MYD88

Gene Summary

Gene:MYD88; MYD88 innate immune signal transduction adaptor
Aliases: MYD88D
Location:3p22.2
Summary:This gene encodes a cytosolic adapter protein that plays a central role in the innate and adaptive immune response. This protein functions as an essential signal transducer in the interleukin-1 and Toll-like receptor signaling pathways. These pathways regulate that activation of numerous proinflammatory genes. The encoded protein consists of an N-terminal death domain and a C-terminal Toll-interleukin1 receptor domain. Patients with defects in this gene have an increased susceptibility to pyogenic bacterial infections. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:myeloid differentiation primary response protein MyD88
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (45)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MYD88 (cancer-related)

Liu S, Han Z, Trivett AL, et al.
Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma.
Cancer Immunol Immunother. 2019; 68(7):1059-1071 [PubMed] Free Access to Full Article Related Publications
Lung cancer is currently the leading cause of cancer-related mortality with very limited effective therapy. Screening of a variety of traditional Chinese medicines (TCMs) for their capacity to inhibit the proliferation of human lung cancer A549 cells and to induce the in vitro maturation of human DCs led to the identification of cryptotanshinone (CT), a compound purified from the TCM Salvia miltiorrhiza Bunge. Here, CT was shown to inhibit the proliferation of mouse Lewis lung carcinoma (LLC) cells by upregulating p53, downregulating cyclin B1 and Cdc2, and, consequently, inducing G2/M cell-cycle arrest of LLC cells. In addition, CT promoted maturation of mouse and human DCs with upregulation of costimulatory and MHC molecules and stimulated DCs to produce TNFα, IL-1β, and IL-12p70, but not IL-10 in vitro. CT-induced maturation of DCs depended on MyD88 and also involved the activation of NF-κB, p38, and JNK. CT was effective in the treatment of LLC tumors and, when used in combination with low doses of anti-PD-L1, cured LLC-bearing mice with the induction of subsequent anti-LLC long-term specific immunity. CT treatment promoted T-cell infiltration and elevated the expression of genes typical of Th1 polarization in LLC tumor tissue. The therapeutic effect of CT and low doses of anti-PD-L1 was reduced by depletion of CD4 and CD8 T cells. This paper provides the first report that CT induces immunological antitumor activities and may provide a new promising antitumor immunotherapeutic.

Zhang L, Chen T, Yan L, et al.
MiR-155-3p acts as a tumor suppressor and reverses paclitaxel resistance via negative regulation of MYD88 in human breast cancer.
Gene. 2019; 700:85-95 [PubMed] Related Publications
MiR-155-3p, which is derived from the same pre-miRNA as miR-155-5p, the latter has been reported to be dysregulated in multiple tumor tissues and associated with clinicopathologic markers, tumor subtypes, and poor survival rates. However, the biological effects of miR-155-3p are rarely explored. In this study, we find that miR-155-3p was down-regulated in breast cancer and MYD88 was validated as the target for miR-155-3p. Moreover, miR-155-3p showed a negative effect on apoptosis, invasion and metastasis, reverses paclitaxel resistance by suppression of the corresponding target gene MYD88 in vitro and in vivo experiments. Taking together, our studies suggest that miR-155-3p, which serve as a negative regulatory mechanism for breast cancer development. The mechanism further complicates the regulatory network in human breast cancer.

Daniele G, L'Abbate A, Turchiano A, et al.
1q23.1 homozygous deletion and downregulation of Fc receptor-like family genes confer poor prognosis in chronic lymphocytic leukemia.
Clin Exp Med. 2019; 19(2):261-267 [PubMed] Related Publications
The identification of chromosome 1 translocations and deletions is a rare and poorly investigated event in chronic lymphocytic leukemia (CLL). Nevertheless, the identification of novel additional molecular alterations is of great interest, opening to new prognostic and therapeutic strategies for such heterogeneous hematological disease. We here describe a patient affected by CLL with a mutated IGHV status, showing a balanced t(1;3)(q23.1;q21.3) translocation and a der(18)t(1;18)(q24.2;p11.32), accompanying the recurrent 13q14 heterozygous deletion in all analyzed cells at onset. By combining whole-genome sequencing, SNP array, RNA sequencing, and FISH analyses, we defined a 1q23.1 biallelic minimally deleted region flanking translocations breakpoints at both derivative chromosome 1 homologues. The deletion resulted in the downregulation of the Fc receptor-like family genes FCRL1, FCRL2, and FCRL3 and in the lack of expression of FCRL5, observed by RT-qPCR. The mutational status of TP53, NOTCH1, SF3B1, MYD88, FBXW7, and XPO1 was investigated by targeted next-generation sequencing, detecting a frameshift deletion within NOTCH1 (c.7544_7545delCT). We hypothesize a loss of tumor suppressor function for FCRL genes, cooperating with NOTCH1 mutation and 13q14 genomic loss in our patient, both conferring a negative prognosis, independently from the known biological prognostic factors of CLL.

Stuhlmann-Laeisz C, Schönland SO, Hegenbart U, et al.
AL amyloidosis with a localized B cell neoplasia.
Virchows Arch. 2019; 474(3):353-363 [PubMed] Related Publications
Immunoglobulin light chain-derived (AL) amyloidosis may occur as a systemic disease usually with dismal prognosis and a localized variant with favorable outcome. We report 29 patients with AL amyloidosis and associated lymphoplasmacytic infiltrate spatially related to amyloid deposits. In 17 cases, the amyloid deposits were classified as ALλ and 12 as ALκ Histopathology in all cases showed relatively sparse plasma cells and B cells without tumor or sheet formation by the lymphoplasmacytic infiltrate. The B cells predominantly showed an immunophenotype of the marginal zone. In situ, hybridization revealed 17 cases with λ- and 10 with κ light chain restricted plasma cells, which was concordant with the AL subtype in each case. Clonal immunoglobulin heavy variable gene (IGHV) or κ light chain rearrangement was found in 23/29 interpretable cases. A single case harbored a MYD88

DE Moura CFG, Soares GR, Ribeiro FAP, et al.
Evaluation of the Chemopreventive Activity of Grape Skin Extract Using Medium-term Oral Carcinogenesis Assay Induced by 4-Nitroquinoline 1-Oxide.
Anticancer Res. 2019; 39(1):177-182 [PubMed] Related Publications
BACKGROUND/AIM: The aim of this study was to evaluate the chemoprotective potential of grape skin extract following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide (4NQO).
MATERIALS AND METHODS: Male Wistar rats were distributed into four groups (n=5, per group): Control Group: free access to commercial diet and drinking water for 12 weeks; 4NQO Group: received 4NQO diluted in drinking water daily, for 12 weeks; Grape Skin Extract Group: free access to water and received grape skin extract incorporated with diet for 12 weeks; 4NQO + Grape Skin Extract Group: received 4NQO in drinking water daily and grape extract incorporated with diet for 12 weeks.
RESULTS: Animals treated with grape skin extract revealed a significant reduction in epithelial dysplasia. Also, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and ki-67 immunoexpression was reduced in animals treated with grape skin extract. Western blot analysis showed a significant decrease of p-NFκB p50 and MyD88 protein expression in the groups treated with grape skin extract. Copper-zinc superoxide dismutase, manganese superoxide dismutase, and catalase gene expression did not present any statistically significant differences (p>0.05).
CONCLUSION: Grape skin extract displayed chemopreventive activity in oral carcinogenesis assays as depicted by its antioxidant, anti-proliferative and anti-inflammatory properties.

Sodroski C, Lowey B, Hertz L, et al.
MicroRNA-135a Modulates Hepatitis C Virus Genome Replication through Downregulation of Host Antiviral Factors.
Virol Sin. 2019; 34(2):197-210 [PubMed] Free Access to Full Article Related Publications
Cellular microRNAs (miRNAs) have been shown to modulate HCV infection via directly acting on the viral genome or indirectly through targeting the virus-associated host factors. Recently we generated a comprehensive map of HCV-miRNA interactions through genome-wide miRNA functional screens and transcriptomics analyses. Many previously unappreciated cellular miRNAs were identified to be involved in HCV infection, including miR-135a, a human cancer-related miRNA. In the present study, we investigated the role of miR-135a in regulating HCV life cycle and showed that it preferentially enhances viral genome replication. Bioinformatics-based integrative analyses and subsequent functional assays revealed three antiviral host factors, including receptor interacting serine/threonine kinase 2 (RIPK2), myeloid differentiation primary response 88 (MYD88), and C-X-C motif chemokine ligand 12 (CXCL12), as bona fide targets of miR-135a. These genes have been shown to inhibit HCV infection at the RNA replication stage. Our data demonstrated that repression of key host restriction factors mediated the proviral effect of miR-135a on HCV propagation. In addition, miR-135a hepatic abundance is upregulated by HCV infection in both cultured hepatocytes and human liver, likely mediating a more favorable environment for viral replication and possibly contributing to HCV-induced liver malignancy. These results provide novel insights into HCV-host interactions and unveil molecular pathways linking miRNA biology to HCV pathogenesis.

Yonese I, Takase H, Yoshimori M, et al.
CD79B mutations in primary vitreoretinal lymphoma: Diagnostic and prognostic potential.
Eur J Haematol. 2019; 102(2):191-196 [PubMed] Related Publications
OBJECTIVE: Primary vitreoretinal lymphoma (PVRL) is a rare type of lymphoma wherein the lesions are limited to the eyes. PVRL is difficult to diagnose because of the challenges related to obtaining sufficient samples for biopsy. Moreover, PVRL has poor outcomes and often leads to the development of central nervous system (CNS) lesions during its course. Two studies recently reported that approximately 70%-80% of patients with vitreoretinal lymphoma have MYD88
METHOD: By using direct sequencing and allele-specific polymerase chain reaction, we examined the mutation of CD79B
RESULTS: Among the included patients, six patients (35%) were found with CD79B
CONCLUSION: Detecting CD79B

Hallas C, Preukschas M, Tiemann M
Immunohistochemical distinction of ABC and GCB in extranodal DLBCL is not reflected in mutation patterns.
Leuk Res. 2019; 76:107-111 [PubMed] Related Publications
Gene expression profiling (GEP) separated diffuse large B-cell lymphoma (DLBCL) in two different entities, i.e. activated B cell-like (ABC) and germinal center B cell-like (GCB) lymphomas with ABC lymphomas demonstrating a less favorable outcome. NF-kB pathway activating mutations in MYD88, CD79A/B and CARD11 are predominantly found in ABC type lymphomas. Targeted therapies affecting NF-kB pathways have shown therapeutic potential in this subtype. Immunohistochemistry algorithms have been developed as a tool for distinguishing these entities in routine clinical diagnostics. To test whether this immunohistochemistry classifier would detect the biological differences between the entities 147 DLBCLs were subtyped into ABC and GCB using the Visco-Young algorithm. Mutation analysis demonstrated mutations in MYD88 or CD79 A/B in 21% (10/47) of non-GCB type but only in 3% (1/31) of GCB lymphomas (p = 0.012) in nodal lymphomas. In primary extra nodal lymphomas, however, 17.5% (4/23) of GCB type and 37.5% (15/40) of non-GCB lymphomas carried mutations in MYD88 and CD79 A/B. While the Visco-Young algorithm was sufficient to detect biological differences (i.e. mutation patterns) in nodal DLBCL it did not distinguish GCB and non-GCB type lymphomas of primary extranodal sites. Here, the morphological sites of the lymphomas seem to be more important for their molecular pattern than their immunohistochemical status.

Devan J, Janikova A, Mraz M
New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs.
Semin Oncol. 2018; 45(5-6):291-302 [PubMed] Related Publications
The molecular pathogenesis of follicular lymphoma (FL) was partially revealed 3 decades ago, with the discovery of the translocation that brings BCL2 under the influence of immunoglobulin heavy chain enhancers in a vast majority of cases. Despite the importance of this seminal observation, it has become increasingly clear that additional genetic alterations need to occur to trigger neoplastic transformation and disease progression. The evolution of FL involves developmental arrest and disruption of the normal function of one or more of epigenetic regulators including KMT2D/MLL2, EZH2, CBP/CREBBP, p300/EP300, and HIST1H1 in >95% of cases. B-cells "arrested" in germinal centers acquire dozens of additional genetic aberrations that influence key pathways controlling their physiological development including B Cell Receptor (BCR) signaling, PI3K/AKT, TLR, mTOR, NF-κB, JAK/STAT, MAPK, CD40/CD40L, chemokine, and interleukin signaling. Additionally, most cases of FL do not result from linear accumulation of genomic aberrations, but rather evolve from a common progenitor cell population by diverse evolution, creating multiple FL subclones in one patient. Moreover, one of the subclones might acquire a combination of aberrations involving genes controlling cell survival and proliferation including MDM2, CDKN2A/B, BCL6, MYC, TP53, β2M, FOXO1, MYD88, STAT3, or miR-17-92, and this can lead to the transformation of an initially indolent FL to an aggressive lymphoma (2%-3% risk per year). The complexity of the disease is also underscored by the importance of its interactions with the microenvironment that can substantially influence disease development and prognosis. Interpreting individual aberrations in relation to their impact on normal processes, their frequency, position in the disease evolution, and the consequences of their (co)occurrence, are the basis for understanding FL pathogenesis. This is necessary for the identification of patients with risk of early progression or transformation, for the development of novel targeted therapies, and for personalized treatment approaches. In this review, we summarize recent knowledge of molecular pathways and microenvironmental components involved in FL biology, and discuss them in the context of physiological B-cell development, FL evolution, and targeted therapies.

Hattori K, Sakata-Yanagimoto M, Kusakabe M, et al.
Genetic evidence implies that primary and relapsed tumors arise from common precursor cells in primary central nervous system lymphoma.
Cancer Sci. 2019; 110(1):401-407 [PubMed] Free Access to Full Article Related Publications
Primary central nervous system lymphoma (PCNSL) is a rare subtype of lymphoma that arises within the brain or the eyes. PCNSL recurs within the central nervous system (CNS) in most relapsed cases, whereas extra-CNS relapse is experienced in rare cases. The present study aimed at identifying the presence of common precursor cells (CPC) for primary intra- and relapsed extra-CNS tumors, and further assessing the initiating events in bone marrow (BM). Targeted deep sequencing was carried out for five paired primary intra- and relapsed extra-CNS tumors of PCNSL. Two to five mutations were shared by each pair of intra- and extra-CNS tumors. In particular, MYD88 mutations, L265P in three and P258L in one, were shared by four pairs. Unique somatic mutations were observed in all five intra-CNS tumors and in four out of five extra-CNS tumors. Remarkably, IgH clones in the intra- and the extra-CNS tumors in two pairs were distinct from each other, whereas one pair of tumors shared identical monoclonal IgH rearrangement. In a cohort of 23 PCNSL patients, L265P MYD88 mutations were examined in tumor-free BM mononuclear cells (MNC) in which the PCNSL tumors had L265P MYD88 mutations. L265P MYD88 mutations were detected by a droplet digital PCR method in nine out of 23 bone marrow mononuclear cells. These results suggest that intra- and extra-tumors are derived from CPC with MYD88 mutations in most PCNSL, arising either before or after IgH rearrangement. The initiating MYD88 mutations may occur during B-cell differentiation in BM.

Wenzl K, Manske MK, Sarangi V, et al.
Loss of TNFAIP3 enhances MYD88
Blood Cancer J. 2018; 8(10):97 [PubMed] Free Access to Full Article Related Publications
MYD88 mutations are one of the most recurrent mutations in hematologic malignancies. However, recent mouse models suggest that MYD88

Niu Z, Tang W, Liu T, et al.
Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer.
Acta Biochim Biophys Sin (Shanghai). 2018; 50(10):1007-1017 [PubMed] Related Publications
Circulating cell-free DNA (cfDNA) has become a potential diagnostic and prognostic biomarker for colorectal cancer (CRC). In non-cancerous diseases, it has been confirmed that cfDNA can be recognized by Toll-like receptor 9 (TLR9), leading to a significant biological change. Nevertheless, the biological significance of cfDNA and its relationship with TLR9 in tumor malignancy is still unclear. Therefore, the purpose of this study is to explore the biological role of cfDNA in colorectal cancer (CRC). The expression of TLR9 was measured in different CRC cell lines and cancerous samples by RT-PCR or immunohistochemistry, which showed that high expression of TLR9 was significantly correlated with the tumor metastasis, advanced TNM stage and poor prognosis of patients. Then, cfDNA was obtained from fluorouracil (5FU)-induced apoptotic cancer cells in vitro and transfection techniques were used to transfect siRNA and cDNA plasmid for TLR9. Cancer cells were stimulated using isolated cfDNA fragments, and results showed that cfDNA could promote colorectal cancer cell proliferation via TLR9. Meanwhile, we demonstrated that the cfDNA binding to TLR9 could facilitate cell migration and invasion. Finally, we demonstrated that cfDNA initiated downstream TLR9-MyD88 signaling and induced robust release of chemokine interleukin 8 (IL-8), which helped to elucidate the mechanisms underlying these phenomena. Our data suggest that cancer cell-derived cfDNA contributes to cancer progression through activation of TLR9-MyD88 signaling and IL-8 secretion in CRC. These findings provide a novel perspective for understanding of tumor progression and provoke a potential therapeutic target for CRC treatment.

Zhou Y, Liu W, Xu Z, et al.
Analysis of Genomic Alteration in Primary Central Nervous System Lymphoma and the Expression of Some Related Genes.
Neoplasia. 2018; 20(10):1059-1069 [PubMed] Free Access to Full Article Related Publications
Primary central nervous system lymphoma (PCNSL) is a rare and special type of non-Hodgkin lymphoma. The treatment of PCNSL is comprehensive, combining surgery, radiotherapy, and chemotherapy. However, the outcome is poor because of its high invasiveness and rate of recurrence. We analyzed 22 cases of PCNSL using next-generation sequencing (NGS) to detect 64 candidate genes. We used immunohistochemical methods to analyze gene expression in 57 PCNSL samples. NGS showed that recurrent mutations in KMT2D and CD79B, components of the NF-κB pathway, accounted for 65% of total mutations in PCNSL samples. The most frequent mutated gene was PIM1 (77.27%, 17/22), followed by MYD88 (63.64%, 14/22), CD79B (69.09%, 13/22), and KMT2D (50.00%, 11/22). Mutations of the CD79B gene were associated with an inferior progression-free survival (PFS), and GNA13 gene mutations were associated with a shorter PFS and overall survival (OS) in PCNSL patients (P < .05). PIM1 and MYD88 were highly expressed in PCNSL patients and were related to their OS time. MYD88 overexpression might be an independent and poor prognostic predictor of OS time. In summary, we identified highly recurrent genetic lesions in CD79B and KMT2D, components of the NF-κB pathway, in PCNSL and validated the expression of PIM1 and MYD88 related to poor survival, thereby providing novel insights into the pathogenesis and precision medicine of PCNSL.

Roos-Weil D, Nguyen-Khac F, Chevret S, et al.
Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: A retrospective study from the French Innovative Leukemia Organization (FILO) working group.
Genes Chromosomes Cancer. 2018; 57(11):533-540 [PubMed] Related Publications
Trisomy 12 (tri12) is the second most frequent chromosomal aberration (15%-20%) in chronic lymphocytic leukemia (CLL). Tri12 confers an intermediate prognosis but is a heterogeneous entity. We examined whether additional mutational or chromosomal alterations might impact tri12 patient outcomes. This retrospective study, carried out by the French Innovative Leukemia Organization, included 188 tri12 patients with comprehensive information on immunoglobulin heavy chain (IGHV) gene status, karyotypic/FISH abnormalities, and NOTCH1, TP53, SF3B1, and MYD88 mutations. The main cytogenetic abnormalities associated with tri12 were del(13q) (25%), additional trisomies (14%) (including tri19 (10%) and tri18 (4%)), 14q32 translocations (10%), del(17p) (6.5%), del(14q) (4%), and del(11q) (4%). Unmutated (UM) IGHV, NOTCH1, and TP53, mutations were identified in respectively 66%, 25%, and 8.5% of cases. Multivariate analyses showed that additional trisomies (HR = 0.43, 95% CI = 0.23-0.78, P = .01) were associated with a significantly longer time to first treatment in Binet stage A patients and with a lower risk of relapse (HR = 0.37, 95% CI = 0.15-0.9, P = .03) in the overall tri12 population. Binet stage B/C, TP53 disruption, and UM IGHV status were associated with a shorter time to next treatment, while Binet stage B/C (HR = 4, 95% CI = 1.6-4.9, P = .002) and TP53 disruption (HR = 5, 95% CI = 1.94-12.66, P = .001) conferred shorter overall survival in multivariate comparisons. These data indicate that additional cytogenetic and mutational abnormalities, and particularly additional trisomies, IGHV status, and TP53 disruption, influence tri12 patient outcomes and could improve risk stratification in this population.

Zorofchian S, El-Achi H, Yan Y, et al.
Characterization of genomic alterations in primary central nervous system lymphomas.
J Neurooncol. 2018; 140(3):509-517 [PubMed] Related Publications
PURPOSE: Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin lymphoma that affects the central nervous system (CNS). Although previous studies have reported the most common mutated genes in PCNSL, including MYD88 and CD79b, our understanding of genetic characterizations in primary CNS lymphomas is limited. The aim of this study was to perform a retrospective analysis investigating the most frequent mutation types, and their frequency, in PCNSL.
METHODS: Fifteen patients with a diagnosis of PCNSL from our institution were analyzed for mutations in 406 genes and rearrangements in 31 genes by next generation sequencing (NGS).
RESULTS: Missense mutations were identified as the most common mutation type (32%) followed by frame shift mutations (23%). The highest mutation rate was reported in the MYD88 (33.3%), CDKN2A/B (33.3%), and TP53 (26.7%) genes. Intermediate tumor mutation burden (TMB) and high TMB was detected in 13.3% and 26.7% of PCNSL, respectively. The most frequent gene rearrangement involved the IGH-BCL6 genes (20%).
CONCLUSIONS: This study shows the most common genetic alterations in PCNSL as determined by a commercial next generation sequencing assay. MYD88 and CD79b are frequently mutated in PCNSL, IGH-BCL6 is the most frequent gene rearrangement and approximately 1/4 of cases show a high TMB. Mutations in multiple genes, in addition to high TMB and gene rearrangements, highlights the complex molecular heterogeneity of PCNSL. Knowledge about genetic alterations in PCNSL can inform the development of novel targets for diagnosis and treatment.

Dong H, Wang W, Mo S, et al.
SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88.
J Exp Clin Cancer Res. 2018; 37(1):202 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Resistance to trastuzumab has become a leading cause of mortality in breast cancer patients and is one of the major obstacles for improving the clinical outcome. Cell behavior can be modulated by long non-coding RNAs (lncRNAs), but the contribution of lncRNAs in trastuzumab resistance to breast cancer is largely unknown. To this end, the involvement and regulatory function of lncRNA AGAP2-AS1 in human breast cancer are yet to be investigated.
METHODS: Trastuzumab-resistant SKBR-3 and BT474 cells were obtained by continuous culture with 5 mg/mL trastuzumab for 6 months. RT-qPCR assay was used to determine the expression of AGAP2-AS1 in tissues and cells. RNA fluorescence in situ hybridization was used to investigate the subcellular location of AGAP2-AS1 in breast cancer cells. Bioinformatic analysis, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), western blotting, and immunofluorescence were carried out to verify the regulatory interaction of AGAP2-AS1, CREB-binding protein (CBP), and MyD88. In addition, a series of in vitro assays and a xenograft tumor model were used to analyze the functions of AGAP2-AS1 in breast cancer cells.
RESULTS: AGAP2-AS1 was upregulated and transcriptionally induced by SP1 in breast cancer. Overexpression of AGAP2-AS1 promoted cell growth, suppressed apoptosis, and caused trastuzumab resistance, whereas knockdown of AGAP2-AS1 showed an opposite effect. MyD88 was identified as a downstream target of AGAP2-AS1 and mediated the AGAP2-AS1-induced oncogenic effects. Mechanistically, the RIP assay revealed that AGAP2-AS1 could bind to CBP, a transcriptional co-activator. ChIP assays showed that AGAP2-AS1-bound CBP increased the enrichment of H3K27ac at the promoter region of MyD88, thus resulting in the upregulation of MyD88. Gain- and loss-of-function assays confirmed that the NF-κB pathway was activated by MyD88 and AGAP2-AS1. Furthermore, high AGAP2-AS1 expression was associated with poor clinical response to trastuzumab therapy in breast cancer patients.
CONCLUSION: AGAP2-AS1 could promote breast cancer growth and trastuzumab resistance by activating the NF-κB signaling pathway and upregulating MyD88 expression. Therefore, AGAP2-AS1 may serve as a novel biomarker for prognosis and act as a therapeutic target for the trastuzumab treatment.

Hu J, Shi B, Liu X, et al.
The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway.
Int Immunopharmacol. 2018; 64:33-41 [PubMed] Related Publications
Toll-like receptors (TLRs) are closely related to cancer. However, the mechanism for TLR regulation of cancer is not fully understood. Our previous studies demonstrated that toll-like receptor (TLR) 4 functions to maintain the un-differential stem cell phenotypes of human endothelial progenitor cells. In this study, we found that human glioma cells expressed several TLRs. The activation of TLR4 by LPS in glioma U251 cells induced the expression of cytokines, including IL-1β, IL-6, IL-8, and TNFα, suggesting the functional expression of TLR4. Nude mouse in vivo studies showed that LPS treatment promoted tumor growth, and decreased mouse survival. But LPS treatment did not promote tumor cell proliferation in vitro. Meanwhile, we found that LPS treatment down-regulated the expression of glial fibrillary acidic protein (GFAP), an important differentiation maker of glioma, at both mRNA and protein levels. TLR4 activation also down-regulated GFAP in glioma Hs683 cells. LPS did not induce the activation of MAPKs, but induced the activation of NF-κB. However, pharmacological inhibition of NF-κB signaling did not reverse the down-regulation of GFAP. Furthermore, we found that LPS induced the activation of Notch pathway, which was MyD88-dependent, and Notch inhibition reversed the down-regulation of GFAP. In addition, LPS treatment up-regulated stem cell makers, including CD34 and CD133. Taken together, these results suggested that in human glioma U251 cells, TLR4 functions to reverse tumor differentiation, and it may be a target for glioma prevention and therapy.

Wang L, Yu K, Zhang X, Yu S
Dual functional roles of the MyD88 signaling in colorectal cancer development.
Biomed Pharmacother. 2018; 107:177-184 [PubMed] Related Publications
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.

Wu K, Zhang H, Fu Y, et al.
TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells.
Mol Med Rep. 2018; 18(3):3411-3420 [PubMed] Free Access to Full Article Related Publications
The influence of Toll‑like receptor (TLR)4/myeloid differentiation factor (MyD)88 signaling on the invasion and metastasis of cancer cells has been previously reported. The purpose of the present study was to determine the role of TLR4/MyD88 in breast cancer cell migration and invasion, and to discover novel therapeutic targets for breast cancer treatment. TLR4, MyD88 and high mobility group box 1 (HMGB1) mRNA expression levels were assessed in highly invasive human MDA‑MB‑231 breast cancer cells, breast cancer cells with a low rate of invasion (MCF‑7) and normal human MDA‑Kb2 mammary gland cells by reverse transcription‑quantitative polymerase chain reaction. The protein expression levels of these markers were detected by western blotting and immunofluorescence. Randomly selected breast cancer and paracarcinoma tissues were used to measure TLR4 and MyD88 protein expression levels by immunohistochemistry. The mRNA and protein expression levels of TLR4 and MyD88 were significantly higher in MDA‑MB‑231 cells compared with either MCF‑7 cells or MDA‑Kb2 cells. The mRNA and protein expression levels of HMGB1 were comparable in the two breast cancer cell lines, with no statistical difference (P>0.05). TLR4 and MyD88 protein expression levels were also significantly higher in breast cancer tissues compared with paracarcinoma tissues (P<0.05). TLR4 and MyD88 protein expression levels were positively correlated with axillary lymph node metastasis and histological grade (P<0.05). TLR4/MyD88 expression levels were positively correlated with the metastasis of breast cancer cells. TLR4/MyD88 may be useful as a novel biomarker to evaluate the prognosis and treatment of patients with breast cancer.

Coleman OI, Lobner EM, Bierwirth S, et al.
Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis.
Gastroenterology. 2018; 155(5):1539-1552.e12 [PubMed] Related Publications
BACKGROUND & AIMS: Activating transcription factor 6 (ATF6) regulates endoplasmic reticulum stress. We studied whether ATF6 contributes to the development of colorectal cancer (CRC) using tissue from patients and transgenic mice.
METHODS: We analyzed data from 541 patients with CRC in The Cancer Genome Atlas database for genetic variants and aberrant expression levels of unfolded protein response genes. Findings were validated in a cohort of 83 patients with CRC in Germany. We generated mice with intestinal epithelial cell-specific expression of the active form of Atf6 (nATF6IEC) from 2 alleles (homozygous), mice with expression of nATF6IEC from 1 allele (heterozygous), and nATF6IECfl/fl mice (controls). All nATF6IEC mice were housed under either specific-pathogen-free or germ-free conditions. Cecal microbiota from homozygous nATF6IEC mice or control mice was transferred into homozygous nATF6IEC mice or control mice. nATF6IEC mice were crossed with mice with disruptions in the myeloid differentiation primary response gene 88 and toll-like receptor adaptor molecule 1 gene (Myd88/Trif-knockout mice). Intestinal tissues were collected from mice and analyzed by histology, immunohistochemistry, immunoblots, gene expression profiling of unfolded protein response and inflammatory genes, array-based comparative genome hybridization, and 16S ribosomal RNA gene sequencing.
RESULTS: Increased expression of ATF6 was associated with reduced disease-free survival times of patients with CRC. Homozygous nATF6IEC mice developed spontaneous colon adenomas at 12 weeks of age. Compared with controls, homozygous nATF6IEC mice had changes in the profile of their cecal microbiota, increased proliferation of intestinal epithelial cells, and loss of the mucus barrier-all preceding tumor formation. These mice had increased penetration of bacteria into the inner mucus layer and activation of signal transducer and activator of transcription 3, yet inflammation was not observed at the pretumor or tumor stages. Administration of antibiotics to homozygous nATF6IEC mice greatly reduced tumor incidence, and germ-free housing completely prevented tumorigenesis. Analysis of nATF6IEC MyD88/TRIF-knockout mice showed that tumor initiation and growth required MyD88/TRIF-dependent activation of signal transducer and activator of transcription 3. Transplantation of cecal microbiota from nATF6IEC mice and control mice, collected before tumor formation, caused tumor formation in ex-germ-free nATF6IEC mice.
CONCLUSIONS: In patients with CRC, ATF6 was associated with reduced time of disease-free survival. In studies of nATF6IEC mice, we found sustained intestinal activation of ATF6 in the colon to promote dysbiosis and microbiota-dependent tumorigenesis.

Leeksma AC, Taylor J, Wu B, et al.
Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia.
Leukemia. 2019; 33(2):390-402 [PubMed] Related Publications
Genomic analyses of chronic lymphocytic leukemia (CLL) identified somatic mutations and associations of clonal diversity with adverse outcomes. Clonal evolution likely has therapeutic implications but its dynamic is less well studied. We studied clonal composition and prognostic value of seven recurrently mutated driver genes using targeted next-generation sequencing in 643 CLL patients and found higher frequencies of mutations in TP53 (35 vs. 12%, p < 0.001) and SF3B1 (20 vs. 11%, p < 0.05) and increased number of (sub)clonal (p < 0.0001) mutations in treated patients. We next performed an in-depth evaluation of clonal evolution on untreated CLL patients (50 "progressors" and 17 matched "non-progressors") using a 404 gene-sequencing panel and identified novel mutated genes such as AXIN1, SDHA, SUZ12, and FOXO3. Progressors carried more mutations at initial presentation (2.5 vs. 1, p < 0.0001). Mutations in specific genes were associated with increased (SF3B1, ATM, and FBXW7) or decreased progression risk (AXIN1 and MYD88). Mutations affecting specific signaling pathways, such as Notch and MAP kinase pathway were enriched in progressive relative to non-progressive patients. These data extend earlier findings that specific genomic alterations and diversity of subclones are associated with disease progression and persistence of disease in CLL and identify novel recurrently mutated genes and associated outcomes.

Wang Y, Yan L, Zhang L, et al.
NT21MP negatively regulates paclitaxel-resistant cells by targeting miR‑155‑3p and miR‑155-5p via the CXCR4 pathway in breast cancer.
Int J Oncol. 2018; 53(3):1043-1054 [PubMed] Free Access to Full Article Related Publications
Evidence has shown that microRNAs (miRNAs) are vital in cell growth, migration, and invasion by inhibiting their target genes. A previous study demonstrated that miRNA (miR)-155‑3p and miR‑155-5p exerted opposite effects on cell proliferation, apoptosis, migration and invasion in breast cancer cell lines. An miRNA microarray was used to show that miR‑155‑3p was downregulated whereas miR‑155-5p was upregulated in paclitaxel-resistant (PR) cells compared with parental breast cancer cells. However, the role of miR‑155 in breast cancer cell invasion and metastasis remains to be elucidated. A 21-residue peptide derived from the viral macrophage inflammatory protein II (NT21MP), competes with the ligand of CXC chemokine receptor 4 (CXCR4) and its ligand stromal cell-derived factor-1α, inducing cell apoptosis in breast cancer. The present study aimed to identify the underlying mechanism of action of miR‑155‑3p/5p and NT21MP in PR breast cancer cells. Quantitative polymerase chain reaction, western blotting, wound-healing, cell cycle and apoptosis assays, and Cell Counting kit-8 assay were used to achieve this goal. The combined overexpression of miR‑155‑3p with NT21MP decreased the migration and invasion ability and increased the number of apoptotic and arrested cells in the G0/G1 phase transition in vitro. The knockdown of miR‑155-5p combined with NT21MP had a similar effect on PR breast cancer cells. Furthermore, the ectopic expression of their target gene myeloid differentiation primary response gene 88 (MYD88) or tumor protein 53-induced nuclear protein 1 (TP53INP1) combined with NT21MP enhanced the sensitivity of the breast cancer cells to paclitaxel. Taken together, these findings suggested that miR‑155‑3p/5p and their target genes MYD88 and TP53INP1 may serve as novel biomarkers for NT21MP therapy through the CXCR4 pathway for improving sensitivity to paclitaxel in breast cancer.

Yosef A, Touloukian EZ, Nambudiri VE
Ibrutinib in the management of Waldenstrom macroglobulinemia.
J Oncol Pharm Pract. 2019; 25(2):434-441 [PubMed] Related Publications
Bruton tyrosine kinase plays a critical role in hastening cell proliferation. Bruton tyrosine kinase inhibitors are a class of immunotheraputic agents that disrupt this signaling pathway. Ibrutinib, a novel Bruton tyrosine kinase inhibitor approved by the Food and Drug Administration (FDA) for the treatment of Waldenstrom macroglobulinemia in patients who have failed treatment with other agents, has emerged as an important therapeutic agent in the management of Waldenstrom macroglobulinemia and other plasma cell dyscrasias. Ibrutinib has shown to increase progression free survival and improve overall mortality. We present a review of ibrutinib, beginning with an overview of the Bruton tyrosine kinase pathway and clinically relevant gene mutations impacting treatment and prognosis for patients with Waldenstrom macroglobulinemia, followed by evidence supporting therapeutic indications for ibrutinib, and detailing its safety and efficacy evidence, current clinical guidelines, adverse effects and their management, and finally challenges of drug resistance. We also present findings on newly developed Bruton tyrosine kinase inhibitors in the therapeutic pipeline to provide readers insight into this rapidly evolving corner of oncology pharmacy practice.

Song J, Chen Z, Geng T, et al.
Deleting MyD88 signaling in myeloid cells promotes development of adenocarcinomas of the colon.
Cancer Lett. 2018; 433:65-75 [PubMed] Related Publications
Intestinal myeloid cells are not only essential for keeping local homeostasis, but also play an important role in regulating the occurrence of colitis and colitis-associated cancer (CAC). In these diseases, the manner in which the myeloid cells work and which molecular pathways influence them are still not fully understood. In our study, we discovered that MyD88 signaling in colonic myeloid cells participates in the development of CAC. Myeloid MyD88-deficient mice showed greater susceptibility to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CAC, as evidenced by the increase in the number and sizes of tumors. Myeloid MyD88 deletion markedly increased production of pro-inflammatory and pro-tumor cytokines; recruitment of more IL-1β producing-neutrophils in colon from bone marrow; increased in epithelial cell apoptosis and decreased in epithelial cell proliferation; enhancement of colon mucosal expression of COX-2, p-STAT3, β-catenin, and cyclinD1; induction of further DNA damage and β-catenin mutation. To sum up, these results suggest that myeloid MyD88 signaling protects the intestine from tumorigenesis during the development of CAC.

Ishqi HM, Husain MA, Rehman SU, et al.
Identification and expression of alternatively spliced novel isoforms of cancer associated MYD88 lacking death domain in mouse.
Mol Biol Rep. 2018; 45(5):699-711 [PubMed] Related Publications
MYD88 is an adaptor protein known to involve in activation of NF-κB through IL-1 receptor and TLR stimulation. It consists of N-terminal death domain and C-terminal Toll/IL-R homology domain that mediates its interaction with IL-1R associated kinase and IL-1R/TLR, respectively. MYD88 contributes to various types of carcinogenesis due to its involvement in oncogene induced inflammation. In the present study, we have recognized two new alternatively spliced variants of MyD88 gene in mouse using bioinformatics tools and molecular biology techniques in combination. The newly identified non-coding exon (NE-1) from 5' upstream region alternatively splices with either exon E-2 or exon E-5 to produce two novel transcript variants MyD88N1 and MyD88N2 respectively. The transcript variant MyD88N1 was expressed in several tissues studied while the variant MyD88N2 was found to be expressed only in the brain. The analysis of the upstream region of novel exon by in silico approach revealed new promoter region PN, which possess potential signature sequences for diverse transcription factors, suggesting complex gene regulation. Studies of post translational modifications of conceptualized amino acid sequences of these isoforms revealed diversity in properties. Western blot analysis further confirmed the expression of protein isoform MYD88N1.

Phelan JD, Young RM, Webster DE, et al.
A multiprotein supercomplex controlling oncogenic signalling in lymphoma.
Nature. 2018; 560(7718):387-391 [PubMed] Free Access to Full Article Related Publications
B cell receptor (BCR) signalling has emerged as a therapeutic target in B cell lymphomas, but inhibiting this pathway in diffuse large B cell lymphoma (DLBCL) has benefited only a subset of patients

Intlekofer AM, Joffe E, Batlevi CL, et al.
Integrated DNA/RNA targeted genomic profiling of diffuse large B-cell lymphoma using a clinical assay.
Blood Cancer J. 2018; 8(6):60 [PubMed] Free Access to Full Article Related Publications
We sought to define the genomic landscape of diffuse large B-cell lymphoma (DLBCL) by using formalin-fixed paraffin-embedded (FFPE) biopsy specimens. We used targeted sequencing of genes altered in hematologic malignancies, including DNA coding sequence for 405 genes, noncoding sequence for 31 genes, and RNA coding sequence for 265 genes (FoundationOne-Heme). Short variants, rearrangements, and copy number alterations were determined. We studied 198 samples (114 de novo, 58 previously treated, and 26 large-cell transformation from follicular lymphoma). Median number of GAs per case was 6, with 97% of patients harboring at least one alteration. Recurrent GAs were detected in genes with established roles in DLBCL pathogenesis (e.g. MYD88, CREBBP, CD79B, EZH2), as well as notable differences compared to prior studies such as inactivating mutations in TET2 (5%). Less common GAs identified potential targets for approved or investigational therapies, including BRAF, CD274 (PD-L1), IDH2, and JAK1/2. TP53 mutations were more frequently observed in relapsed/refractory DLBCL, and predicted for lack of response to first-line chemotherapy, identifying a subset of patients that could be prioritized for novel therapies. Overall, 90% (n = 169) of the patients harbored a GA which could be explored for therapeutic intervention, with 54% (n = 107) harboring more than one putative target.

Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, et al.
Molecular analysis in liquid biopsies for diagnostics of primary central nervous system lymphoma: Review of literature and future opportunities.
Crit Rev Oncol Hematol. 2018; 127:56-65 [PubMed] Related Publications
Primary central nervous system lymphoma (PCNSL) is an aggressive lymphoma with a poor prognosis, for which accurate and timely diagnosis is of utmost importance. Unfortunately, diagnosis of PCNSL can be challenging and a brain biopsy (gold standard for diagnosis) is an invasive procedure with the risk of major complications. Thus, there is an urgent need for an alternative strategy to diagnose and monitor these lymphomas. Currently, liquid biopsies from cerebrospinal fluid (CSF) are used for cytomorphologic and flow cytometric analysis. Recently, new biomarkers such as genetic mutations and interleukins have been identified in these liquid biopsies, further expanding the diagnostic armamentarium. In this review we present an overview of genetic aberrations (>70) reported in this unique lymphoma. Of these genes, we have selected those that are reported in ≥3 studies. Half of the selected genes are implicated in the NFκB pathway (CARD11, CD79B, MYD88, TBL1XR1 and TNFAIP3), while the other half are not related to this pathway (CDKN2A, ETV6, PIM1, PRDM1 and TOX). Although this underlines the crucial role of the NFκB pathway in PCNSL, CD79B and MYD88 are at present the only genes mentioned in liquid biopsy analysis. Finally, a stepwise approach is proposed for minimally invasive liquid biopsy analysis and work-up of PCNSL, incorporating molecular analysis. Prioritization and refinements of this approach can be constructed based upon multidisciplinary collaboration as well as novel scientific insights.

Zhou W, Chen X, Hu Q, et al.
Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression.
BMC Cancer. 2018; 18(1):580 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung cancer remains the top contributor to cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been reported to participate in normal development and tumorigenesis. LncRNA nuclear enriched abundant transcript 1 (NEAT1) is highly expressed in lung cancer and promotes lung cancer cell proliferation and migration. However, the upstream regulatory mechanism still needs investigation.
METHODS: In the present study, we investigated the upstream regulators and mechanisms of NEAT1 expression disorders. We first examined NEAT1 expression in lung adenocarcinoma tissues and its correlation with clinic features in patient with lung adenocarcinoma; next, the detailed function of NEAT1 in lung cancer cell proliferation and migration was assessed. To investigate whether NF-κB acts as a transcription factor of NEAT1 to activate its expression, we validated the combination between NF-κB and NEAT1, and NF-κB regulation of NEAT1 upon LPS stimulation. Further, the effect of NF-κB upstream regulator, TLR4, on NEAT1 expression upon LPS stimulation was examined. Galectin-3 reportedly serves as a ligand of TLR4 and promotes TLR4, MyD88 and p-p65 expression; we investigated whether Galectin-3 could modulate lung adenocarcinoma cell proliferation and migration through TLR4/NF-κB/NEAT1. Finally, the expression and correlation of the above factors in lung adenocarcinoma tissues was validated.
RESULTS: NEAT1 is highly expressed in lung adenocarcinoma tissues and promotes lung cancer cell proliferation and migration. NF-κB binds to NEAT1 promoter to activate NEAT1 expression after LPS-stimulated p65 nucleus translocation. LPS stimulation activates TLR4 signaling, followed by downstream NF-κB activation, and ultimately NEAT1 expression activation. Galectin-3 activates TLR4 signaling thus affecting lung cancer cell proliferation and migration through TLR4/NF-κB/NEAT1. Galectin-3 and TLR4 expression are abnormally up-regulated in lung adenocarcinoma tissues, and positively correlated with NEAT1 expression.
CONCLUSION: We confirmed that Galectin-3 as a ligand of TLR4 induced TLR4 signaling activation in lung adenocarcinoma cells, thereby activating downstream p65 nucleus translocation, promoting NEAT1 expression, and finally affecting lung adenocarcinoma cell proliferation and migration. Inhibiting Galectin-3-induced TLR4 signaling activation, thus to reduce p65-activated NEAT1 expression might be a promising strategy of suppressing lung adenocarcinoma cell proliferation and migration.

Beekman R, Chapaprieta V, Russiñol N, et al.
The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia.
Nat Med. 2018; 24(6):868-880 [PubMed] Free Access to Full Article Related Publications
Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MYD88, Cancer Genetics Web: http://www.cancer-genetics.org/MYD88.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999