCL11, but not IL1β. The interferon (IFN) β/JAK/signal transducer and activator of transcription (STAT) pathway, well-activated by LPS in human macrophages as demonstrated by increased secretion of IFNβ, STAT1 phosphorylation, and up-regulation of reference IFNβ-responsive genes, was concomitantly blocked by the JAK inhibitor. Most of cytokines targeted by ruxolitinib were shown to be regulated by IFNβ in a JAK-sensitive manner. In addition, counteracting the IFNβ/JAK/STAT cascade using a blocking monoclonal antibody directed against IFNβ receptor resulted in a similar profile of cytokine repression to that observed in response to the JAK inhibitor. Overall, these data provide evidence for ruxolitinib-mediated repression of inflammatory cytokines in human macrophages through inhibition of the LPS/IFNβ/JAK/STAT signalling pathway, which probably contributes to the anti-inflammatory effects of the JAK inhibitor.

Grenga I, Donahue RN, Gargulak ML, et al.
Anti-PD-L1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis.
Urol Oncol. 2018; 36(3):93.e1-93.e11 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Avelumab has recently been approved by the Food and Drug Administration for the therapy of Merkel cell carcinoma and urothelial carcinoma. M7824 is a novel first-in-class bifunctional fusion protein comprising a monoclonal antibody against programmed death-ligand 1 (PD-L1, avelumab), fused to the extracellular domain of human transforming growth factor beta (TGFβ) receptor 2, which functions as a TGFβ "trap." Advanced urothelial tumors have been shown to express TGFβ, which possesses immunosuppressive properties that promote cancer progression and metastasis. The rationale for a combined molecule is to block the PD-1/PD-L1 interaction between tumor cells and immune cell infiltrate and simultaneously reduce or eliminate TGFβ from the tumor microenvironment. In this study, we explored the effect of M7824 on invasive urothelial carcinoma cell lines.
METHODS: Human urothelial (transitional cell) carcinoma cell lines HTB-4, HTB-1, and HTB-5 were treated with M7824, M7824mut (M7824 that is mutated in the anti-PD-L1 portion of the molecule and thus does not bind PD-L1), anti-PD-L1 (avelumab), or IgG1 isotype control monoclonal antibody, and were assessed for gene expression, cell-surface phenotype, and sensitivity to lysis by TRAIL, antigen-specific cytotoxic T lymphocytes and natural killer cells.
RESULTS: M7824 retains the ability to mediate antibody-dependent cellular cytotoxicity of tumor cells, although in some cases to a lesser extent than anti-PD-L1. However, compared to anti-PD-L1, M7824 increases (A) gene expression of molecules involved in T-cell trafficking in the tumor (e.g., CXCL11), (B) TRAIL-mediated tumor cell lysis, and (C) antigen-specific CD8
CONCLUSIONS: These studies demonstrate the immunomodulatory properties of M7824 on both tumor cell phenotype and immune-mediated lysis. Compared to anti-PD-L1 or M7824mut, M7824 induces immunogenic modulation of urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. These findings show the relevance of the dual blockade of PD-L1 and TGFβ in urothelial carcinoma cell lines and thus support the rationale for future clinical studies of M7824 in patients with urothelial cancer.

Leonard MK, McCorkle JR, Snyder DE, et al.
Identification of a gene expression signature associated with the metastasis suppressor function of NME1: prognostic value in human melanoma.
Lab Invest. 2018; 98(3):327-338 [PubMed] Free Access to Full Article Related Publications
Although NME1 is well known for its ability to suppress metastasis of melanoma, the molecular mechanisms underlying this activity are not completely understood. Herein, we utilized a bioinformatics approach to systematically identify genes whose expression is correlated with the metastasis suppressor function of NME1. This was accomplished through a search for genes that were regulated by NME1, but not by NME1 variants lacking metastasis suppressor activity. This approach identified a number of novel genes, such as ALDOC, CXCL11, LRP1b, and XAGE1 as well as known targets such as NETO2, which were collectively designated as an NME1-Regulated Metastasis Suppressor Signature (MSS). The MSS was associated with prolonged overall survival in a large cohort of melanoma patients in The Cancer Genome Atlas (TCGA). The median overall survival of melanoma patients with elevated expression of the MSS genes was >5.6 years longer compared with that of patients with lower expression of the MSS genes. These data demonstrate that NMEl represents a powerful tool for identifying genes whose expression is associated with metastasis and survival of melanoma patients, suggesting their potential applications as prognostic markers and therapeutic targets in advanced forms of this lethal cancer.

Koo YJ, Kim TJ, Min KJ, et al.
CXCL11 mediates TWIST1-induced angiogenesis in epithelial ovarian cancer.
Tumour Biol. 2017; 39(5):1010428317706226 [PubMed] Related Publications
To investigate the role of TWIST1 in tumor angiogenesis in epithelial ovarian cancer and to identify key molecules involved in angiogenesis. TWIST1 small interfering RNA was transfected into A2780 cells, while a complementary DNA vector was transfected into non-malignant human ovarian surface epithelial cells to generate a TWIST1-overexpressing cell line. To evaluate how this affects angiogenesis, human umbilical vein endothelial cell tube formation assays were performed using the control and transfected cell lines. An antibody-based cytokine array was used to identify the molecules involved in TWIST1-mediated angiogenesis. After knockdown of TWIST1 via transfection of TWIST1 small interfering RNA into A2780 cells, the number of tubes formed by human umbilical vein endothelial cells significantly decreased in a tube formation assay. In a cytokine array, TWIST1 downregulation did not significantly decrease the secretion of the common pro-angiogenic factor, vascular endothelial growth factor, but instead inhibited the expression of the CXC chemokine ligand 11, which was confirmed by both an enzyme-linked immunosorbent assay and western blotting. In contrast, TWIST1 overexpression resulted in increased secretion of CXC chemokine ligand 11. Conversely, CXC chemokine ligand 11 downregulation did not inhibit the expression of TWIST1. Furthermore, the ability of TWIST1-expressing A2780 cells to induce angiogenesis was found to be inhibited after CXC chemokine ligand 11 knockdown in a tube formation assay. TWIST1 plays an important role in angiogenesis in epithelial ovarian cancer and is mediated by a novel pro-angiogenic factor, CXC chemokine ligand 11. Downregulation of CXC chemokine ligand 11 can inhibit tumor angiogenesis, suggesting that anti-CXC chemokine ligand 11 therapy may offer an alternative treatment strategy for TWIST1-positive ovarian cancer.

Han X, Parker TL
Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts.
Pharm Biol. 2017; 55(1):1619-1622 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Clove (Eugenia caryophyllata Thunb. [Myrtaceae]) essential oil (CEO) has been shown to possess antimicrobial, antifungal, antiviral, antioxidant, anti-inflammatory and anticancer properties. However, few studies have focused on its topical use.
OBJECTIVE: We investigated the biological activity of a commercially available CEO in a human skin disease model.
MATERIALS AND METHODS: We evaluated the effect of CEO on 17 protein biomarkers that play critical roles in inflammation and tissue remodelling in a validated human dermal fibroblast system, which was designed to model chronic inflammation and fibrosis. Four concentrations of CEO (0.011, 0.0037, 0.0012, and 0.00041%, v/v) were studied. The effect of 0.011% CEO on genome-wide gene expression was also evaluated.
RESULTS AND DISCUSSION: CEO at a concentration of 0.011% showed robust antiproliferative effects on human dermal fibroblasts. It significantly inhibited the increased production of several proinflammatory biomarkers such as vascular cell adhesion molecule-1 (VCAM-1), interferon γ-induced protein 10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC), and monokine induced by γ interferon (MIG). CEO also significantly inhibited tissue remodelling protein molecules, namely, collagen-I, collagen-III, macrophage colony-stimulating factor (M-CSF), and tissue inhibitor of metalloproteinase 2 (TIMP-2). Furthermore, it significantly modulated global gene expression and altered signalling pathways critical for inflammation, tissue remodelling, and cancer signalling processes. CEO significantly inhibited VCAM-1 and collagen III at both protein and gene expression levels.
CONCLUSIONS: This study provides important evidence of CEO-induced anti-inflammatory and tissue remodelling activity in human dermal fibroblasts. This study also supports the anticancer properties of CEO and its major active component eugenol.

Elia G, Fallahi P
Hepatocellular carcinoma and CXCR3 chemokines: a narrative review.
Clin Ter. 2017 Jan-Feb; 168(1):e37-e41 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) results from several factors like viral hepatitis infection [hepatitis B, or C (25%)] or occupational exposure. T-helper (Th)1 inflammatory cells, characterized by interferon (IFN)-γ and interleukin (IL)-2 secretion, predominate in the liver during chronic HCV infection, and chemokines attracting these cells are particularly important in disease progression. Among C-X-C chemokines, the non-ELR group [as IFN-γ-induced protein 10 (IP-10), monokine induced by IFN-γ (MIG) and IFN-inducible T-cell-alpha chemoattractant (I-TAC)], attracts Th1-cells interacting with chemokine C-X-C receptor (CXCR3). IP-10 has uniquely been shown to have prognostic utility as a marker of treatment outcome. IFN- γ-induced chemokines, as MIG and IP-10, may promote lymphocyte recruitment to HCC playing important roles in cancer immunology. The production of CXC chemokines by HCC cell lines has been shown. It has been identified immune-gene signature that predicts patient survival including the chemokine gene IP-10. Inflammatory cytokines (tumour necrosis factor-α, IFN-γ) and Toll-like receptor 3 ligands stimulate intratumoral production of these chemokines which drive T and Natural Killer cells tumor infiltration, leading to enhanced cancer cell death. Furthermore selective recruitment of CXCR3(+) B-cells that bridges proinflammatory IL-17 response and protumorigenic macrophage polarization in HCC has been shown, suggesting that blocking CXCR3(+) B-cell migration or function may help defeat HCC. It has been also shown that the overexpression of IP-10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway in HCC; IP-10 neutralizing antibody could be a potential adjuvant therapy to sensitize HCC-cisplatin treatment.

Dahm T, Frank F, Adams O, et al.
Sequential transmigration of polymorphonuclear cells and naive CD3
Virus Res. 2017; 232:54-62 [PubMed] Related Publications
Viral meningitis by non-polio enteroviruses (NPEV) is a major public health burden causing fatal outcomes especially in the younger population. Strong evidence exists that the blood-cerebrospinal-fluid (CSF) barrier (BCSFB) serves as an entry point for enterovirus and leucocytes into the central nervous system (CNS). Moreover, analysis of clinical CSF specimens of patients with a NPEV infection revealed a predominance of polymorphonuclear granulocytes (PMN) in the early phase and mononuclear cells in the later course of meningitis. By applying a functional in vitro model of the BCSFB consisting of human choroid plexus papilloma (HIBCPP) cells, we aimed to analyse the mechanisms of sequential migration of PMN and naive CD3

Jehs T, Faber C, Udsen MS, et al.
Induction of Chemokine Secretion and Monocyte Migration by Human Choroidal Melanocytes in Response to Proinflammatory Cytokines.
Invest Ophthalmol Vis Sci. 2016; 57(15):6568-6579 [PubMed] Related Publications
Purpose: To determine to which extent inflammatory cytokines affect chemokine secretion by primary human choroidal melanocytes (HCMs), their capacity to attract monocytes, and whether HCMs are able to influence the proliferation of activated T cells.
Methods: Primary cultures of HCMs were established from eyes of 13 donors. Human choroidal melanocytes were stimulated with IFN-γ and TNF-α or with supernatant from activated T cells (T-cell-conditioned media [TCM]). Gene expression analysis was performed by using microarrays. Protein levels were quantified with ELISA or cytometric bead array. Supernatants of HCMs were assessed for the capability to attract monocytes in a transwell plate. Proliferation of activated T cells was assessed in a direct coculture with HCMs by a [3H]-thymidine incorporation assay.
Results: Stimulation of HCMs with TCM or IFN-γ and TNF-α resulted in increased expression and secretion of CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL5 and intercellular adhesion molecule 1. Vascular endothelial growth factor and monocyte migration inhibitory factor were constitutively expressed without changes in response to proinflammatory cytokines. Supernatants derived from unstimulated cultures of 10 HCM donors induced a high initial level of monocyte migration, which decreased upon stimulation with either TCM or IFN-γ and TNF-α. The supernatants from three HCM donors initially showed a low level of monocyte attraction, which increased after exposure to proinflammatory cytokines. Direct coculture of HCMs with T cells resulted in inhibition of T-cell proliferation.
Conclusions: These results showed that normal and activated HCMs are immunologically active by secreting chemokines, and that HCMs are able to attract monocytes in addition to inhibiting T-cell proliferation.

Makoukji J, Makhoul NJ, Khalil M, et al.
Gene expression profiling of breast cancer in Lebanese women.
Sci Rep. 2016; 6:36639 [PubMed] Free Access to Full Article Related Publications
Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER

Mauldin IS, Wages NA, Stowman AM, et al.
Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases.
Cancer Immunol Immunother. 2016; 65(10):1189-99 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Optimal approaches to induce T cell infiltration of tumors are not known. Chemokines CXCL9, CXCL10, and CXCL11 support effector T cell recruitment and may be induced by IFN. This study tests the hypothesis that intratumoral administration of IFNγ will induce CXCL9-11 and will induce T cell recruitment and anti-tumor immune signatures in melanoma metastases.
PATIENTS AND METHODS: Nine eligible patients were immunized with a vaccine comprised of 12 class I MHC-restricted melanoma peptides and received IFNγ intratumorally. Effects on the tumor microenvironment were evaluated in sequential tumor biopsies. Adverse events (AEs) were recorded. T cell responses to vaccination were assessed in PBMC by IFNγ ELISPOT assay. Tumor biopsies were evaluated for immune cell infiltration, chemokine protein expression, and gene expression.
RESULTS: Vaccination and intratumoral administration of IFNγ were well tolerated. Circulating T cell responses to vaccine were detected in six of nine patients. IFNγ increased production of chemokines CXCL10, CXCL11, and CCL5 in patient tumors. Neither vaccination alone, nor the addition of IFNγ promoted immune cell infiltration or induced anti-tumor immune gene signatures.
CONCLUSION: The melanoma vaccine induced circulating T cell responses, but it failed to infiltrate metastases, thus highlighting the need for combination strategies to support T cell infiltration. A single intratumoral injection of IFNγ induced T cell-attracting chemokines; however, it also induced secondary immune regulation that may paradoxically limit immune infiltration and effector functions. Alternate dosing strategies or additional combinatorial treatments may be needed to promote trafficking and retention of tumor-reactive T cells in melanoma metastases.

Zeng YJ, Lai W, Wu H, et al.
Neuroendocrine-like cells -derived CXCL10 and CXCL11 induce the infiltration of tumor-associated macrophage leading to the poor prognosis of colorectal cancer.
Oncotarget. 2016; 7(19):27394-407 [PubMed] Free Access to Full Article Related Publications
Our previous study revealed that neuroendocrine differentiation in colorectal cancer is one of the important factors leading to worse prognosis. In this study, we apply immunohistochemical staining, Western-blot, RT-PCR and ELISA to investigate the underlying mechanism that how the neuroendocrine differentiation to affect the prognosis of colorectal cancer. The interaction of colorectal cancer cells, neuroendocrine-like cells and tumor-associated macrophages in colorectal cancer progress is also investigated. By analyzing 82 cases of colorectal cancer patients treated in our institution, we found that colorectal adenocarcinoma with neuroendocrine differentiation had increasing number of tumor-associated macrophages and worse prognosis. Further evaluation of cytology showed that neuroendocrine cells have the ability to recruit tumor-associated macrophages to infiltrate the tumor tissue, and the tumor-associated macrophages enhance the proliferation and invasion abilities of the colon cancer cells. Moreover, we confirmed that CXCL10 and CXCL11 are the key chemokines in neuroendocrine-like cells and they promote the chemotaxis activity of tumor-associated macrophages. The secretion of CXCL10 and CXCL11 by neuroendocrine-like cells can recruit tumor-associated macrophages to infiltrate in tumor tissues. The latter enhances the proliferation and invasion of colorectal cancer cell and lead to poor prognosis.

Bolomsky A, Schreder M, Hübl W, et al.
Monokine induced by interferon gamma (MIG/CXCL9) is an independent prognostic factor in newly diagnosed myeloma.
Leuk Lymphoma. 2016; 57(11):2516-25 [PubMed] Related Publications
Immune suppression is a hallmark of multiple myeloma (MM), but data on soluble factors involved in the fate of immune effector cells are limited. The CXCR3-binding chemokine monokine induced by interferon-gamma (MIG/CXCL9) has been associated with tumor progression, immune escape, and angiogenesis in several malignancies. We here aimed to evaluate the prognostic relevance of MIG in MM. MIG serum levels were significantly elevated in newly diagnosed MM patients (n = 105) compared to patients with monoclonal gammopathy of undetermined significance (MGUS; n = 17) and healthy controls (n = 37). MIG expression in stromal compartments but not purified MM cells correlated with serum levels. High MIG serum levels were significantly associated with established prognostic markers (international staging system: R = 0.25, p = 0.001; age: R = 0.47, p < 0.0001; lactate-dehydrogenase: R = 0.34, p = 0.0005) and poor overall survival (OS) (median OS 17.0 months vs. not reached, p < 0.001). A similar association was found for CXCL10 and CXCL11. Multivariate regression analysis indicated MIG as an independent prognostic factor of OS.

Lee CR, Kang JA, Kim HE, et al.
Secretion of IL-1β from imatinib-resistant chronic myeloid leukemia cells contributes to BCR-ABL mutation-independent imatinib resistance.
FEBS Lett. 2016; 590(3):358-68 [PubMed] Related Publications
Some cases of chronic myelogenous leukemia are resistant to tyrosine kinase inhibitors (TKIs) independently of mutation in BCR-ABL, but the detailed mechanism underlying this resistance has not yet been elucidated. In this study, we generated a TKI-resistant CML cell line, K562R, that lacks a mutation in BCR-ABL. Interleukin-1β (IL-1β) was more highly expressed in K562R than in the parental cell line K562S, and higher levels of IL-1β contributed to the imatinib resistance of K562R. In addition, IL-1β secreted from K562R cells affected stromal cell production of CXCL11, which in turn promoted migration of K562R cells into the stroma. Thus, elevated IL-1β production from TKI-resistant K562R cells may contribute to TKI resistance by increasing cell viability and promoting cell migration.

Narita D, Seclaman E, Anghel A, et al.
Altered levels of plasma chemokines in breast cancer and their association with clinical and pathological characteristics.
Neoplasma. 2016; 63(1):141-9 [PubMed] Related Publications
Chemokines are a family of small, structurally related cytokines with chemoattractant and activation properties. In breast cancer, both epithelial cancer cells and cells within the microenvironment secrete chemokines with either tumor-promoting or anti-malignant potential. The equilibrium between these two chemokine activities plays a key role in the biology of the developing tumor, including its ability to metastasize. Here we evaluated the expression of chemokines in breast tumors and the plasma of breast cancer patients before treatment in order to identify a blood-based signature that could distinguish between malignant and non-malignant processes. We screened the mRNA expression of chemokine genes using cDNA microarray on homogenous, laser-capture microdissected breast cancer specimens. Further, using a protein array approach, we determined the levels of selected chemokines in the plasma of patients with breast cancer, benign breast tumors and healthy women. Finally, we analyzed the association between the levels of chemokines in breast and blood samples with the pathological characteristics of the disease. At mRNA level, 27 chemokines and 11 chemokine receptors were differentially expressed in cancers when compared with normal breast tissue. When compared to benign tumors, the only chemokine significantly upregulated in cancers was CXCL10. At protein level, with the exception of CXCL13, nine out of the ten selected chemokines (CCL2, CCL7, CCL18, CCL22, CXCL8, CXCL9, CXCL10, CXCL11 and osteoprotegerin) were significantly overexpressed in the plasma of breast cancers patients compared to healthy controls. After grouping, CXCL8, CXCL9 and CCL22 proved to be significant predictors for breast cancers as compared to healthy controls in a model of logistic regression. We found upregulation of CXCL8, CXCL11 and CXCL9 in triple negative carcinomas, CXCL9 in low proliferative carcinomas, and CXCL10, CCL7 and osteoprotegerin in poorly differentiated carcinomas. Furthermore, CXCL9 was overexpressed in lymph node negative tumors, whereas CXCL8 and CCL18 were higher in advanced stage carcinomas. We identified a panel of chemokines dysregulated in breast cancer that could be further investigated as prospective novel diagnostic markers or for therapeutic and prognostic applications.

Agostini M, Janssen KP, Kim IJ, et al.
An integrative approach for the identification of prognostic and predictive biomarkers in rectal cancer.
Oncotarget. 2015; 6(32):32561-74 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Colorectal cancer is the third most common cancer in the world, a small fraction of which is represented by locally advanced rectal cancer (LARC). If not medically contraindicated, preoperative chemoradiotherapy, represent the standard of care for LARC patients. Unfortunately, patients shows a wide range of response rates in which approximately 20% has a complete pathological response, whereas in 20 to 40% the response is poor or absent.
RESULTS: The following specific gene signature, able to discriminate responders' patients from non-responders, were founded: AKR1C3, CXCL11, CXCL10, IDO1, CXCL9, MMP12 and HLA-DRA. These genes are mainly involved in immune system pathways and interact with drugs traditionally used in the adjuvant treatment of rectal cancer.
DISCUSSION: The present study suggests that new ideas for therapy could be found not only limited to studying genes differentially expressed between the two groups of patients but deepening the mechanisms, associated to response, in which they are involved.
METHODS: Gene expression studies performed by: Agostini et al., Rimkus et al. and Kim et al. have been merged through a meta-analysis of the raw data. Gene expression data-sets have been processed using A-MADMAN. Common differentially expressed gene (DEG) were identified through SAM analysis. To further characterize the identified DEG we deeply investigated its biological role using an integrative computational biology approach.

Kim HJ, Park J, Lee SK, et al.
Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer.
J Pathol. 2015; 237(4):520-31 [PubMed] Free Access to Full Article Related Publications
Non-small cell lung cancer (NSCLC) frequently metastasizes to bone, which is associated with significant morbidity and a dismal prognosis. RUNX3 functions as a tumour suppressor in lung cancer and loss of expression occurs more frequently in invasive lung adenocarcinoma than in pre-invasive lesions. Here, we show that RUNX3 and RUNX3-regulated chemokines are linked to NSCLC-mediated bone resorption. Notably, the receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio, an index of osteoclastogenic stimulation, was significantly increased in human osteoblastic cells treated with conditioned media derived from RUNX3-knockdown NSCLC cells. We aimed to identify RUNX3-regulated factors that modify the osteoblastic RANKL/OPG ratio and found that RUNX3 knockdown led to CCL5 up-regulation and down-regulation of CCL19 and CXCL11 in NSCLC cells. Tumour size was noticeably increased and more severe osteolytic lesions were induced in the calvaria and tibiae of mice that received RUNX3-knockdown cells. In response to RUNX3 knockdown, serum and tissue levels of CCL5 increased, whereas CCL19 and CXCL11 decreased. Furthermore, CCL5 increased the proliferation, migration, and invasion of lung cancer cells in a dose-dependent manner; however, CCL19 and CXCL11 did not show any significant effects. The RANKL/OPG ratio in osteoblastic cells was increased by CCL5 but reduced by CCL19 and CXCL11. CCL5 promoted osteoclast differentiation, but CCL19 and CXCL11 reduced osteoclastogenesis in RANKL-treated bone marrow macrophages. These findings suggest that RUNX3 and related chemokines are useful markers for the prediction and/or treatment of NSCLC-induced bone destruction.

Liu RX, Wei Y, Zeng QH, et al.
Chemokine (C-X-C motif) receptor 3-positive B cells link interleukin-17 inflammation to protumorigenic macrophage polarization in human hepatocellular carcinoma.
Hepatology. 2015; 62(6):1779-90 [PubMed] Related Publications
UNLABELLED: B cells consistently represent abundant cellular components in tumors; however, direct evidence supporting a role for B cells in the immunopathogenesis of human cancers is lacking, as is specific knowledge of their trafficking mechanisms. Here, we demonstrate that chemokine (C-X-C motif) receptor 3-positive (CXCR3(+)) B cells constitute approximately 45% of B-cell infiltrate in human hepatocellular carcinoma (HCC) and that their levels are positively correlated with early recurrence of HCC. These cells selectively accumulate at the invading edge of HCC and undergo further somatic hypermutation and immunoglobulin G-secreting plasma cell differentiation. Proinflammatory interleukin-17(+) cells are important for the induction of epithelial cell-derived CXCR3 ligands CXCL9, CXCL10, and CXCL11, which subsequently promote the sequential recruitment and further maturation of CXCR3(+) B cells. More importantly, we provide evidence that CXCR3(+) B cells, but not their CXCR3(-) counterparts, may operate in immunoglobulin G-dependent pathways to induce M2b macrophage polarization in human HCC. Depletion of B cells significantly suppresses M2b polarization and the protumorigenic activity of tumor-associated macrophages and restores the production of antitumorigenic interleukin-12 by those cells in vivo.
CONCLUSION: Selective recruitment of CXCR3(+) B cells bridges proinflammatory interleukin-17 response and protumorigenic macrophage polarization in the tumor milieu, and blocking CXCR3(+) B-cell migration or function may help defeat HCC.

Ejaeidi AA, Craft BS, Puneky LV, et al.
Hormone receptor-independent CXCL10 production is associated with the regulation of cellular factors linked to breast cancer progression and metastasis.
Exp Mol Pathol. 2015; 99(1):163-72 [PubMed] Related Publications
Breast cancer (BC) is a major health problem for women around the world. Although advances in the field of molecular therapy have been achieved, the successful therapeutic management of BC, particularly metastatic disease, remains a challenge for patients and clinicians. One of the areas of current investigation is the circulating tumor cells (CTCs), which have a determinant role in the development of distant metastasis. At the present, many of the available treatment strategies for metastatic disease are of limited benefit. However, the elucidation of the mechanisms of tumor progression and metastasis may help to identify key molecules/components that may function as therapeutic targets in the future. In the present study, the functional analysis of CTCs revealed their ability to grow and proliferate to form colonies. Immunofluorescence staining of the CTCs' colonies exhibits elevated expression of cell growth and survival associated proteins such as, survivin, ERK and Akt1. More importantly, the functional screening of the chemokine profile in BC patients' sera revealed an HR-independent elevation of the chemokine CXCL10 when compared to healthy controls. The analysis of chemokines CXCL9 and CXCL11 demonstrated an HR-dependent production pattern. The levels of both CXCL9 and CXCL11 were markedly high in HR+ patients' sera when compared to HR- patients and healthy controls. The functional analysis of HR+ and HR- BC derived cell lines when cultivated in media supplemented with patients' sera demonstrated the alteration of tumor progression and metastasis related proteins. We noted the induction of survivin, β-catenin, MKP-1, pERK, CXCR4 and MMP-1 both at the protein and mRNA levels. The induction of those proteins was in keeping with patients' sera induced cell proliferation as measured by the MTT assay. In conclusion, our data emphasizes the role of chemokines, especially CXCL10, in BC progression and metastasis via the induction of signaling pathways, which mainly involve survivin, β-catenin, MKP-1 and MMP-1.

Hsiao JJ, Ng BH, Smits MM, et al.
Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility.
BMC Cancer. 2015; 15:204 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear.
METHODS: Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12.
RESULTS: Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein.
CONCLUSIONS: Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers.

Chung BM, Arutyunov A, Ilagan E, et al.
Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes.
J Cell Biol. 2015; 208(5):613-27 [PubMed] Free Access to Full Article Related Publications
High levels of the intermediate filament keratin 17 (K17) correlate with a poor prognosis for several types of epithelial tumors. However, the causal relationship and underlying mechanisms remain undefined. A recent study suggested that K17 promotes skin tumorigenesis by fostering a specific type of inflammation. We report here that K17 interacts with the RNA-binding protein hnRNP K, which has also been implicated in cancer. K17 is required for the cytoplasmic localization of hnRNP K and for its role in regulating the expression of multiple pro-inflammatory mRNAs. Among these are the CXCR3 ligands CXCL9, CXCL10, and CXCL11, which together form a signaling axis with an established role in tumorigenesis. The K17-hnRNP K partnership is regulated by the ser/thr kinase RSK and required for CXCR3-dependent tumor cell growth and invasion. These findings functionally integrate K17, hnRNP K, and gene expression along with RSK and CXCR3 signaling in a keratinocyte-autonomous axis and provide a potential basis for their implication in tumorigenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CXCL11, Cancer Genetics Web: http://www.cancer-genetics.org/CXCL11.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999