HLA-A

Gene Summary

Gene:HLA-A; major histocompatibility complex, class I, A
Aliases: HLAA
Location:6p21.3
Summary:HLA-A belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon 1 encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domains, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. Hundreds of HLA-A alleles have been described. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:HLA class I histocompatibility antigen, A-1 alpha chain
HPRD
Source:NCBIAccessed: 11 August, 2015

Ontology:

What does this gene/protein do?
Show (26)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 11 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Polymerase Chain Reaction
  • T-Lymphocytes
  • Polymorphism
  • Chromosome 6
  • Cervical Cancer
  • Nasopharyngeal Cancer
  • Alleles
  • Leukaemia
  • Stomach Cancer
  • Testis
  • Tumor Markers
  • Taiwan
  • Amino Acid Sequence
  • Haplotypes
  • Case-Control Studies
  • Sequence Homology, Nucleic Acid
  • Epitopes, T-Lymphocyte
  • HLA-A
  • Immunotherapy
  • Vaccines, DNA
  • Histocompatibility Antigens Class I
  • Papillomavirus Infections
  • Bladder Cancer
  • Survival Rate
  • Molecular Sequence Data
  • Genetic Predisposition
  • Adolescents
  • HLA-A2 Antigen
  • Telomerase
  • HLA Antigens
  • Missense Mutation
  • Cancer Gene Expression Regulation
  • Sweden
  • Recurrence
  • Uterine Cervical Dysplasia
  • HLA-B
  • Thymus Gland
  • Tumor Antigens
  • Virus Integration
  • Odds Ratio
  • Remission Induction
  • Sensitivity and Specificity
  • CD8-Positive T-Lymphocytes
  • Reed-Sternberg Cells
Tag cloud generated 11 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HLA-A (cancer-related)

Shao H, Lin Y, Wang T, et al.
Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis.
Cancer Lett. 2015; 363(1):83-91 [PubMed] Related Publications
Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells.

Mayanagi S, Kitago M, Sakurai T, et al.
Phase I pilot study of Wilms tumor gene 1 peptide-pulsed dendritic cell vaccination combined with gemcitabine in pancreatic cancer.
Cancer Sci. 2015; 106(4):397-406 [PubMed] Related Publications
This study aimed to evaluate the feasibility of and immune response to Wilms tumor gene 1 (WT1) peptide-pulsed dendritic cell vaccination combined with gemcitabine (DCGEM) as a first-line therapy among patients with advanced pancreatic cancer. Ten HLA-A*2402 patients were treated with WT1 peptide-pulsed DC vaccination (1 × 10(7) cells) on days 8 and 22 and gemcitabine (1000 mg/m(2) ) on days 1, 8 and 15. Induction of a WT1-specific immune response was evaluated using the delayed-type hypersensitivity (DTH) skin test, interferon-γ enzyme-linked immunospot and HLA tetramer assays, along with assays for various immunological factors. DCGEM was well-tolerated, and the relative dose intensity of gemcitabine was 87%. Disease control associated with a low neutrophil/lymphocyte ratio was observed in all three patients with DTH positivity; it was also correlated with a low percentage of granulocytic myeloid derived suppressor cells in the pretreatment peripheral blood (P = 0.017). Patients with liver metastases and high levels of inflammatory markers such as C-reactive protein and interleukin-8 (IL-8) showed poor survival even though a WT1-specific immune response was induced in them. WT1 peptide-pulsed DCGEM is feasible and effective for inducing anti-tumor T-cell responses. Our results support future investigations for pancreatic cancer patients with non-liver metastases and favorable immunological conditions. This trial was registered with the University hospital Medical Information Network (UMIN) Clinical Trials Registry (http://www.umin.ac.jp/ctr/ number: UMIN-000004855).

Rooney MS, Shukla SA, Wu CJ, et al.
Molecular and genetic properties of tumors associated with local immune cytolytic activity.
Cell. 2015; 160(1-2):48-61 [PubMed] Related Publications
How the genomic landscape of a tumor shapes and is shaped by anti-tumor immunity has not been systematically explored. Using large-scale genomic data sets of solid tissue tumor biopsies, we quantified the cytolytic activity of the local immune infiltrate and identified associated properties across 18 tumor types. The number of predicted MHC Class I-associated neoantigens was correlated with cytolytic activity and was lower than expected in colorectal and other tumors, suggesting immune-mediated elimination. We identified recurrently mutated genes that showed positive association with cytolytic activity, including beta-2-microglobulin (B2M), HLA-A, -B and -C and Caspase 8 (CASP8), highlighting loss of antigen presentation and blockade of extrinsic apoptosis as key strategies of resistance to cytolytic activity. Genetic amplifications were also associated with high cytolytic activity, including immunosuppressive factors such as PDL1/2 and ALOX12B/15B. Our genetic findings thus provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic resistance to cytolytic activity.

Morishima Y, Kashiwase K, Matsuo K, et al.
Biological significance of HLA locus matching in unrelated donor bone marrow transplantation.
Blood. 2015; 125(7):1189-97 [PubMed] Free Access to Full Article Related Publications
We hypothesized that the compatibility of each HLA loci between donor and patient induced divergent transplant-related immunologic responses, which attributed to the individualized manifestation of clinical outcomes. Here, we analyzed 7898 Japanese pairs transplanted with T-cell-replete marrow from an unrelated donor with complete HLA allele typing data. Multivariable competing risk regression analyses were conducted to evaluate the relative risk (RR) of clinical outcomes after transplantation. A significant RR of HLA allele mismatch compared with match was seen with HLA-A, -B, -C, and -DPB1 for grade III-IV acute graft-versus-host disease (GVHD), and HLA-C for chronic GVHD. Of note, only HLA-C and HLA-DPB1 mismatch reduced leukemia relapse, and this graft-versus-leukemia effect of HLA-DPB1 was independent of chronic GVHD. HLA-DRB1 and HLA-DQB1 double (DRB1_DQB1) mismatch was revealed to be a significant RR for acute GVHD and mortality, whereas single mismatch was not. Thus, the number of HLA-A, -B, -C, -DPB1, and DRB1_DQB1 mismatches showed a clear-cut risk difference for acute GVHD, whereas the number of mismatches for HLA-A, -B, -C, and DRB1_DQB1 showed the same for mortality. In conclusion, we determined the biological response to HLA locus mismatch in transplant-related immunologic events, and provide a rationale for use of a personalized algorithm for unrelated donor selection.

Djajadiningrat RS, Horenblas S, Heideman DA, et al.
Classic and nonclassic HLA class I expression in penile cancer and relation to HPV status and clinical outcome.
J Urol. 2015; 193(4):1245-51 [PubMed] Related Publications
PURPOSE: Loss of expression of HLA class I is a mechanism of immune evasion in various cancers that is often associated with a worse patient outcome. We analyzed HLA expression in a large cohort with penile cancer in relation to clinical outcome.
MATERIALS AND METHODS: We used penile cancer tissue blocks from 168 patients who underwent surgical resection between 2000 and 2009 to construct tissue microarrays. Immunohistochemical staining was done with antibodies directed against classic and nonclassic HLA molecules. HLA expression was scored semiquantitatively, divided into 3 expression groups and correlated with clinicopathological variables, including HPV and survival. Survival analysis was performed using the Kaplan-Meier method and Cox proportional hazards models.
RESULTS: Complete and partial loss of total classic HLA class I was observed in 32% and 50% of cases, and up-regulation of HLA-E and G in 16% and 13%, respectively. When corrected for relevant clinical parameters, partial HLA-A loss was significantly associated with decreased survival overall (HR 2.3, 95% CI 1.1-4.6) and in HPV negative patients alone (HR 3.4, 95% CI 1.4-8.4). Abnormal HLA-B/C, E or G expression levels were not associated with survival.
CONCLUSIONS: To our knowledge this is the first study to describe a link between HLA expression and the clinical outcome of penile cancer. HLA down-regulation occurs frequently and partial loss of HLA-A is an independent predictor of poor survival in HPV negative patients. Complete understanding of the mechanisms and relevance of HLA down-regulation and immune evasion in regard to the clinical outcome will contribute to the future design of immunotherapy interventions.

Jahn L, Hombrink P, Hassan C, et al.
Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b.
Blood. 2015; 125(6):949-58 [PubMed] Related Publications
Immunotherapy of B-cell malignancies using CD19-targeted chimeric antigen receptor-transduced T cells or CD20-targeted therapeutic monoclonal antibodies has shown clinical efficacy. However, refractory disease and the emergence of antigen-loss tumor escape variants after treatment demonstrate the need to target additional antigens. Here we aimed to target the B-cell receptor-associated protein CD79b by a T-cell receptor (TCR)-based approach. Because thymic selection depletes high-avidity T cells recognizing CD79b-derived peptides presented in self-HLA molecules, we aimed to isolate T cells recognizing these peptides presented in allogeneic HLA. Peptide-HLA tetramers composed of CD79b peptides bound to either HLA-A2 or HLA-B7 were used to isolate T-cell clones from HLA-A*0201 and B*0702-negative individuals. For 3 distinct T-cell clones, CD79b specificity was confirmed through CD79b gene transduction and CD79b-specific shRNA knockdown. The CD79b-specific T-cell clones were highly reactive against CD79b-expressing primary B-cell malignancies, whereas no recognition of nonhematopoietic cells was observed. Although lacking CD79b-cell surface expression, intermediate reactivity toward monocytes, hematopoietic progenitor cells, and T-cells was observed. Quantitative reverse transcriptase polymerase chain reaction revealed low CD79b gene expression in these cell types. Therefore, aberrant gene expression must be taken into consideration when selecting common, apparently lineage-specific self-antigens as targets for TCR-based immunotherapies.

Oren R, Hod-Marco M, Haus-Cohen M, et al.
Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.
J Immunol. 2014; 193(11):5733-43 [PubMed] Related Publications
Adoptive transfer of Ag-specific T lymphocytes is an attractive form of immunotherapy for cancers. However, acquiring sufficient numbers of host-derived tumor-specific T lymphocytes by selection and expansion is challenging, as these cells may be rare or anergic. Using engineered T cells can overcome this difficulty. Such engineered cells can be generated using a chimeric Ag receptor based on common formats composed from Ag-recognition elements such as αβ-TCR genes with the desired specificity, or Ab variable domain fragments fused with T cell-signaling moieties. Combining these recognition elements are Abs that recognize peptide-MHC. Such TCR-like Abs mimic the fine specificity of TCRs and exhibit both the binding properties and kinetics of high-affinity Abs. In this study, we compared the functional properties of engineered T cells expressing a native low affinity αβ-TCR chains or high affinity TCR-like Ab-based CAR targeting the same specificity. We isolated high-affinity TCR-like Abs recognizing HLA-A2-WT1Db126 complexes and constructed CAR that was transduced into T cells. Comparative analysis revealed major differences in function and specificity of such CAR-T cells or native TCR toward the same antigenic complex. Whereas the native low-affinity αβ-TCR maintained potent cytotoxic activity and specificity, the high-affinity TCR-like Ab CAR exhibited reduced activity and loss of specificity. These results suggest an upper affinity threshold for TCR-based recognition to mediate effective functional outcomes of engineered T cells. The rational design of TCRs and TCR-based constructs may need to be optimized up to a given affinity threshold to achieve optimal T cell function.

Hoppes R, Oostvogels R, Luimstra JJ, et al.
Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes.
J Immunol. 2014; 193(10):4803-13 [PubMed] Free Access to Full Article Related Publications
Virus or tumor Ag-derived peptides that are displayed by MHC class I molecules are attractive starting points for vaccine development because they induce strong protective and therapeutic cytotoxic T cell responses. In thus study, we show that the MHC binding and consequent T cell reactivity against several HLA-A*02 restricted epitopes can be further improved through the incorporation of nonproteogenic amino acids at primary and secondary anchor positions. We screened more than 90 nonproteogenic, synthetic amino acids through a range of epitopes and tested more than 3000 chemically enhanced altered peptide ligands (CPLs) for binding affinity to HLA-A*0201. With this approach, we designed CPLs of viral epitopes, of melanoma-associated Ags, and of the minor histocompatibility Ag UTA2-1, which is currently being evaluated for its antileukemic activity in clinical dendritic cell vaccination trials. The crystal structure of one of the CPLs in complex with HLA-A*0201 revealed the molecular interactions likely responsible for improved binding. The best CPLs displayed enhanced affinity for MHC, increasing MHC stability and prolonging recognition by Ag-specific T cells and, most importantly, they induced accelerated expansion of antitumor T cell frequencies in vitro and in vivo as compared with the native epitope. Eventually, we were able to construct a toolbox of preferred nonproteogenic residues with which practically any given HLA-A*02 restricted epitope can be readily optimized. These CPLs could improve the therapeutic outcome of vaccination strategies or can be used for ex vivo enrichment and faster expansion of Ag-specific T cells for transfer into patients.

Gragert L, Fingerson S, Albrecht M, et al.
Fine-mapping of HLA associations with chronic lymphocytic leukemia in US populations.
Blood. 2014; 124(17):2657-65 [PubMed] Free Access to Full Article Related Publications
Chronic lymphocytic leukemia (CLL) displays remarkable ethnic predisposition for whites, with relative sparing of African-American and Asian populations. In addition, CLL displays among the highest familial predispositions of all hematologic malignancies, yet the genetic basis for these differences is not clearly defined. The highly polymorphic HLA genes of the major histocompatibility complex play a central role in immune surveillance and confer risk for autoimmune and infectious diseases and several different cancers, the role for which in the development of CLL has not been extensively investigated. The National Marrow Donor Program/Be The Match has collected HLA typing from CLL patients in need of allogeneic hematopoietic stem cell transplant and has recruited millions of volunteers to potentially donate hematopoietic stem cells. HLA genotypes for 3491 US white, 397 African-American, and 90 Hispanic CLL patients were compared with 50 000 controls per population from the donor registry. We identified several HLA alleles associated with CLL susceptibility in each population, reconfirming predisposing roles of HLA-A*02:01 and HLA-DRB4*01:01 in whites. Associations for haplotype DRB4*01:01∼DRB1*07:01∼DQB1*03:03 were replicated across all 3 populations. These findings provide a comprehensive assessment of the role of HLA in the development of severe CLL.

Ahmed RK, Poiret T, Ambati A, et al.
TCR+CD4-CD8- T cells in antigen-specific MHC class I-restricted T-cell responses after allogeneic hematopoietic stem cell transplantation.
J Immunother. 2014; 37(8):416-25 [PubMed] Related Publications
Human TCRαβ(+) CD4(-)CD8(-) double-negative (DN) T cells represent a minor subset in peripheral blood, yet are important in infectious diseases and autoimmune responses. We examined the frequency of DN T cells in 17 patients after allogeneic hematopoietic stem cell transplantation (aHSCT) at 1, 2, 3, 6, and 12 months post-aHSCT and show that these cells increase early after aHSCT and decrease with time after aHSCT. DN T cells reside in the terminally differentiated effector (CD45RA(+)CCR7(-)) T-cell population and are polyclonal, determined by T-cell receptor Vβ CDR3 analysis. Gene expression analysis of ex vivo sorted DN T cells showed a distinct set of gene expression, including interleukin-8, as compared with CD4(+) or CD8(+) T cells. DN T cells contributed to MHC class I-restricted EBV-directed immune responses, defined by antigen-specific cytokine production and by detection of HLA-A*02:01-restricted EBV BMLF-1 (GLCTLVAML), LMP-2A (CLGGLLTMV), and HLA-A*24:02-restricted EBV BRLF-1 (DYCNVLNKEF) and EBNA3 (RYSIFFDY)-specific T cells. We created retroviral-transfected Jurkat cell lines with a Melan-A/MART-1-specific TCR(+) and the CD8α chain to study TCR(+) DN T cells in response to their nominal MHC class I/peptide ligand. We show that DN T cells exhibit increased TCRζ chain phosphorylation as compared with the TCR(+)CD8(+) transgenic T-cell line. DN T cells contribute to antigen-specific T-cell responses and represent an effector T-cell population that may be explored in immunotherapeutic approaches against viral infections or transformed cells.

Gomez-Eerland R, Nuijen B, Heemskerk B, et al.
Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype.
Hum Gene Ther Methods. 2014; 25(5):277-87 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.

Wu ZB, Qiu C, Zhang AL, et al.
Glioma-associated antigen HEATR1 induces functional cytotoxic T lymphocytes in patients with glioma.
J Immunol Res. 2014; 2014:131494 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
A2B5+ glioblastoma (GBM) cells have glioma stem-like cell (GSC) properties that are crucial to chemotherapy resistance and GBM relapse. T-cell-based antigens derived from A2B5+ GBM cells provide important information for immunotherapy. Here, we show that HEAT repeat containing 1 (HEATR1) expression in GBM tissues was significantly higher than that in control brain tissues. Furthermore, HEATR1 expression in A2B5+ U87 cells was higher than that in A2B5-U87 cells (P = 0.016). Six peptides of HEATR1 presented by HLA-A∗02 were selected for testing of their ability to induce T-cell responses in patients with GBM. When peripheral blood mononuclear cells from healthy donors (n = 6) and patients with glioma (n = 33) were stimulated with the peptide mixture, eight patients with malignant gliomas had positive reactivity with a significantly increased number of responding T-cells. The peptides HEATR(1682-690), HEATR(11126-1134), and HEATR(1757-765) had high affinity for binding to HLA-A∗02:01 and a strong capacity to induce CTL response. CTLs against HEATR1 peptides were capable of recognizing and lysing GBM cells and GSCs. These data are the first to demonstrate that HEATR1 could induce specific CTL responses targeting both GBM cells and GSCs, implicating that HEATR1 peptide-based immunotherapy could be a novel promising strategy for treating patients with GBM.

Lanitis E, Smith JB, Dangaj D, et al.
A human ErbB2-specific T-cell receptor confers potent antitumor effector functions in genetically engineered primary cytotoxic lymphocytes.
Hum Gene Ther. 2014; 25(8):730-9 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The ErbB2 protein is a member of the tyrosine kinase family of growth factor receptors that is overexpressed in cancers of the breast, ovary, stomach, kidney, colon, and lung, and therefore represents an attractive candidate antigen for targeted cancer immunotherapy. Cytotoxic T lymphocytes specific for various immunogenic ErbB2 peptides have been described, but they often exhibit both poor functional avidity and tumor reactivity. In order to generate potent CD8(+) T cells with specificity for the ErbB2(369-377) peptide, we performed one round of in vitro peptide stimulation of CD8(+) T cells isolated from an HLA-A2(+) patient who was previously vaccinated with autologous dendritic cells pulsed with HLA class I ErbB2 peptides. Using this approach, we enriched highly avid ErbB2-reactive T cells with strong ErbB2-specific, antitumor effector functions. We then stimulated these ErbB2-reactive T cells with ErbB2(+) HLA-A2(+) tumor cells in vitro and sorted tumor-activated ErbB2(369-377) peptide T cells, which allowed for the isolation of a novel T-cell receptor (TCR) with ErbB2(369-377) peptide specificity. Primary human CD8(+) T cells genetically modified to express this ErbB2-specific TCR specifically bound ErbB2(369-377) peptide containing HLA-A2 tetramers, and efficiently recognized target cells pulsed with low nanomolar concentrations of ErbB2(369-377) peptide as well as nonpulsed ErbB2(+) HLA-A2(+) tumor cell lines in vitro. In a novel xenograft model, ErbB2-redirected T cells also significantly delayed progression of ErbB2(+) HLA-A2(+) human tumor in vivo. Together, these results support the notion that redirection of normal T-cell specificity by TCR gene transfer can have potential applications in the adoptive immunotherapy of ErbB2-expressing malignancies.

Rutten MJ, Dijk F, Savci-Heijink CD, et al.
HLA-G expression is an independent predictor for improved survival in high grade ovarian carcinomas.
J Immunol Res. 2014; 2014:274584 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Aberrant expression of human leukocyte antigens (HLA) class I has prognostic importance in various cancers. Here, we evaluated the prognostic value of classical (A/B/C) and nonclassical (G/E) HLA expression in 169 high grade epithelial ovarian cancer samples and linked that to clinicopathological characteristics and survival. Expression of HLA-A, -B/C, or -E was not correlated with survival. Survival was prolonged when tumours expressed HLA-G (P = 0.008) and HLA-G was an independent predictor for better survival (P = 0.011). In addition, HLA-G expression was associated with longer progression-free survival (P = 0.036) and response to chemotherapy (P = 0.014). Accordingly, high expression of HLA-G mRNA was associated with prolonged disease-free survival (P = 0.037) in 65 corresponding samples. Elevated serum-soluble HLA-G levels as measured by enzyme-linked immunosorbent assay in 50 matched patients were not correlated to HLA-G protein expression or gene expression nor with survival. During treatment, sHLA-G levels declined (P = 0.038). In conclusion, expression of HLA-G is an independent prognostic factor for improved survival in high grade epithelial ovarian cancer and a predictor for platinum sensitivity.

Sayad A, Akbari MT, Mehdizadeh M, et al.
The association of HLA-class I and class II with Hodgkin's lymphoma in Iranian patients.
Biomed Res Int. 2014; 2014:231236 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The Hodgkin's lymphoma disease (HD) is a common malignant neoplasm with germinal centre B-cell origin. It has been suggested that the HLA class I and class II regions have susceptibility effects on HD. In different ethnic groups, different HLA class I and class II alleles affect HD. As a result, there is no consensus which of the different HLA alleles confers susceptibility to HD. In this study, we aimed to ascertain the role of HLA class I and class II alleles in association with Hodgkin's lymphoma in Iranian patients. We performed a case-control genotyping study in 85 Iranian HD patients which were selected from the Bone Marrow Transplantation Department of Taleghani Hospital and 150 controls using the SSP-PCR. Our results demonstrated that the HLA-A*68, HLA-B*51, and HLA-DRB1*15 alleles were significantly more frequent in HD patients in comparison to controls (P = 0.026; OR = 6.188, P = 0.00008; OR = 2.86, P = 0.00006; OR = 5.315, resp.) and they have significant susceptibility effects on HD in Iranian population. There are reports of other populations with regard to consistency and inconsistency to our results. Further studies with large sample size or the meta-analysis are needed to explain the exact associations of HLA gene with HD.

Arons E, Adams S, Venzon DJ, et al.
Class II human leucocyte antigen DRB1*11 in hairy cell leukaemia patients with and without haemolytic uraemic syndrome.
Br J Haematol. 2014; 166(5):729-38 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Frequencies of human leucocyte antigens (HLA) were determined in 287 classic hairy cell leukaemia (HCL) patients. With respect to both population (n = 287) and allele (2n = 574) frequency respectively, the most common HLA class I and II antigens expressed were HLA-A*02 (49·1% and 28·6%), HLA-B*07 (21·3% and 11·1%), HLA-C*07 (46·7 and 28·2%), HLA-DQB1*03 (62·7% and 37·3%), HLA-DRB1*11 (30·0% and 16·0%) and HLA-DRB4*01 (45·3% and 29·6%). In comparing 6-14 databases of control Caucasians to 267 Caucasian HCL patients, only HLA-DRB1*11 was consistently over-represented in HCL, 31·1% of patients vs. 17-19·9% of controls (P = 0·0055 to <0·0001) and 16·5% of alleles vs. 6·5-12·3% of control alleles (P = 0·022 to <0·0001). HLA-DRB1*11 is a known risk factor for acquired thrombotic microangiopathy. Anti-CD22 recombinant immunotoxin BL22 in HCL was associated with a 12% incidence of completely reversible grade 3-4 haemolytic uraemic syndrome (HUS), mainly during the second or third retreatment cycle. Of 49 HCL patients receiving ≥2 cycles of BL22, 7 (14%) had HUS and HLA-DRB1*11 was expressed in 71% of 7 with HUS compared with only 21% of 42 without (P = 0·015). These data suggest that DBR1*11 may be a marker for increased susceptibility to HCL and, among HCL patients, could be a risk factor for BL22-induced HUS.

Kawashima H, Obayashi A, Kawamura M, et al.
Galectin 9 and PINCH, novel immunotherapy targets of renal cell carcinoma: a rationale to find potential tumour antigens and the resulting cytotoxic T lymphocytes induced by the derived peptides.
BJU Int. 2014; 113(2):320-32 [PubMed] Related Publications
OBJECTIVE: To analyse and then generalize the mechanism by which partial or complete response is achieved among a limited number of patients with metastatic renal cell carcinoma (RCC) treated with interferon or interleukin-2.
MATERIALS AND METHODS: An expression library of RCC (clear-cell carcinoma) was screened using the sera of patients with metastatic RCC who benefited from partial or complete response to cytokine therapy, the postulation being that those remarkable responders obtained specific cellular immunity against RCC with the antibodies to react with the cancer antigen. Peripheral blood mononuclear-cells (PBMCs) from healthy volunteers were stimulated with the antigen-derived peptides to induce specific cytotoxic T lymphocytes (CTLs). Specific activities of CTLs were measured by ⁵¹Cr-releasing assay.
RESULTS: Among 15 positive clones isolated, two novel genes, galectin 9 and PINCH, were expressed at much higher levels in cancerous lesions than in normal tissues in all the patients with clear-cell carcinoma who were examined. Both HLA-A*2402-restricted and HLA-A*0201-restricted CTLs were induced by each antigen-derived peptide to exhibit specific and highly cytotoxic activities towards RCC cells. Specific CTLs were induced abundantly, as shown by flow cytometry analysis of the CTLs labelled with fluorescein isothiocyanate anti-CD107a and APC anti-CD8. The clonal expansion of the CTLs was shown by the clonality of T-cell receptor Vβ repertoires.
CONCLUSION: A novel approach based on clinical observations yielded promising tumour antigens as immunotherapy targets of RCC.

Yoshimura M, Tada Y, Ofuzi K, et al.
Identification of a novel HLA-A 02:01-restricted cytotoxic T lymphocyte epitope derived from the EML4-ALK fusion gene.
Oncol Rep. 2014; 32(1):33-9 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Cancer immunotherapy is a promising new approach to cancer treatment. It has been demonstrated that a high number of tumor-specific cytotoxic T cells (CTLs) is associated with increased disease-specific survival in lung cancer patients. Identification of superior CTL epitopes from tumor antigens is essential for the development of immunotherapy for malignant tumors. The EML4-ALK fusion gene was recently identified in a subset of non-small cell lung cancers (NSCLCs). In this study we searched for HLA-A 02:01- and HLA-A 24:02‑restricted epitopes derived from EML4-ALK by screening predicted EML4-ALK‑derived candidate peptides for the induction of tumor‑reactive CTLs. Nine EML4-ALK‑derived peptides were selected by a computer algorithm based on a permissive HLA-A 02:01 or HLA-A 24:02 binding motif. One of the nine peptides induced peptide-specific CTLs from human peripheral blood mononuclear cells. We were able to generate a peptide‑specific CTL clone. This CTL clone specifically recognized peptide‑pulsed T2 cells and H2228 cells expressing HLA-A 02:01 and EML4-ALK that had been treated with IFN-γ 48 h prior to examination. CTL activity was inhibited by an anti-HLA‑class I monoclonal antibody (W6/32), consistent with a class I-restricted mechanism of cytotoxicity. These results suggest that this peptide (RLSALESRV) is a novel HLA-A 02:01-restricted CTL epitope and that it may be a new target for antigen-specific immunotherapy against EML4‑ALK-positive cancers.

Gunda V, Frederick DT, Bernasconi MJ, et al.
A potential role for immunotherapy in thyroid cancer by enhancing NY-ESO-1 cancer antigen expression.
Thyroid. 2014; 24(8):1241-50 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: NY-ESO-1 is one of the most immunogenic members of the cancer/testis antigen family and its levels can be increased after exposure to demethylating and deacetylating agents. This cytoplasmic antigen can serve as a potent target for cancer immunotherapy and yet has not been well studied in differentiated thyroid cancer cells.
METHODS: We studied the baseline expression of NY-ESO-1 messenger RNA and protein before and after exposure to 5-aza-2'-deoxycytidine (DAC) (72 hours) in a panel of thyroid cancer cell lines using quantitative polymerase chain reaction and Western blot. HLA-A2+, NY-ESO-1+ thyroid cell lines were then co-cultured with peripheral blood lymphocytes transduced with NY-ESO-1 specific T-cell receptor (TCR) and assayed for interferon-gamma and Granzyme-B release in the medium. SCID mice injected orthotopically with BCPAP cells were treated with DAC to evaluate for NY-ESO-1 gene expression in vivo.
RESULTS: None of the thyroid cancer cell lines showed baseline expression of NY-ESO-1. Three cell lines, BCPAP, TPC-1, and 8505c, showed an increase in NY-ESO-1 gene expression with DAC treatment and were found to be HLA-A2 positive. DAC-treated target BCPAP and TPC-1 tumor cells with up-regulated NY-ESO-1 levels were able to mount an appropriate interferon-gamma and Granzyme-B response upon co-culture with the NY-ESO-1-TCR-transduced peripheral blood lymphocytes. In vivo DAC treatment was able to increase NY-ESO-1 expression in an orthotopic mouse model with BCPAP cells.
CONCLUSION: Our data suggest that many differentiated thyroid cancer cells can be pressed to express immune antigens, which can then be utilized in TCR-based immunotherapeutic interventions.

Jin P, Civini S, Zhao Y, et al.
Direct T cell-tumour interaction triggers TH1 phenotype activation through the modification of the mesenchymal stromal cells transcriptional programme.
Br J Cancer. 2014; 110(12):2955-64 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Mesenchymal stromal cells (MSCs) are heterogeneous cells with immunoregulatory and wound-healing properties. In cancer, they are known to be an essential part of the tumour microenvironment. However, their role in tumour growth and rejection remains unclear. To investigate this, we co-cultured human MSCs, tumour infiltrating lymphocytes (TIL), and melanoma cells to investigate the role of MSCs in the tumour environment.
METHODS: Mesenchymal stromal cells were co-cultured with melanoma antigen-specific TIL that were stimulated either with HLA-A*0201(+) melanoma cells or with a corresponding clone that had lost HLA-A*0201 expression.
RESULTS: Activated TIL induced profound pro-inflammatory gene expression signature in MSCs. Analysis of culture supernatant found that MSCs secreted pro-inflammatory cytokines, including TH1 cytokines that have been previously associated with immune-mediated antitumor responses. In addition, immunohistochemical analysis on selected markers revealed that the same activated MSCs secreted both the TH1 cytokine (interleukin-12) and indoleamine 2,3 dioxygenase (IDO), a classical immunosuppressive factor.
CONCLUSIONS: This study reflected that the plasticity of MSCs is highly dependent upon microenvironment conditions. Tumour-activated TIL induced TH1 phenotype change in MSCs that is qualitatively similar to the previously described immunologic constant of rejection signature observed during immune-mediated, tissue-specific destruction. This response may be responsible for the in loco amplification of antigen-specific anti-cancer immune response.

Brown SD, Warren RL, Gibb EA, et al.
Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival.
Genome Res. 2014; 24(5):743-50 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Somatic missense mutations can initiate tumorogenesis and, conversely, anti-tumor cytotoxic T cell (CTL) responses. Tumor genome analysis has revealed extreme heterogeneity among tumor missense mutation profiles, but their relevance to tumor immunology and patient outcomes has awaited comprehensive evaluation. Here, for 515 patients from six tumor sites, we used RNA-seq data from The Cancer Genome Atlas to identify mutations that are predicted to be immunogenic in that they yielded mutational epitopes presented by the MHC proteins encoded by each patient's autologous HLA-A alleles. Mutational epitopes were associated with increased patient survival. Moreover, the corresponding tumors had higher CTL content, inferred from CD8A gene expression, and elevated expression of the CTL exhaustion markers PDCD1 and CTLA4. Mutational epitopes were very scarce in tumors without evidence of CTL infiltration. These findings suggest that the abundance of predicted immunogenic mutations may be useful for identifying patients likely to benefit from checkpoint blockade and related immunotherapies.

Laske K, Shebzukhov YV, Grosse-Hovest L, et al.
Alternative variants of human HYDIN are novel cancer-associated antigens recognized by adaptive immunity.
Cancer Immunol Res. 2013; 1(3):190-200 [PubMed] Related Publications
A mutation in the hydin gene has been recently described as one possible mechanism leading to lethal congenital hydrocephalus in mice, and a similar defect is proposed to be involved in an autosomal recessive form of hydrocephalus in human. Here, we report for the first time on the cancer association and immunogenicity of two HYDIN variants in humans. One is a previously described sequence derived from the chromosome 1 gene copy, that is, KIAA1864. The second is encoded by a novel alternative transcript originating from the chromosome 16, which we identified by immunoscreening of a testis-derived cDNA expression library with sera of patients with colorectal cancer, and called MO-TES391. Both variants are targeted by immunoglobulin G antibodies in a significant subset of cancer patients but only rarely in healthy donors. Moreover, we identify HLA-A*0201-restricted sequences derived from MO-TES391 and KIAA1864, which are specifically recognized by human cytotoxic CD8(+) T cells. Taken together, these results suggest frequent and coordinated adaptive immune responses against HYDIN variants in patients with cancer and propose HYDIN as a novel cancer-associated antigen.

Mrazek F, Onderkova J, Szotkowski T, et al.
Somatic mutation in acute myelogenous leukemia cells imitate novel germline HLA-A allele: a case report.
Tissue Antigens. 2014; 83(6):414-7 [PubMed] Related Publications
A somatic mutation of the human leukocyte antigen (HLA)-A gene revealed in tumour cells of acute myelogenous leukemia (AML) is described. A patient with AML and her siblings were routinely typed for HLA in order to find a suitable donor for haematopoietic stem cell transplantation. Sequencing-based typing of the initial patient's sample characterized by high proportion of blasts revealed unknown G/A exchange at position 781 of the HLA-A gene (exon 4) associated with HLA-A*02:01 allele. Importantly, this G781A variant was completely absent in the patient's remission sample obtained after the clearance of blasts. Our results are a reminder that HLA mutations in tumour cells may interfere with routine HLA typing and should always be considered, namely, in patients with haematological malignancies.

Dubrovsky L, Pankov D, Brea EJ, et al.
A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+ leukemias.
Blood. 2014; 123(21):3296-304 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Acute and chronic leukemias, including CD34(+) CML cells, demonstrate increased expression of the Wilms tumor gene 1 product (WT1), making WT1 an attractive therapeutic target. However, WT1 is a currently undruggable, intracellular protein. ESKM is a human IgG1 T-cell receptor mimic monoclonal antibody directed to a 9-amino acid sequence of WT1 in the context of cell surface HLA-A*02. ESKM was therapeutically effective, alone and in combination with tyrosine kinase inhibitors (TKIs), against Philadelphia chromosome-positive acute leukemia in murine models, including a leukemia with the most common, pan-TKI, gatekeeper resistance mutation, T315I. ESKM was superior to the first-generation TKI, imatinib. Combination therapy with ESKM and TKIs was superior to either drug alone, capable of curing mice. ESKM showed no toxicity to human HLA-A*02:01(+) stem cells under the conditions of this murine model. These features of ESKM make it a promising nontoxic therapeutic agent for sensitive and resistant Ph(+) leukemias.

Mountzios G, Rampias T, Psyrri A
The mutational spectrum of squamous-cell carcinoma of the head and neck: targetable genetic events and clinical impact.
Ann Oncol. 2014; 25(10):1889-900 [PubMed] Related Publications
Squamous-cell cancer of the head and neck (SCCHN) represents a heterogeneous disease entity, with various etiological factors implicated in the genesis of distinct molecular subsets of tumors, which exhibit different biological and clinical behavior. Treatment of SCCHN is expected to change in the next decade as targeted therapies continue to make strides. Recently, next-generation sequencing studies conducted on ∼190 SCCHN specimens shed light into the molecular pathogenesis of the disease. These studies discovered mutations in genes involved in the differentiation program of squamous epithelium and the Notch/p63 axis (such as NOTCH1, TP63 and FBXW7), and validated genetic alterations derived from previous studies (such as mutations in TP53, CDKN2A, PIK3CA, CCND1 and HRAS) as driver genetic events in SCCHN neoplastic transformation. More recently, comprehensive data from The Cancer Genome Atlas (TCGA) project on 306 SCCHN specimens provided further insight into SCCHN inherent molecular complexity, identifying novel significantly mutated genes, including FAT1, MLL2, TGFRBR2, HLA-A, NFE2l2 and CASP8. In this article, we provide an overview of the mutational spectrum of SCCHN, with emphasis on the clinical implementation of this knowledge. We also discuss the potential integration of new data within the framework of precision cancer medicine.

Oji Y, Tatsumi N, Fukuda M, et al.
The translation elongation factor eEF2 is a novel tumor‑associated antigen overexpressed in various types of cancers.
Int J Oncol. 2014; 44(5):1461-9 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Recent studies have shown that cancer immunotherapy could be a promising therapeutic approach for the treatment of cancer. In the present study, to identify novel tumor-associated antigens (TAAs), the proteins expressed in a panel of cancer cells were serologically screened by immunoblot analysis and the eukaryotic elongation factor 2 (eEF2) was identified as an antigen that was recognized by IgG autoantibody in sera from a group of patients with head and neck squamous cell carcinoma (HNSCC) or colon cancer. Enzyme-linked immunosorbent assay showed that serum eEF2 IgG Ab levels were significantly higher in colorectal and gastric cancer patients compared to healthy individuals. Immunohistochemistry experiments showed that the eEF2 protein was overexpressed in the majority of lung, esophageal, pancreatic, breast and prostate cancers, HNSCC, glioblastoma multiforme and non-Hodgkin's lymphoma (NHL). Knockdown of eEF2 by short hairpin RNA (shRNA) significantly inhibited the growth in four eEF2-expressing cell lines, PC14 lung cancer, PCI6 pancreatic cancer, HT1080 fibrosarcoma and A172 glioblastoma cells, but not in eEF2-undetectable MCF7 cells. Furthermore, eEF2-derived 9-mer peptides, EF786 (eEF2 786-794 aa) and EF292 (eEF2 292-300 aa), elicited cytotoxic T lymphocyte (CTL) responses in peripheral blood mononuclear cells (PBMCs) from an HLA-A*24:02- and an HLA-A*02:01-positive healthy donor, respectively, in an HLA-A-restricted manner. These results indicated that the eEF2 gene is overexpressed in the majority of several types of cancers and plays an oncogenic role in cancer cell growth. Moreover, the eEF2 gene product is immunogenic and a promising target molecule of cancer immunotherapy for several types of cancers.

Minami T, Minami T, Shimizu N, et al.
Identification of erythropoietin receptor-derived peptides having the potential to induce cancer-reactive cytotoxic T lymphocytes from HLA-A24(+) patients with renal cell carcinoma.
Int Immunopharmacol. 2014; 20(1):59-65 [PubMed] Related Publications
Molecular targeting therapy with anti-angiogenic agents, including sunitinib and sorafenib, has been proven to be the first- and second-line standard treatments for metastatic renal cell carcinoma (mRCC) worldwide. Despite their significant antitumor effects, most of the patients with mRCC have not been cured. Under such circumstances, anti-cancer immunotherapy has been considered as a promising treatment modality for mRCC, and cytotoxic T lymphocytes (CTLs) are the most powerful effectors among several immune cells and molecules. Therefore, we previously conducted anti-cancer vaccine therapy with peptides derived from carbonic anhydrase-9 and vascular endothelial growth factor receptor-1 as phase-I/II trials for mRCC patients and reported their clinical benefits. Alternatively, up-regulated expression of erythropoietin (Epo) and its receptor (EpoR) in RCC has been reported, and their co-expression is involved in tumorigenesis. In order to increase options for peptide-based vaccination therapy, we searched for novel EpoR-peptides for HLA-A24(+) RCC patients. Among 5 peptides derived from EpoR, which were prepared based on the binding motif to the HLA-A24 allele, EpoR52-60 peptide had the potential to induce peptide-specific CTLs from peripheral blood mononuclear cells of HLA-A24(+) RCC patients. Cytotoxicity toward HLA-A24(+) and EpoR-expressing RCC cells was ascribed to peptide-specific CD8(+) T cells. These results indicate that the EpoR52-60 peptide could be a promising candidate for a peptide-based anti-cancer vaccine for HLA-A24(+) mRCC patients.

Brazzelli V, Rivetti N, Badulli C, et al.
Immunogenetic factors in mycosis fungoides: can the HLA system influence the susceptibility and prognosis of the disease? Long-term follow-up study of 46 patients.
J Eur Acad Dermatol Venereol. 2014; 28(12):1732-7 [PubMed] Related Publications
BACKGROUND: Mycosis fungoides (MF) is the most common and one of the least aggressive forms of cutaneous T-cell lymphoma. Several studies have demonstrated the influence of human leucocyte antigen (HLA) genes on the susceptibility of MF, highlighting the importance of certain alleles but, until today, no studies have evaluated the relationship between HLA alleles and the prognosis of patients with MF.
OBJECTIVE: The aim of this retrospective cohort study was to evaluate the polymorphism of HLA class I and class II alleles in a group of 46 MF Caucasian patients, looking for their influence in susceptibility and prognosis of the disease.
METHODS: Study population included a case-cohort sample of 46 Caucasian patients with MF that, between 1993 and 1997, underwent HLA class I and II genomic typing. All patients were diagnosed and followed up from 1977 to 2012 (mean follow-up of 11 years) and they were divided into three groups according to the evolution of the disease.
RESULTS: Molecular typing at low-resolution level revealed that HLA-A*24, A*68, A*69, B*35 and DQB1*05:02 alleles were involved in susceptibility to MF. Correspondence analysis underlined that long-lasting remission was characterized by HLA-A*24 and HLA-A*25 alleles, frequent relapse by HLA-DRB1*01, DQA1*01:01, DQB1*05:01 alleles and death by HLA-A*68, HLA-B*08, HLA-B*35, HLA-C*03 alleles.
CONCLUSION: This study suggests that the prognosis of MF patients is not only correlated with clinical/pathological/serological/immunological variables but it also relies on specific HLA alleles.

Sanz J, Jaramillo FJ, Planelles D, et al.
Impact on outcomes of human leukocyte antigen matching by allele-level typing in adults with acute myeloid leukemia undergoing umbilical cord blood transplantation.
Biol Blood Marrow Transplant. 2014; 20(1):106-10 [PubMed] Related Publications
This retrospective study analyzed the impact of directional donor-recipient human leukocyte antigen (HLA) disparity using allele-level typing at HLA-A, -B, -C, and -DRB1 in 79 adults with acute myeloid leukemia (AML) who received single-unit umbilical cord blood (UCB) transplant at a single institution. With extended high-resolution HLA typing, the donor-recipient compatibility ranged from 2/8 to 8/8. HLA disparity showed no negative impact on nonrelapse mortality (NRM), graft-versus-host (GVH) disease or engraftment. Considering disparities in the GVH direction, the 5-year cumulative incidence of relapse was 44% and 22% for patients receiving an UCB unit matched ≥ 6/8 and < 6/8, respectively (P = .04). In multivariable analysis, a higher HLA disparity in the GVH direction using extended high-resolution typing (Risk ratio [RR] 2.8; 95% confidence interval [CI], 1.5 to 5.1; P = .0009) and first complete remission at time of transplantation (RR 2.1; 95% CI, 1.2 to 3.8; P = .01) were the only variables significantly associated with an improved disease-free survival. In conclusion, we found that in adults with AML undergoing single-unit UCBT, an increased number of HLA disparities at allele-level typing improved disease-free survival by decreasing the relapse rate without a negative effect on NRM.

Nishida S, Koido S, Takeda Y, et al.
Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer.
J Immunother. 2014 Feb-Mar; 37(2):105-14 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Wilms tumor gene (WT1) protein is an attractive target for cancer immunotherapy. We aimed to investigate the feasibility of a combination therapy consisting of gemcitabine and WT1 peptide-based vaccine for patients with advanced pancreatic cancer and to make initial assessments of its clinical efficacy and immunologic response. Thirty-two HLA-A*24:02 patients with advanced pancreatic cancer were enrolled. Patients received HLA-A*24:02-restricted, modified 9-mer WT1 peptide (3 mg/body) emulsified with Montanide ISA51 adjuvant (WT1 vaccine) intradermally biweekly and gemcitabine (1000 mg/m) on days 1, 8, and 15 of a 28-day cycle. This combination therapy was well tolerated. The frequencies of grade 3-4 adverse events for this combination therapy were similar to those for gemcitabine alone. Objective response rate was 20.0% (6/30 evaluable patients). Median survival time and 1-year survival rate were 8.1 months and 29%, respectively. The association between longer survival and positive delayed-type hypersensitivity to WT1 peptide was statistically significant, and longer survivors featured a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes both before and after treatment. WT1 vaccine in combination with gemcitabine was well tolerated for patients with advanced pancreatic cancer. Delayed-type hypersensitivity-positivity to WT1 peptide and a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes could be useful prognostic markers for survival in the combination therapy with gemcitabine and WT1 vaccine. Further clinical investigation is warranted to determine the effectiveness of this combination therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HLA-A, Cancer Genetics Web: http://www.cancer-genetics.org/HLA-A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 August, 2015     Cancer Genetics Web, Established 1999