Gene Summary

Gene:TP53INP1; tumor protein p53 inducible nuclear protein 1
Aliases: SIP, Teap, p53DINP1, TP53DINP1, TP53INP1A, TP53INP1B
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor protein p53-inducible nuclear protein 1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TP53INP1 (cancer-related)

Sun B, Zhang J, Liu M, Guan L
Alkannin inhibits proliferation, migration and invasion of hepatocellular carcinoma cells via regulation of miR-92a.
Biomed Pharmacother. 2019; 114:108782 [PubMed] Related Publications
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. In our study, we aimed to investigate the effects of alkannin on HCC cells growth, migration and invasion.
METHODS: Huh7 and Hep3B2.1-7 cells were treated with alkannin. Expression of miR-92a in cell was altered by transfection with miR-92a-mimic (miR-92a-M) or miR-92a-inhibitor (miR-92a-I). Cell viability, proliferation, apoptosis, migration and invasion were detected by Cell Counting Kit-8, BrdU assay, flow cytometry, and transwell assay, respectively. The expression of miR-92a was determined by quantitative real-time PCR. The expression of proteins associated with proliferation, apoptosis and metastasis was measured by Western blot.
RESULTS: Alkannin decreased cell viability and proliferation, executed cell apoptosis, and inhibited the migration and invasion of Huh7 and Hep3B2.1-7 cells. Alkannin negatively regulated the expression of miR-92a, and transfection with miR-92a-M impeded alkannin's anti-tumor functions. PTEN and TP53INP1 were found to be target genes of miR-92a. Alkannin inhibited PTEN-dependent PI3K/AKT pathway. Furthermore, the biological effects of miR-92a-I in alkannin treated cells were eliminated by PTEN silencing.
CONCLUSION: Alkannin exerted anti-tumor activities by downregulation of miR-92a. This process might be executed by inactivating PTEN/PI3K/AKT signal pathways through the binding effects of miR-92a on PTEN.

Nishimoto M, Nishikawa S, Kondo N, et al.
Prognostic impact of TP53INP1 gene expression in estrogen receptor α-positive breast cancer patients.
Jpn J Clin Oncol. 2019; 49(6):567-575 [PubMed] Related Publications
BACKGROUND: Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a key stress protein with tumor suppressor function. Several studies have demonstrated TP53INP1 downregulation in many cancers. In this study, we investigated the correlations of TP53INP1 mRNA expression in breast cancer tissues with prognosis and the correlations of microRNAs that regulate TP53INP1 expression in breast cancer patients with long follow-up.
METHODS: A total of 453 invasive breast cancer tissues were analyzed for TP53INP1 mRNA expression. We examined correlations of clinicopathological factors and expression levels of TP53INP1 mRNA in these samples. The expressions of miR-155, miR-569 and markers associated with tumor-initiating capacity were also analyzed. The median follow-up period was 9.0 years.
RESULTS: We found positive correlations between low expression of TP53INP1 mRNA and shorter disease-free survival and overall survival in breast cancer patients (P = 0.0002 and P < 0.0001, respectively), as well as in estrogen receptor α (ERα)-positive patients receiving adjuvant endocrine therapy (P = 0.01 and P = 0.0008, respectively). No correlations were found in ERα-negative patients. Low TP53INP1 mRNA levels positively correlated with higher grade and ERα-negativity. Multivariate analysis indicated that TP53INP1 mRNA level was an independent risk factor for overall survival both in overall breast cancer patients (hazard ratio, 2.13; 95% confidence interval, 1.17-3.92) and ERα-positive patients (hazard ratio, 2.34; 95% confidence interval, 1.18-4.64).
CONCLUSIONS: We show that low expression of TP53INP1 is an independent factor of poor prognosis in breast cancer patients, especially ERα-positive patients. TP53INP1 might be a promising candidate biomarker and therapeutic target in ERα-positive breast cancer patients.

Xiao WY, Zong Z, Qiu ML, et al.
Paclitaxel Induce Apoptosis of Giant Cells Tumor of Bone via TP53INP1 Signaling.
Orthop Surg. 2019; 11(1):126-134 [PubMed] Related Publications
OBJECTIVE: To evaluate the antitumor capability and to investigate the underlying molecular mechanism of paclitaxel.
METHODS: First, cck-8 and apoptosis assays were used to determine survival and apoptotic effects of HS 737.T cells under treatment of paclitaxel. Next, RNA-seq and bioinformatics were used to determine the differentially expressed genes and to analyze the pathway involved. Quantitative real-time polymerase chain reaction was used to verify the accuracy of some differentially expressed genes (DEG). ClueGO was used to decode and visualize functionally grouped GO terms of differentially expressed genes, and to map the DEG protein-protein interactions (PPI) network. Western blotting was used to check the expression of target genes, the cleavage of Caspase-3 and PARP1, and the phosphorylation level of p53. Finally, transcriptomics, bioinformatics, and RNAi were used to estimate the antitumor capability and to identify the underlying mechanisms of paclitaxel in GCTB.
RESULTS: Our data revealed that paclitaxel had significant time-dependent effects on the viability and induced apoptosis of HS 737.T cells. RNA-seq and bioinformatics analysis showed that apoptosis, death receptor signaling pathway, TNF signaling pathway, and TP53 regulated transcription of cell death genes pathway were closely associated with paclitaxel in the treatment of GCTB. Western bolt results revealed that paclitaxel induced cleavage of Caspase-3 and PARP1, and increased the phosphorylation level of p53 in HS 737.T cells. RNAi results showed that the expression level of TP53INP1 was significantly decreased in HS737.T cells (the decrease was more than 70%). In addition, we found that the inhibitory ratios of paclitaxel on HS737.T cells deficient in TP53INP1 were less than in HS737.T cells with empty vector (19.88 and 40.60%, respectively). Hence, our data revealed that TP53INP1 regulated paclitaxel-driven apoptosis in HS737.T cells.
CONCLUSION: Paclitaxel can significantly repress cell proliferation and induce apoptosis of HS 737.T cells through activating Caspase-3, PARP1, p53, and TP53INP1. Paclitaxel may be an effective drug in the management of GCTB.

Wang M, Qiu R, Yu S, et al.
Paclitaxel‑resistant gastric cancer MGC‑803 cells promote epithelial‑to‑mesenchymal transition and chemoresistance in paclitaxel‑sensitive cells via exosomal delivery of miR‑155‑5p.
Int J Oncol. 2019; 54(1):326-338 [PubMed] Free Access to Full Article Related Publications
Paclitaxel is a first‑line chemotherapeutic agent for gastric cancer; however, resistance limits its effectiveness. Investigation into the underlying mechanisms of paclitaxel resistance is urgently required. In the present study, a paclitaxel‑resistant gastric cancer cell line (MGC‑803R) was generated with a morphological phenotype of epithelial‑to‑mesenchymal transition (EMT) and increased expression levels of microRNA (miR)‑155‑5p. MGC‑803R cell‑derived exosomes were effectively taken up by paclitaxel‑sensitive MGC‑803S cells, which exhibited EMT and chemoresistance phenotypes. miR‑155‑5p was enriched in MGC‑803R‑exosomes and could be delivered into MGC‑803S cells. miR‑155‑5p overexpression in MGC‑803S cells via transfection with mimics resulted in similar phenotypic effects as treatment with MGC‑803R exosome and increased miR‑155‑5p content in MGC‑803S exosomes, which then capable of inducing the malignant phenotype in the sensitive cells. GATA binding protein 3 (GATA3) and tumor protein p53‑inducible nuclear protein 1 (TP53INP1) were identified as targets of miR‑155‑5p. Exosomal miR‑155‑5p inhibited these targets by directly targeting their 3' untranslated regions. Knockdown of miR‑155‑5p was observed to reverse the EMT and chemoresistant phenotypes of MGC‑803R cells, potentially via GATA3 and TP53INP1 upregulation, which inhibited MGC‑803R‑exosomes from inducing the malignant phenotype. These results demonstrated that exosomal delivery of miR‑155‑5p may induce EMT and chemoresistant phenotypes from paclitaxel‑resistant gastric cancer cells to the sensitive cells, which may be mediated by GATA3 and TP53INP1 suppression. Targeting miR‑155‑5p may thus be a promising strategy to overcome paclitaxel resistance in gastric cancer.

Karagianni F, Kataki A, Koniaris E, et al.
Distinctive expression profiles of Caveolin-1 and Notch-1 protein in patients with nasal polyps or sinonasal inverted papillomas.
Pathol Res Pract. 2018; 214(12):2004-2010 [PubMed] Related Publications
BACKGROUND: Nasal polyposis (NP) and sinonasal inverted papillomas (SIP) are considered benign lesions capable of recurrence or malignant transformation although not with the same prevalence. Since fluctuations of Caveolin-1 and Notch-1 proteins expression have been reported in many pathologies, the current study aimed to investigate their involvement in the epithelial transformation observed in SIPs compared to NP.
METHODS: Immunohistochemical expression of Caveolin-1 and Notch-1 proteins was assessed in 104 patients with sinonasal lesions (45 NP, 45 SIP and 14 NP with SIP), semiquantively (percentage times intensity). Proteins expression profiles were evaluated statistically for their correlation with patients demographic and clinicopathological variables (grade of dysplasia, inflammation, recurrence) as well as with markers of proliferation (Ki67) and apoptosis (7-AAD) as determined by flow cytometry analysis.
RESULTS: SIP lesions presented increased Caveolin-1 immunopositivity compared to NP (62.2%, vs 40.9%; p = 0.045). Cytoplasmic staining was observed only in epithelium's basal and suprabasal layers. Caveolin-1 positivity was not related to Ki67 expression, apoptosis, inflammation or dysplasia, eventhough 81.8% of highly immunopositive lesions were dysplastic (p = 0.03). Also, smokers presented significantly increased immunopositivy (p = 0.03). In contrast SIP lesions presented reduced Notch-1 expression compared to NP (68.9% vs 100%; p < 0.001). Dysplastic lesions presented low Notch-1 immunopositivity (p < 0.001). Enhancement of Notch-1 gene expression was also associated with inflammation.
CONCLUSIONS: The herein presented data suggest that the expression profiles of Caveolin-1 and Notch-1 proteins in sinonasal pathologies are distinctive and that could be explored as potential targets for the development of alternative therapeutic approaches.

Shang HS, Lu HF, Lee CH, et al.
Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells.
Environ Toxicol. 2018; 33(11):1168-1181 [PubMed] Related Publications
Quercetin is one of the natural components from natural plant and it induces cell apoptosis in many human cancer cell lines. However, no available reports show that quercetin induces apoptosis and altered associated gene expressions in human gastric cancer cells, thus, we investigated the effect of quercetin on the apoptotic cell death and associated gene expression in human gastric cancer AGS cells. Results indicated that quercetin induced cell morphological changes and reduced total viability via apoptotic cell death in AGS cells. Furthermore, results from flow cytometric assay indicated that quercetin increased reactive oxygen species (ROS) production, decreased the levels of mitochondrial membrane potential (ΔΨ

Wang Y, Yan L, Zhang L, et al.
NT21MP negatively regulates paclitaxel-resistant cells by targeting miR‑155‑3p and miR‑155-5p via the CXCR4 pathway in breast cancer.
Int J Oncol. 2018; 53(3):1043-1054 [PubMed] Free Access to Full Article Related Publications
Evidence has shown that microRNAs (miRNAs) are vital in cell growth, migration, and invasion by inhibiting their target genes. A previous study demonstrated that miRNA (miR)-155‑3p and miR‑155-5p exerted opposite effects on cell proliferation, apoptosis, migration and invasion in breast cancer cell lines. An miRNA microarray was used to show that miR‑155‑3p was downregulated whereas miR‑155-5p was upregulated in paclitaxel-resistant (PR) cells compared with parental breast cancer cells. However, the role of miR‑155 in breast cancer cell invasion and metastasis remains to be elucidated. A 21-residue peptide derived from the viral macrophage inflammatory protein II (NT21MP), competes with the ligand of CXC chemokine receptor 4 (CXCR4) and its ligand stromal cell-derived factor-1α, inducing cell apoptosis in breast cancer. The present study aimed to identify the underlying mechanism of action of miR‑155‑3p/5p and NT21MP in PR breast cancer cells. Quantitative polymerase chain reaction, western blotting, wound-healing, cell cycle and apoptosis assays, and Cell Counting kit-8 assay were used to achieve this goal. The combined overexpression of miR‑155‑3p with NT21MP decreased the migration and invasion ability and increased the number of apoptotic and arrested cells in the G0/G1 phase transition in vitro. The knockdown of miR‑155-5p combined with NT21MP had a similar effect on PR breast cancer cells. Furthermore, the ectopic expression of their target gene myeloid differentiation primary response gene 88 (MYD88) or tumor protein 53-induced nuclear protein 1 (TP53INP1) combined with NT21MP enhanced the sensitivity of the breast cancer cells to paclitaxel. Taken together, these findings suggested that miR‑155‑3p/5p and their target genes MYD88 and TP53INP1 may serve as novel biomarkers for NT21MP therapy through the CXCR4 pathway for improving sensitivity to paclitaxel in breast cancer.

Li L, Shemetov AA, Baloban M, et al.
Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo.
Nat Commun. 2018; 9(1):2734 [PubMed] Free Access to Full Article Related Publications
Photoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast. We have imaged both DrBphP-PCM and RpBphP1 simultaneously on the basis of their unique signal decay characteristics, using a reversibly switchable single-impulse panoramic PACT (RS-SIP-PACT) with a single wavelength excitation. The simple structural organization of DrBphP-PCM allows engineering a bimolecular PA complementation reporter, a split version of DrBphP-PCM, termed DrSplit. DrSplit enables PA detection of protein-protein interactions in deep-seated mouse tumors and livers, achieving 125-µm spatial resolution and 530-cell sensitivity in vivo. The combination of RS-SIP-PACT with DrBphP-PCM and DrSplit holds great potential for noninvasive multi-contrast deep-tissue functional imaging.

de Albuquerque Oliveira AC, Kappes F, Martins DBG, de Lima Filho JL
The unique DEK oncoprotein in women's health: A potential novel biomarker.
Biomed Pharmacother. 2018; 106:142-148 [PubMed] Related Publications
Breast and cervical cancer are the first and fourth cancer types with the highest prevalence in women, respectively. The developmental profiles of cancer in women can vary by genetic markers and cellular events. In turn, age and lifestyle influence in the cellular response and also on the cancer progression and relapse. The human DEK protein, a histone chaperone, belongs to a specific subclass of chromatin topology modulators, being involved in the regulation of DNA-dependent processes. These epigenetic mechanisms have dynamic and reversible nature, have been proposed as targets for different treatment approaches, especially in tumor therapy. The expression patterns of DEK vary between healthy and cancer cells. High expression of DEK is associated with poor prognosis in many cancer types, suggesting that DEK takes part in oncogenic activities via different molecular pathways, including inhibition of senescence and apoptosis. The focus of this review was to highlight the role of the DEK protein in these two female cancers.

Feng S, Zhou Q, Yang B, et al.
The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells.
PLoS One. 2018; 13(3):e0192208 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Calcyclin Binding Protein/(Siah-1 interacting protein) (CacyBP/SIP) acts as an oncogene in colorectal cancer. The nuclear accumulation of CacyBP/SIP has been linked to the proliferation of cancer cells. It has been reported that intracellular Ca2+ induces the nuclear translocation of CacyBP/SIP. However, the molecular mechanism of CacyBP/SIP nuclear translocation has yet to be elucidated. The purpose of this study was to test whether the Ca2+-dependent binding partner S100 protein is involved in CacyBP/SIP nuclear translocation in colon cancer SW480 cells.
METHODS: The subcellular localization of endogenous CacyBP/SIP was observed following the stimulation of ionomycin or BAPTA/AM by immunofluorescence staining in SW480 cells. S100A6 small interfering RNAs (siRNA) were transfected into SW480 cells. Immunoprecipitation assays detected whether S100 protein is relevant to the nuclear translocation of CacyBP/SIP in response to changes in [Ca2+]i.
RESULTS: We observed that endogenous CacyBP/SIP is translocated from the cytosol to the nucleus following the elevation of [Ca2+]i by ionomycin in SW480 cells. Co-immunoprecipitation experiments showed that the interaction between S100A6 and CacyBP/SIP was increased simultaneously with elevated Ca2+. Knockdown of S100A6 abolished the Ca2+ effect on the subcellular translocation of CacyBP/SIP.
CONCLUSION: Thus, we demonstrated that S100A6 is required for the Ca2+-dependent nuclear translocation of CacyBP/SIP in colon cancer SW480 cells.

Torrebadell M, Díaz-Beyá M, Kalko SG, et al.
A 4-gene expression prognostic signature might guide post-remission therapy in patients with intermediate-risk cytogenetic acute myeloid leukemia.
Leuk Lymphoma. 2018; 59(10):2394-2404 [PubMed] Related Publications
In intermediate-risk cytogenetic acute myeloid leukemia (IRC-AML) patients, novel biomarkers to guide post-remission therapy are needed. We analyzed with high-density arrays 40 IRC-AML patients who received a non-allogeneic hematopoietic stem-cell transplantation-based post-remission therapy, and identified a signature that correlated with early relapse. Subsequently, we analyzed selected 187 genes in 49 additional IRC-AML patients by RT-PCR. BAALC, MN1, SPARC and HOPX overexpression correlated to refractoriness. BAALC or ALDH2 overexpression correlated to shorter overall survival (OS) (5-year OS: 33 ± 8.6% vs. 73.7 ± 10.1%, p = .006; 32 ± 9.3% vs. 66.4 ± 9.7%, p = .016), whereas GPR44 or TP53INP1 overexpression correlated to longer survival (5-year OS: 66.7 ± 10.3% vs. 35.4 ± 9.1%, p = .04; 58.3 ± 8.2% vs. 23.1 ± 11.7%, p = .029). A risk-score combining these four genes expression distinguished low-risk and high-risk patients (5-year OS: 79 ± 9% vs. 30 ± 8%, respectively; p = .001) in our cohort and in an independent set of patients from a public repository. Our 4-gene signature may add prognostic information and guide post-remission treatment in IRC-AML patients.

Weng W, Liu N, Toiyama Y, et al.
Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer.
Mol Cancer. 2018; 17(1):16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Emerging evidence suggests that PIWI-interacting RNAs (piRNAs) may be important epigenetic regulators of gene expression in human cancers; however, their functional and clinical significance in colorectal cancer (CRC) remains unknown.
METHODS: We performed piRNA expression profiling in paired cancer and normal tissues through small RNA-sequencing. The clinical significance of candidate piRNAs was investigated, and independently validated in 771 CRC patients from three independent cohorts. The biological function of piRNAs was characterized in cell lines, followed by identification and validation of downstream target genes in CRC tissues.
RESULTS: We identified piR-1245 as a novel and frequently overexpressed noncoding RNA in CRC, and its expression significantly correlated with advanced and metastatic disease. Patients with high piR-1245 expression experienced significantly shorter overall survival, and multivariate analysis identified its expression to serve as an independent prognostic biomarker in CRC. Functionally, piR-1245 acts as an oncogene and promotes tumor progression, and gene expression profiling results identified a panel of downstream target-genes involved in regulating cell survival pathway. Based upon piRNA:mRNA sequence complementarity, we identified a panel of tumor suppressor genes (ATF3, BTG1, DUSP1, FAS,NFKBIA, UPP1, SESN2, TP53INP1 and MDX1) as direct targets of piR-1245, and successfully validated an inverse correlation between their expression and piR-1245 in CRC.
CONCLUSIONS: We for the first time have identified the role for a PIWI-interacting noncoding RNA, piR-1245, as a novel oncogene and a potential prognostic biomarker in colorectal cancer.

Yu SJ, Yang L, Hong Q, et al.
MicroRNA-200a confers chemoresistance by antagonizing TP53INP1 and YAP1 in human breast cancer.
BMC Cancer. 2018; 18(1):74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Emerging evidence suggests molecular and phenotypic association between treatment resistance and epithelial-mesenchymal transition (EMT) in cancer. Compared with the well-defined molecular events of miR-200a in EMT, the role of miR-200a in therapy resistance remains to be elucidated.
METHODS: Breast cancer cells transfected with mimic or inhibitor for miR-200a was assayed for chemoresistance in vitro. miR-200a expression was assessed by quantitative real-time PCR (qRT-PCR) in breast cancer patients treated with preoperative chemotherapy. Luciferase assays, cell proliferation assay were performed to identify the targets of miR-200a and the mechanism by which it promotes treatment resistance. Survival analysis was used to evaluate the prognosis value of miR-200a.
RESULTS: In this study, our results showed ectopic expression of miR-200a promotes chemoresistance in breast cancer cell lines to several chemotherapeutic agents, whereas inhibition of miR-200a enhances gemcitabine chemosensitivity in resistance cancer cells. We found overexpression of miR-200a was closely associated with poor response to preoperative chemotherapy and poor prognosis in breast cancer patients. Furthermore, knockdown of YAP1 and TP53INP1 phenocopied the effects of miR-200a overexpression, and confirmed that TP53INP1 is a novel target of miR-200a. Remarkably, TP53INP1 expression is inversely correlated with miR-200a expression in Breast cancer cell lines. Taken together, these clinical and experimental results demonstrate that miR-200a is a determinant of chemoresistance of breast cancer.
CONCLUSIONS: Upregulated miR-200a enhances treatment resistance via antagonizing TP53INP1 and YAP1 in breast cancer.

Cifdaloz M, Osterloh L, Graña O, et al.
Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1.
Nat Commun. 2017; 8(1):2249 [PubMed] Free Access to Full Article Related Publications
Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.

McKenzie JA, Mbofung RM, Malu S, et al.
The Effect of Topoisomerase I Inhibitors on the Efficacy of T-Cell-Based Cancer Immunotherapy.
J Natl Cancer Inst. 2018; 110(7):777-786 [PubMed] Free Access to Full Article Related Publications
Background: Immunotherapy has increasingly become a staple in cancer treatment. However, substantial limitations in the durability of response highlight the need for more rational therapeutic combinations. The aim of this study is to investigate how to make tumor cells more sensitive to T-cell-based cancer immunotherapy.
Methods: Two pairs of melanoma patient-derived tumor cell lines and their autologous tumor-infiltrating lymphocytes were utilized in a high-throughput screen of 850 compounds to identify bioactive agents that could be used in combinatorial strategies to improve T-cell-mediated killing of tumor cells. RNAi, overexpression, and gene expression analyses were utilized to identify the mechanism underlying the effect of Topoisomerase I (Top1) inhibitors on T-cell-mediated killing. Using a syngeneic mouse model (n = 5 per group), the antitumor efficacy of the combination of a clinically relevant Top1 inhibitor, liposomal irinotecan (MM-398), with immune checkpoint inhibitors was also assessed. All statistical tests were two-sided.
Results: We found that Top1 inhibitors increased the sensitivity of patient-derived melanoma cell lines (n = 7) to T-cell-mediated cytotoxicity (P < .001, Dunnett's test). This enhancement is mediated by TP53INP1, whose overexpression increased the susceptibility of melanoma cell lines to T-cell cytotoxicity (2549 cell line: P = .009, unpaired t test), whereas its knockdown impeded T-cell killing of Top1 inhibitor-treated melanoma cells (2549 cell line: P < .001, unpaired t test). In vivo, greater tumor control was achieved with MM-398 in combination with α-PD-L1 or α-PD1 (P < .001, Tukey's test). Prolonged survival was also observed in tumor-bearing mice treated with MM-398 in combination with α-PD-L1 (P = .002, log-rank test) or α-PD1 (P = .008, log-rank test).
Conclusions: We demonstrated that Top1 inhibitors can improve the antitumor efficacy of cancer immunotherapy, thus providing the basis for developing novel strategies using Top1 inhibitors to augment the efficacy of immunotherapy.

Zheng L, Li X, Chou J, et al.
StarD13 3'-untranslated region functions as a ceRNA for TP53INP1 in prohibiting migration and invasion of breast cancer cells by regulating miR-125b activity.
Eur J Cell Biol. 2018; 97(1):23-31 [PubMed] Related Publications
Competitive endogenous messenger RNA (ceRNA) affects transcription of other RNA molecules by competitively binding common microRNAs. Previous studies have shown that TP53INP1 functions as a suppressor in tumor metastasis. Our study elucidated StarD13 messenger RNA as a ceRNA in regulating migration and invasion of breast cancer cells. MicroRNA-125b was identified to induce metastasis of MCF-7 cells and bind with both StarD13 3'UTR and TP53INP1 3'UTR. Therefore, a ceRNA interaction between StarD13 and TP53INP1 mediated by competitively binding to miR-125b was indicated. Importantly, a microRNA-125b binding site at 4546-4560 nt on StarD13 was verified more vital for this ceRNA interaction. Indirectly regulation of SPARC in inducing metastasis of breast cancer cells by StarD13 via competitively binding with TP53INP1 was further confirmed. In conclusion, our findings demonstrate a ceRNA regulatory network which could give a better understanding of metastatic mechanisms of breast cancer.

Cai Q, Zeng S, Dai X, et al.
miR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1.
Oncol Rep. 2017; 38(5):2993-3000 [PubMed] Related Publications
An increasing number of studies have demonstrated that microRNAs participate in the development of osteosarcoma by acting as tumour suppressor or tumour-promoting genes. We investigated the role of miR-504 in the growth and metastasis of osteosarcoma. The expression of miR-504 in clinical osteosarcoma samples was higher than that in the adjacent normal tissue and correlated with tumour size and clinical stage. Tumour protein p53-inducible nuclear protein 1 (TP53INP1) was downregulated in the clinical osteosarcoma samples compared with the adjacent normal tissues and was consistently correlated with the clinical stage. The results of dual-luciferase reporter assay and western blot analysis demonstrated that the TP53INP1 gene is a direct target of miR-504. Altogether, the Cell Counting Kit-8 (CCK-8), the colony formation, the flow cytometry and the Transwell assay results demonstrated that miR-504 promoted osteosarcoma cell growth and metastasis in vitro. P73, P21, Bax, cleaved-caspase-3 and secreted protein acidic and rich in cysteine (SPARC) were associated with the suppressive role of miR-504/TP53INP1. The overexpression of miR-504 in osteosarcoma xenografts enhanced the tumour growth and increased the metastatic burden. Collectively, these results revealed that TP53INP1 is a target gene of miR-504 and that miR-504 enhances osteosarcoma growth and promotes distant metastases by targeting TP53INP1. Thus, miR-504/TP53INP1 may be associated with osteosarcoma size and clinical stage.

Jiang W, Cheng Y, Zhao N, et al.
Sulfated polysaccharide of Sepiella Maindroni ink inhibits the migration, invasion and matrix metalloproteinase-2 expression through suppressing EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells.
Int J Biol Macromol. 2018; 107(Pt A):349-362 [PubMed] Related Publications
Previous studies demonstrated that SIP-SII, a sulfated derivative of SIP that is isolated from the ink of Sepiella maindroni, showed significant inhibition of tumor growth and metastasis. In this study, the effects of SIP-SII on the migration, invasion and molecular mechanism in ovarian cancer cell line, SKOV-3 cells, were investigated. The flow cytometry, confocal microscope observation, western blot and RT-PCR results indicated that SIP-SII located on cell membrane and inhibited the expression and activation of epidermal growth factor receptor (EGFR). Moreover, the binding capacity of SIP-SII with EGFR was confirmed by surface plasmon resonance (SPR) analysis and co-localization of EGFR and SIP-SII. Accordingly, SIP-SII was proved to attenuate the EGF-induced EGFR phosphorylation and migration by western blot and wound healing assay, respectively. Additionally, SIP-SII inhibited p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells significantly. What is more, SIP-SII showed amplified inhibitory activity on migration, invasion, and MMP-2 expression in combination with p38-specific inhibitor, PI3K-specific inhibitor or mTOR-specific inhibitor in SKOV-3 cells. Therefore, the mechanism that SIP-SII suppressed EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways to inhibit migration and invasion of SKOV-3 cells was demonstrated. These findings suggested that SIP-SII might be used as a potential inhibitor against tumor metastasis.

Jiang W, Tian W, Ijaz M, Wang F
Inhibition of EGF-induced migration and invasion by sulfated polysaccharide of Sepiella maindroni ink via the suppression of EGFR/Akt/p38 MAPK/MMP-2 signaling pathway in KB cells.
Biomed Pharmacother. 2017; 95:95-102 [PubMed] Related Publications
SIP-SII, the sulfated Sepiella maindroni ink polysaccharide (SIP), has been manifested to possess anti-tumor and anti-metastasis activity in vivo and in vitro. In the present study, we evaluated its inhibitory effect on the epidermal growth factor (EGF)-induced migration and invasion of human epidermoid carcinoma cell (KB cell line) as well as the related signaling pathways. The results of MTT assay indicated that SIP-SII inhibited the proliferation of KB cells in a concentration and time dependent manner. Notably, the attenuation of cell growth by SIP-SII was enlarged in the presence of EGF. The wound healing assay and transwell invasion assay were used to evaluate the effect of SIP-SII on the EGF-induced migration and invasion of KB cells and the results showed that SIP-SII markedly attenuated the EGF-induced migration and invasion. Besides, the EGF-induced matrix metalloproteinase-2 (MMP-2) expression was also suppressed by SIP-SII. However, SIP-SII showed no significant inhibition of the EGF-induced matrix metalloproteinase-9 (MMP-9) expression. Further research revealed that SIP-SII decreased the EGF-induced phosphorylation of epidermal growth factor receptor (EGFR), Akt and p38, but no significant suppression on EGF-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) and c-Jun N-terminal kinases (JNK) by SIP-SII treatment was observed. The involvement of EGFR/Akt/p38 pathway was confirmed by evidence that SIP-SII would enlarge the inhibitory effect of the specific signal pathway inhibitors. These results indicate that SIP-SII has the potential to be used as the inhibitor of tumor metastasis especially for cancers characterized by over-activation of EGF/EGFR signaling.

Zheng T, Wang A, Hu D, Wang Y
Molecular mechanisms of breast cancer metastasis by gene expression profile analysis.
Mol Med Rep. 2017; 16(4):4671-4677 [PubMed] Free Access to Full Article Related Publications
Metastasis is the main cause of breast cancer‑related mortalities. The present study aimed to uncover the relevant molecular mechanisms of breast cancer metastasis and to explore potential biomarkers that may be used for prognosis. Expression profile microarray data GSE8977, which contained 22 stroma samples (15 were from normal breast and 7 were from invasive ductal carcinoma tumor samples), were obtained from the Gene Expression Omnibus database. Following data preprocessing, differentially expressed genes (DEGs) were selected based on analyses conducted using the linear models for microarray analysis package from R and Bioconductor software. The resulting data were used in subsequent function and pathway enrichment analyses, as well as protein‑protein interaction (PPI) network and subnetwork analyses. Transcription factors (TFs) and tumor‑associated genes were also identified among the DEGs. A total of 234 DEGs were identified, which were enriched in immune response, cell differentiation and cell adhesion‑related functions and pathways. Downregulated DEGs included TFs, such as the proto‑oncogene SPI1, pre‑B‑cell leukemia homeobox 3 (PBX3) and lymphoid enhancer‑binding factor 1 (LEF1), as well as tumor suppressors (TSs), such as capping actin protein, gelsolin like (CAPG) and tumor protein p53‑inducible nuclear protein 1 (TP53INP1). Upregulated DEGs also included TFs and tumor suppressors, consisting of transcription factor 7‑like 2 (TCF7L2) and pleiomorphic adenoma gene‑like 1 (PLAGL1). DEGs that were identified at the hub nodes in the PPI network and the subnetwork were epidermal growth factor receptor (EGFR) and spleen‑associated tyrosine kinase (SYK), respectively. Several genes crucial in the metastasis of breast cancer were identified, which may serve as potential biomarkers, many of which were associated with cell adhesion, proliferation or immune response, and may influence breast cancer metastasis by regulating these function or pathways.

Sarin N, Engel F, Kalayda GV, et al.
Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.
PLoS One. 2017; 12(7):e0181081 [PubMed] Free Access to Full Article Related Publications
The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

Ng KY, Chan LH, Chai S, et al.
TP53INP1 Downregulation Activates a p73-Dependent DUSP10/ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma.
Cancer Res. 2017; 77(17):4602-4612 [PubMed] Related Publications
Identifying critical factors involved in the metastatic progression of hepatocellular carcinoma (HCC) may offer important therapeutic opportunities. Here, we report that the proapoptotic stress response factor TP53INP1 is often selectively downregulated in advanced stage IV and metastatic human HCC tumors. Mechanistic investigations revealed that TP53INP1 downregulation in early-stage HCC cells promoted metastasis via DUSP10 phosphatase-mediated activation of the ERK pathway. The DUSP10 promoter included putative binding sites for p73 directly implicated in modulation by TP53INP1. Overall, our findings show how TP53INP1 plays a critical role in limiting the progression of early-stage HCC, with implications for developing new therapeutic strategies to attack metastatic HCC.

West AC, Tang K, Tye H, et al.
Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer.
Oncogene. 2017; 36(36):5134-5144 [PubMed] Related Publications
Toll-like receptors (TLRs) are key regulators of innate immune responses, and their dysregulation is observed in numerous inflammation-associated malignancies, including gastric cancer (GC). However, the identity of specific TLRs and their molecular targets which promote the pathogenesis of human GC is ill-defined. Here, we sought to determine the clinical utility of TLR2 in human GC. TLR2 mRNA and protein expression levels were elevated in >50% of GC patient tumors across multiple ethnicities. TLR2 was also widely expressed among human GC cell lines, and DNA microarray-based expression profiling demonstrated that the TLR2-induced growth responsiveness of human GC cells corresponded with the up-regulation of six anti-apoptotic (BCL2A1, BCL2, BIRC3, CFLAR, IER3, TNFAIP3) and down-regulation of two tumor suppressor (PDCD4, TP53INP1) genes. The TLR2-mediated regulation of these anti-apoptotic and tumor suppressor genes was also supported by their increased and reduced expression, respectively, in two independent genetic GC mouse models (gp130

Qin X, Kuang H, Chen L, et al.
Coexpression of growth differentiation factor 11 and reactive oxygen species in metastatic oral cancer and its role in inducing the epithelial to mesenchymal transition.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2017; 123(6):697-706 [PubMed] Related Publications
OBJECTIVES: The aim of this study was to investigate growth differentiation factor 11 (GDF11) and reactive oxygen species (ROS) expression in metastatic oral cancer and explored their roles in inducing epithelial to mesenchymal transition (EMT).
STUDY DESIGN: The expression of GDF11, ROS, and EMT-related markers was evaluated in primary tumor tissues from patients with oral squamous cell carcinoma (OSCC). SCC-9 cells, a human tongue carcinoma cell line, were treated with recombinant GDF11. Induction of EMT, expression of EMT-related markers, and the effect of ROS on EMT in SCC-9 cells were analyzed.
RESULTS: Overexpression of GDF11 and ROS was observed in patients with metastatic oral cancer. Downregulated expression of E-cadherin and upregulated expression of vimentin, δ-EF1, SIP-1, MMP-2, and MMP-9 were observed in patients with metastatic oral cancer, relative to the expression of these factors in patients with nonmetastatic oral cancer. With recombinant GDF11 treatment, obvious spindle-shaped cells appeared, and gene expressions of EMT-related markers were altered in SCC-9 cells. Treatment with the powerful antioxidant N-acetylcysteine inhibited GDF11-induced EMT and cell migration.
CONCLUSIONS: GDF11 induces EMT and cell migration with ROS involvement in SCC-9 cells. Overexpression of GDF11 and ROS is associated with metastatic oral cancer. GDF11 and ROS may participate in metastasis of oral cancer through EMT.

Margolin-Miller Y, Yanichkin N, Shichrur K, et al.
Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma.
Genes Chromosomes Cancer. 2017; 56(8):639-650 [PubMed] Related Publications
Ependymoma is a malignant pediatric brain tumor, often incurable under the current treatment regimen. We aimed to evaluate the expression of microRNAs (miRs) in pediatric ependymoma tumors in an attempt to identify prognostic molecular markers which would lead to potential therapeutic targets. Following miR-array expression analysis, we focused on 9 miRs that correlated with relapse which were further validated by quantitative real-time PCR (qRT-PCR) in a cohort of 67 patients. Western blotting and immunohistochemistry were used to measure target protein expression in 20 and 34 tumor samples, respectively. High expression of miR-124-3p significantly correlated with the lower progression-free survival (PFS) of 16% compared to 67% in those expressing low levels (P = .002). Interestingly, in the group of patients with local disease (n = 56) expression levels of this miR distinguished 2 subgroups with a significantly different outcome (P = .001). miR-124-3p was identified as an independent prognostic factor of relapse in the multivariate analysis performed in the whole cohort and in the group with localized disease. In the localized group, a patient expressing high levels of miR-124-3p had a 4.1-fold increased risk for relapse (P = .005). We demonstrated the direct binding of miR-124-3p to its target TP53INP1. Negative TP53INP1 protein levels correlated with a poor outcome (P = .034). We propose miR-124-3p and TP53INP1 as new biomarkers for prognostic stratification that may be possible therapeutic targets for ependymoma.

Liu Y, Song L, Ni H, et al.
ERBB4 acts as a suppressor in the development of hepatocellular carcinoma.
Carcinogenesis. 2017; 38(4):465-473 [PubMed] Related Publications
ERBB4, one member of the epidermal growth factor receptor (EGFR) family, plays a key role in physiological and pathological processes. Recently, we identified that ERBB4 played a protective role from chronic hepatitis B virus infection. However, the role of ERBB4 in hepatocellular carcinoma (HCC) is still unclear. Here, we explore the role of ERBB4 in the development of HCC using in vitro models, in vivo animal models and clinical samples of HCC. Liver-specific ERBB4 knockout alleles and full ERBB4 except heart knockout mice were used in this study. Liver inflammation and tumor models of mice were produced by carbon tetrachloride (CCl4) and diethylnitrosamine (DEN) administration, respectively. Commercial tissue arrays of 90 HCC patients with paired counterparts were used to evaluate the expression and the prognostic value of ERBB4. Genes altered in the setting of ERBB4 loss was studied by microarray analysis and further validated by real-time PCR. We have found that depletion of ERBB4 in mice leads to more severe injury and liver tumor formation and loss of ERBB4 contributes to the development of hepatocellular tumor. In clinic samples of HCC, ERBB4 is down-regulated and exhibit prognostic value of HCC patients. Mechanistically, loss of ERBB4 suppressed p53 expression by inhibiting the expression of the tumor suppressor tp53inp1. Our study uncovers ERBB4 as a suppressor in the development of HCC and implies an ERBB4-TP53INP1-P53 axis in HCC.

Zhai H, Shi Y, Chen X, et al.
CacyBP/SIP promotes the proliferation of colon cancer cells.
PLoS One. 2017; 12(2):e0169959 [PubMed] Free Access to Full Article Related Publications
CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

Lagunas-Martínez A, García-Villa E, Arellano-Gaytán M, et al.
MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.
Apoptosis. 2017; 22(1):27-40 [PubMed] Related Publications
The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

Huang M, Zhong Z, Lv M, et al.
Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma.
Oncotarget. 2016; 7(30):47186-47200 [PubMed] Free Access to Full Article Related Publications
Accumulating evidences indicate that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play important roles in tumorigenesis. However, the mechanisms remain largely unknown. To explore lncRNAs and circRNAs expression profiling and their biological functions in bladder cancer, we surveyed the lncRNA/circRNA and mRNA expression profiles of bladder cancer and para-cancer tissues using microarray for four patients. Thousands of significantly changed lncRNAs and mRNAs as well as hundreds of circRNAs were identified. Five dysregulated lncRNAs and four mRNAs were confirmed by quantitative real-time PCR in 30 pairs of samples. GO and KEGG pathway enrichment analyses were executed to determine the principal functions of the significantly deregulated genes. Further more, we constructed correlated expression networks including coding-noncoding co-expression (CNC), competing endogenous RNAs (ceRNA), cis regulation, lncRNAs-transcription factor (TF)-mRNA with bioinformatics methods. Co-expression analysis showed lncRNA APLP2 expression is correlated with apoptosis-related genes, including PTEN and TP53INP1. CeRNA network inferred that lncRNA H19 and circRNA MYLK could bind competitively with miRNA-29a-3p increasing target gene DNMT3B, VEGFA and ITGB1 expressions. Moreover, the nearby genes pattern displayed that overexpressing ADAM2 and C8orf4 are cis-regulated by lncRNA RP11-359E19.2, involving in progression of bladder cancer. In addition, lncRNAs-TF-mRNA diagram indicated that lncRNA BC041488 could trans-regulate CDK1 mRNA expression through SRF transcription factor. Taken together, these results suggested lncRNAs and circRNAs could implicate in the pathogenesis and development of bladder cancer. Our findings provide a novel perspective on lncRNAs and circRNAs and lay the foundation for future research of potential roles of lncRNAs and circRNAs in bladder carcinoma.

Wang Y, Lin G
TP53INP1 3'-UTR functions as a ceRNA in repressing the metastasis of glioma cells by regulating miRNA activity.
Biotechnol Lett. 2016; 38(10):1699-707 [PubMed] Related Publications
OBJECTIVES: To explore the effects of the competitive endogenous RNA (ceRNA) network between TP53INP1 and E-cadherin on the invasion and migration of glioma.
RESULTS: TP53INP1 and E-cadherin mRNA and protein were significantly overexpressed in normal brain tissues compared with glioma tissue specimens and correlated with the grades of glioma negatively. The expression of TP53INP1 and E-cadherin were correlated positively. Patients with higher TP53INP1 or E-cadherin expression had longer overall survival. Moreover, TP53INP1 3'-UTR inhibited glioma cell proliferation, invasion and proliferation; Furthermore, the 3'-UTRs of TP53INP1 and E-cadherin harboured seven identical miRNAs binding sites, and TP53INP1 3'-UTR could increase the expression of E-cadherin and decrease the expression of vimentin thus repressing the epithelial-mesenchymal transition (EMT). However, the coding sequence of TP53INP1 could not increase the expression of E-cadherin and the inhibitory effect on EMT of TP53INP1 3'-UTR was reversed by the siRNA against Dicer.
CONCLUSIONS: TP53INP1 3'-UTR could inhibit the EMT, thus hindering the migration and invasion of glioma via acting as a ceRNA for E-cadherin.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TP53INP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999