TNFSF10

Gene Summary

Gene:TNFSF10; TNF superfamily member 10
Aliases: TL2, APO2L, CD253, TRAIL, Apo-2L, TNLG6A
Location:3q26.31
Summary:The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This protein preferentially induces apoptosis in transformed and tumor cells, but does not appear to kill normal cells although it is expressed at a significant level in most normal tissues. This protein binds to several members of TNF receptor superfamily including TNFRSF10A/TRAILR1, TNFRSF10B/TRAILR2, TNFRSF10C/TRAILR3, TNFRSF10D/TRAILR4, and possibly also to TNFRSF11B/OPG. The activity of this protein may be modulated by binding to the decoy receptors TNFRSF10C/TRAILR3, TNFRSF10D/TRAILR4, and TNFRSF11B/OPG that cannot induce apoptosis. The binding of this protein to its receptors has been shown to trigger the activation of MAPK8/JNK, caspase 8, and caspase 3. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor necrosis factor ligand superfamily member 10
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • alpha-Fetoproteins
  • Messenger RNA
  • Lung Cancer
  • Chromosome 3
  • Recombinant Proteins
  • CASP8
  • BAK1
  • Ubiquitin-Protein Ligases
  • Enzyme Activation
  • Breast Cancer
  • Caspase 8
  • Tumor Suppressor Proteins
  • rho-Associated Kinases
  • RNA Interference
  • Cell Survival
  • Caspases
  • Apoptosis
  • Down-Regulation
  • Promoter Regions
  • Cancer Gene Expression Regulation
  • fas Receptor
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • X-Linked Inhibitor of Apoptosis Protein
  • Oligonucleotide Array Sequence Analysis
  • siRNA
  • Mice, Inbred BALB C
  • Drug Synergism
  • Antineoplastic Agents
  • Cell Proliferation
  • bcl-2-Associated X Protein
  • Colonic Neoplasms
  • Tumor Necrosis Factors
  • Genetic Therapy
  • Transfection
  • Drug Resistance
  • Bladder Cancer
  • Apoptosis Regulatory Proteins
  • TNF-Related Apoptosis-Inducing Ligand
  • Signal Transduction
  • Membrane Glycoproteins
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: TNFSF10 (cancer-related)

Namgung Y, Kim SY, Kim I
Down-regulation of Survivin by BIX-01294 Pretreatment Overcomes Resistance of Hepatocellular Carcinoma Cells to TRAIL.
Anticancer Res. 2019; 39(7):3571-3578 [PubMed] Related Publications
BACKGROUND/AIM: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cancer-selective, cell-death-inducing agent with little toxicity to normal cells. However, various human cancers and cancer cell lines have been reported to be resistant to TRAIL. Molecular clarification of resistance mechanism is needed.
MATERIALS AND METHODS: Compound screening, proliferation assays, western blotting, and flow cytometry were used to examine the sensitizer activity of methyl transferase inhibitor BIX-01294 in combination with TRAIL, in hepatocellular carcinoma (HCC) cells. RNA sequencing analysis and single guide (sg)RNA-mediated gene deletion were used to investigate the role of survivin in sensitization.
RESULTS: In HCC cells, BIX-01294 enhanced TRAIL sensitivity by reducing survivin expression at the RNA level. Small interference RNA-mediated gene knockdown demonstrated the mechanism of sensitization to be via the reduction of survivin.
CONCLUSION: Euchromatin histone methyltransferase 2 (EHMT2) inhibition by BIX-01294 may be a potent anti-tumor therapeutic strategy for human HCC.

Li N, Fan X, Wang X, et al.
Autophagy-Related 5 Gene rs510432 Polymorphism Is Associated with Hepatocellular Carcinoma in Patients with Chronic Hepatitis B Virus Infection.
Immunol Invest. 2019; 48(4):378-391 [PubMed] Related Publications
BACKGROUND: Despite the identification of autophagy-related protein 5 (ATG5) as a molecule involved in the activated autophagy machinery during hepatitis B virus (HBV) infection and hepatocarcinogenesis, the consequences of ATG5 mutation carriage for patients with chronic HBV infection remain unclear. This study examined the association of ATG5 polymorphisms with HBV-related diseases including hepatocellular carcinoma (HCC).
PATIENTS AND METHODS: Two functionally relevant polymorphisms ATG5 rs573775 and rs510432 were genotyped by ligase detection reaction-polymerase chain reaction in 403 patients with chronic HBV infection (171 chronic hepatitis, 119 cirrhosis and 113 HCC) and 196 healthy controls. Univariate and multivariate logistic regression was performed to evaluate factors associated with HCC.
RESULTS: The rs573775 genotype and allele frequencies had no significant differences between patients with different clinical diseases. However, HCC patients had significantly higher frequency of rs510432 genotype AA (odds ratio [OR] 2.185, 95% confidence interval [CI] 1.042-4.581, P = 0.037, P value by Bonferroni correction [P
CONCLUSION: These results indicate that rs510432 genotypes AA+GA are associated with disease progression and HCC risk in chronic HBV infection, providing novel evidence for a role of ATG5 in the pathogenesis of HBV-related HCC.
ABBREVIATIONS: HBV: hepatitis B virus; HCC hepatocellular carcinoma; TNFSF10: tumor necrosis factor superfamily member 10; ATG5: autophagy-related protein 5; DNA: deoxyribonucleic acid; LDR-PCR: ligase detection reactions-polymerase chain reaction; PCR: polymerase chain reaction; SLE: systemic lupus erythematosus; BD: Behçet's disease; IL-10: interlukin-10; LPS: lipopolysaccharide; PBMC: peripheral blood mononuclear cells; CWP: coal workers' pneumoconiosis; TNF-α: tumor necrosis factor-α.

Park YL, Ha SY, Park SY, et al.
Reversine induces cell cycle arrest and apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells.
Int J Oncol. 2019; 54(5):1875-1883 [PubMed] Related Publications
Reversine, a 2,6‑diamino‑substituted purine analogue, has been reported to be effective in tumor suppression via induction of cell growth arrest and apoptosis of cancer cells. However, it remains unclear whether reversine exerts anticancer effects on human colorectal cancer cells. In the present study, in vitro experiments were conducted to investigate the anticancer properties of reversine in human colorectal cancer cells. The effect of reversine on human colorectal cancer cell lines, SW480 and HCT‑116, was examined using a WST‑1 cell viability assay, fluorescence microscopy, flow cytometry, DNA fragmentation, small interfering RNA (siRNA) and western blotting. Reversine treatment demonstrated cytotoxic activity in human colorectal cancer cells. It also induced apoptosis by activating poly(ADP‑ribose) polymerase, caspase‑3, ‑7 and ‑8, and increasing the levels of the pro‑apoptotic protein second mitochondria‑derived activator of caspase/direct inhibitor of apoptosis‑binding protein with low pI. The pan‑caspase inhibitor Z‑VAD‑FMK attenuated these reversine‑induced apoptotic effects on human colorectal cancer cells. Additionally, reversine treatment induced cell cycle arrest in the subG1 and G2/M phases via increase in levels of p21, p27 and p57, and decrease in cyclin D1 levels. The expression of Fas and death receptor 5 (DR5) signaling proteins in SW480 and HCT116 cells was upregulated by reversine treatment. Reversine‑induced apoptosis and cell cycle arrest were suppressed by inhibition of Fas and DR5 expression via siRNA. In conclusion, Reversine treatment suppressed tumor progression by the inhibition of cell proliferation, induction of cell cycle arrest and induction of apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells. The present study indicated that reversine may be used as a novel anticancer agent in human colorectal cancer.

Lee MW, Kim DS, Kim HR, et al.
Inhibition of N-myc expression sensitizes human neuroblastoma IMR-32 cells expressing caspase-8 to TRAIL.
Cell Prolif. 2019; 52(3):e12577 [PubMed] Related Publications
OBJECTIVES: This study aims to explore the roles of N-myc and caspase-8 in TRAIL-resistant IMR-32 cells which exhibit MYCN oncogene amplification and lack caspase-8 expression.
MATERIALS AND METHODS: We established N-myc-downregulated IMR-32 cells using shRNA lentiviral particles targeting N-myc and examined the effect the N-myc inhibition on TRAIL susceptibility in human neuroblastoma IMR-32 cells expressing caspase-8.
RESULTS: Cisplatin treatment in IMR-32 cells increased the expression of death receptor 5 (DR5; TRAIL-R2), but not other receptors, via downregulation of NF-κB activity. However, the cisplatin-mediated increase in DR5 failed to induce cell death following TRAIL treatment. Furthermore, interferon (IFN)-γ pretreatment increased caspase-8 expression in IMR-32 cells, but cisplatin failed to trigger TRAIL cytotoxicity. We downregulated N-myc expression in IMR-32 cells using N-myc-targeting shRNA. These cells showed decreased growth rate and Bcl-2 expression accompanied by a mild collapse in the mitochondrial membrane potential as compared with those treated with scrambled shRNA. TRAIL treatment in N-myc-negative cells expressing caspase-8 following IFN-γ treatment significantly triggered apoptotic cell death. Concurrent treatment with cisplatin enhanced TRAIL-mediated cytotoxicity, which was abrogated by an additional pretreatment with DR5:Fc chimera protein.
CONCLUSIONS: N-myc and caspase-8 expressions are involved in TRAIL susceptibility in IMR-32 cells, and the combination of treatment with cisplatin and TRAIL may serve as a promising strategy for the development of therapeutics against neuroblastoma that is controlled by N-myc and caspase-8 expression.

Wu LS, Wang XW, He W, et al.
TRAIL inhibits platelet-induced colorectal cancer cell invasion.
J Int Med Res. 2019; 47(2):962-972 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand that activates the extrinsic apoptosis pathway of cell death receptors. This study aimed to evaluate the relationship between TRAIL and platelet-induced tumor metastasis in colorectal cancer.
METHODS: Platelet P-selectin (CD62P) was measured by immunohistochemistry in tumor and adjacent normal tissues from 90 patients with colorectal cancer undergoing resection. Tumor cell invasion was assessed by transwell assay in the presence of platelets with or without TRAIL. The expression of TRAIL receptors DR4 and DR5 on platelets was assessed by flow cytometry, real-time polymerase chain reaction, and western blotting.
RESULTS: P-selectin (CD62P) expression was significantly increased in tumor tissues compared with adjacent normal tissues. High CD62P expression was significantly correlated with tumor stage and vascular invasion. Tumor cell migration was increased by coculture with platelets, but this effect was inhibited by TRAIL. Transforming growth factor (TGF)-β1 secretion was significantly reduced in TRAIL-treated platelets. The TRAIL receptor DR5 but not DR4 was expressed in platelets according to flow cytometry.
CONCLUSIONS: TRAIL could inhibit metastasis and colon cancer cell invasion by promoting platelet apoptosis and reducing the release of TGF-β1.

Bashanfer SAA, Saleem M, Heidenreich O, et al.
Disruption of MAPK1 expression in the ERK signalling pathway and the RUNX1‑RUNX1T1 fusion gene attenuate the differentiation and proliferation and induces the growth arrest in t(8;21) leukaemia cells.
Oncol Rep. 2019; 41(3):2027-2040 [PubMed] Related Publications
The t(8;21) translocation is one of the most frequent chromosome abnormalities associated with acute myeloid leukaemia (AML). This abberation deregulates numerous molecular pathways including the ERK signalling pathway among others. Therefore, the aim of the present study was to investigate the gene expression patterns following siRNA‑mediated suppression of RUNX1‑RUNX1T1 and MAPK1 in Kasumi‑1 and SKNO‑1 cells and to determine the differentially expressed genes in enriched biological pathways. BeadChip microarray and gene ontology analysis revealed that RUNX1‑RUNX1T1 and MAPK1 suppression reduced the proliferation rate of the t(8;21) cells with deregulated expression of several classical positive regulator genes that are otherwise known to enhance cell proliferation. RUNX1‑RUNX1T1 suppression exerted an anti‑apoptotic effect through the overexpression of BCL2, BIRC3 and CFLAR genes, while MAPK1 suppression induced apopotosis in t(8;21) cells by the apoptotic mitochondrial changes stimulated by the activity of upregulated TP53 and TNFSF10, and downregulated JUN gene. RUNX1‑RUNX1T1 suppression supported myeloid differentiation by the differential expression of CEBPA, CEBPE, ID2, JMJD6, IKZF1, CBFB, KIT and CDK6, while MAPK1 depletion inhibited the differentiation of t(8;21) cells by elevated expression of ADA and downregulation of JUN. RUNX1‑RUNX1T1 and MAPK1 depletion induced cell cycle arrest at the G0/G1 phase. Accumulation of cells in the G1 phase was largely the result of downregulated expression of TBRG4, CCNE2, FOXO4, CDK6, ING4, IL8, MAD2L1 and CCNG2 in the case of RUNX1‑RUNX1T1 depletion and increased expression of RASSF1, FBXO6, DADD45A and P53 in the case of MAPK1 depletion. Taken together, the current results demonstrate that MAPK1 promotes myeloid cell proliferation and differentiation simultaneously by cell cycle progression while suppresing apoptosis.

Guesmi F, Ben Hmed M, Prasad S, et al.
In vivo pathogenesis of colon carcinoma and its suppression by hydrophilic fractions of Clematis flammula via activation of TRAIL death machinery (DRs) expression.
Biomed Pharmacother. 2019; 109:2182-2191 [PubMed] Related Publications
This work focused on characterizing hydrophilic fractions of Clematis flammula (CFl). The data here clearly demonstrated that hydrolate fractions act as a free radical scavengers and inhibited proliferation of different cell lines in a time- and concentration-dependent manner, transwell, and with a significant cytotoxic effect. Treating cells with CFl had the effect of suppressing cell growth attenuated by ROS generation in colonic carcinoma. Moreover, CFl in HCT116 cells suppressed survival, proliferation, invasion, angiogenesis and metastasis in vitro by inhibiting gene expression. Following CFl treatment, caspases and PARP cleavage were detected. The up- and down-regulated genes obtained from the WBA of the effect of CFl showed that several biological processes were associated with apoptosis and induction of G1 cell cycle arrest. CFl synergizes the effect of TRAIL by down-regulating the expression of cell survival proteins involved in apoptosis compared to cells treated with CFl or TRAIL alone. Our findings showed that CFl sensitizes apoptosis in TRAIL-resistant cells by activating MAPKs, SP1, and CHOP, that induced DR5 expression. Overall, our data showed that CFl is a promising antitumor agent through kinases and transcription factor induction, both of which are required to activate TRAIL receptors. Colon inflammation induced by LPS was inhibited by CFl hydrolate.

Xu S, Li D, Li T, et al.
miR-494 Sensitizes Gastric Cancer Cells to TRAIL Treatment Through Downregulation of Survivin.
Cell Physiol Biochem. 2018; 51(5):2212-2223 [PubMed] Related Publications
BACKGROUND/AIMS: TNF-related apoptosis-inducing ligand (TRAIL) is a novel and low-toxic anti-tumor drug used for various cancers. However, cancer cells usually develop mechanisms to acquire the resistance against TRAIL. Among these changes, dysregulation of microRNAs (miRNAs) usually occurs in cancer cells and is responsible for induction of drug resistance.
METHODS: Expression of miR-494 in gastric cancer tissues and cell lines was detected by quantitative reverse transcriptase real time PCR (qRT-PCR) analysis. Effect of miR-494 on regulating the TRAIL sensitivity to gastric cancer cell lines was evaluated by MTT assays. Bioinformatics and luciferase reporter assays were used to confirm the regulation of miR-494 on survivin. Mitochondrial apoptosis pathway in gastric cancer cells was tested by western blot and flow cytometry analysis.
RESULTS: Obvious downregulation of miR-494 was observed in gastric cancer cells. Furthermore, we found that expression profile of miR-494 was associated with TRAIL-sensitivity in gastric cancer. Enforced expression of miR-494 was found to sensitize the gastric cancer cells to TRAIL-induced cytotoxicity. Mechanically, Luciferase reporter assays proved that survivin was the target of miR-494 in gastric cancer cells. Enforced expression of miR-494 decreased the expression of survivin, and thus promoted the TRAIL-induced mitochondria collapse and apoptosis pathway.
CONCLUSION: MiR-494/survivin axis represents a potential mechanism which is responsible for TRAIL resistance in gastric cancer cells. Increasing the miR-494 expression may serve as a novel therapeutic strategy to sensitize gastric cancer cells to TRAIL treatment.

D'Angelo F, Ceccarelli M, Tala, et al.
The molecular landscape of glioma in patients with Neurofibromatosis 1.
Nat Med. 2019; 25(1):176-187 [PubMed] Related Publications
Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic glioma remain unknown. Here, we present the molecular landscape of low- and high-grade gliomas in patients affected by NF1 (NF1-glioma). We found that the predisposing germline mutation of the NF1 gene was frequently converted to homozygosity and the somatic mutational load of NF1-glioma was influenced by age and grade. High-grade tumors harbored genetic alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative Lengthening of Telomere, and were enriched in genetic alterations of transcription/chromatin regulation and PI3 kinase pathways. Low-grade tumors exhibited fewer mutations that were over-represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-gliomas displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA methylation assigned NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-type subgroup enriched with ATRX mutations. Thus, the profiling of NF1-glioma defined a distinct landscape that recapitulates a subset of sporadic tumors.

Zhao L, Okhovat JP, Hong EK, et al.
Preclinical Studies Support Combined Inhibition of BET Family Proteins and Histone Deacetylases as Epigenetic Therapy for Cutaneous T-Cell Lymphoma.
Neoplasia. 2019; 21(1):82-92 [PubMed] Free Access to Full Article Related Publications
Advanced-stage cutaneous T-cell lymphoma (CTCL) is usually a fatal malignancy despite optimal use of currently available treatments. In this preclinical study of novel CTCL therapy, we performed in vitro and ex vivo experiments to determine the efficacy of combination treatment with a panel of BET bromodomain inhibitors (BETi) (JQ1, OTX015, CPI-0610, I-BET762) and HDAC inhibitors (HDACi) (SAHA/Vorinostat, Romidepsin). BETi/HDACi combinations were synergistic (combination index <1) against cell viability and induced G0/G1 cell cycle arrest. Apoptosis was uniformly enhanced. From a mechanistic standpoint, proliferative drivers c-Myc, Cyclin D1, NFkB, and IL-15Rα were reduced. Inhibitory CDKN1A was increased. CDKN1B, IL-7R, IL-17Rα, STAT3, and STAT5 alterations varied. There were significant increases in extrinsic apoptotic pathway death receptors and ligands (FasL, DR4, DR5, TRAIL, and TNFR1). At clinically tolerable levels of single agents, Romidepsin (1 nM) + OTX015 (125 nM) induced the greatest apoptosis (60%_80%) at 96 hours. Ex vivo studies of leukemic CTCL cells obtained from patients with Sezary syndrome also showed higher levels of apoptosis (about 60%-90%) in response to combination treatments relative to single agents. In contrast, combination treatment of normal CD4+ T cells induced only minimal apoptosis (<10%). Our findings show that the mechanism of action of BETi/HDACi therapy in CTCL involves induction of both cell cycle arrest and apoptosis with reduced proliferative drivers and enhanced expression of apoptotic extrinsic pathway death receptors and ligands. Relative to single agents, the superior anti-CTCL effects of BETi/HDACi combinations in vitro and ex vivo provide a rationale for clinical trials exploring their efficacy as therapy for CTCL.

Manouchehri JM, Kalafatis M
Ursolic Acid Promotes the Sensitization of rhTRAIL-resistant Triple-negative Breast Cancer.
Anticancer Res. 2018; 38(12):6789-6795 [PubMed] Related Publications
BACKGROUND/AIM: Triple-negative breast cancer (TNBC) can be characterized as the deadliest breast cancer type considering the lack of efficacious therapeutics. Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) is an encouraging anti-cancer therapeutic with the capacity to induce apoptosis in cancer cells but there are TNBCs less susceptible to rhTRAIL. The aim of this study was to assess the potential of the natural product ursolic acid (UA) to sensitize of rhTRAIL-resistant TNBCs.
MATERIALS AND METHODS: In order to evaluate apoptosis induction in rhTRAIL and UA-treated TNBC BT-20 and HCC1937 cells that are resistant to rhTRAIL, western blot analysis and Annexin V/PI assays were executed.
RESULTS: UA increased the expression of death receptors 4 and 5 and decreased the expression of c-FLIP
CONCLUSION: UA is a possible potent sensitizer of rhTRAIL-resistant TNBCs to rhTRAIL-induced apoptosis.

Koç Erbaşoğlu Ö, Horozoğlu C, Ercan Ş, et al.
Effect of trail C1595T variant and gene expression on the pathogenesis of non-small cell lung cancer.
Libyan J Med. 2019; 14(1):1535746 [PubMed] Free Access to Full Article Related Publications
It is known that disorders in apoptosis function play an important role in the pathogenesis of many types of cancer, including lung cancer. Tumor necrosis factor related apoptosis inducing ligand (TRAIL), a type II transmembrane protein, is a death ligand capable of inducing apoptosis by activating distinctive death receptor. Our purpose in this study is to investigate the gene polymorphisms in TRAIL molecular pathway and TRAIL gene expression levels in non-small cell lung cancer (NSCLC) patients in terms of pathogenesis and prognosis of the disease. In this study, TRAIL C1595T polymorphism was genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis in 158 patients with NSCLC and 98 healthy individuals. Surgically resected tissues were examined and classified histopathologically. In addition, TRAIL gene expression levels in tumor tissue and tumor surrounding tissue samples of 48 patients with NSCLC were determined using real-time polymerase chain reaction. TRAIL gene expression levels of NSCLC patients were detected significantly 28.8 fold decrease in the tumor tissue group compared to the control group (p=0.026). When patients were compared to tumor stage, expression of TRAIL gene in advanced tumor stage was found to be significantly 7.86 fold higher than early tumor stage [p=0.028]. No significant relationship was found between NSCLC predisposition and prognostic parameters of NSCLC with TRAIL genotypes, but the frequency of TRAIL gene 1595 CT genotype was observed to be lower in the patients compared to the other genotypes, and the difference was found to be very close to statistical significance (p=0.07). It can be suggested that TRAIL may play an important role in the development of NSCLC and may be an effective prognostic factor in tumor progression.: It is known that disorders in apoptosis function play an important role in the pathogenesis of many types of cancer, including lung cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein, is a death ligand capable of inducing apoptosis by activating distinctive death receptor. Our purpose in this study is to investigate the gene polymorphisms in TRAIL molecular pathway and TRAIL gene expression levels in non-small cell lung cancer (NSCLC) patients in terms of pathogenesis and prognosis of the disease.

Yang LC, Lai CY, Hsieh CC, Lin WC
Natural killer cell-mediated anticancer effects of an arabinogalactan derived from rice hull in CT26 colon cancer-bearing mice.
Int J Biol Macromol. 2019; 124:368-376 [PubMed] Related Publications
Rice hull polysaccharides (RHPS) have been reported to activate innate immunity in mice. This study investigated the effects of RHPS on natural killer (NK) cell-mediated cytotoxicity in vitro and the possible underlying anticancer mechanisms in vivo. The results showed that sustained exposure to RHPS increased NK-92MI cell-mediated cytotoxicity in a time- and concentration-dependent manner. In addition, RHPS upregulated the expression of Fas ligand, TNF-related apoptosis-inducing ligand, perforin, and granzyme B of NK-92MI cells and induced the secretion of IFN-γ and TNF-α. In the in vivo experiment, colon cancer CT26-bearing mice were used to investigate the effects of RHPS in cytotoxicity and anticancer. The results revealed that RHPS inhibited cancer weight and volume in CT26-bearing mice and significantly upregulated splenic cytotoxicity and NK-cell population. Moreover, RHPS treatment increased NK-cell infiltration in tumors. Thus, RHPS can enhance NK-cell activation in vivo and in vitro, thereby exhibiting anticancer activity.

Jeon MY, Min KJ, Woo SM, et al.
Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP.
Molecules. 2018; 23(11) [PubMed] Free Access to Full Article Related Publications
Maritoclax, an active constituent isolated from marine bacteria, has been known to induce Mcl-1 downregulation through proteasomal degradation. In this study, we investigated the sensitizing effect of maritoclax on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. We found that combined treatment with maritoclax and TRAIL markedly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung cancer (A549) and hepatocellular carcinoma (SK-Hep1) cells. The upregulation of death receptor 5 (DR5) and downregulation of cellular FLICE-inhibitory protein (cFLIP) were involved in maritoclax plus TRAIL-induced apoptosis. Maritoclax-induced DR5 upregulation was regulated by induction of C/EBP homologous protein (CHOP) expression. Interestingly, maritoclax induced cFLIP downregulation through the increased expression of miR-708. Ectopic expression of cFLIP prevented combined maritoclax and TRAIL-induced apoptosis. Taken together, maritoclax sensitized TRAIL-induced apoptosis through CHOP-mediated DR5 upregulation and miR-708-mediated cFLIP downregulation.

Tian S, Liu DH, Wang D, et al.
Aldehyde Dehydrogenase 1 (ALDH1) Promotes the Toxicity of TRAIL in Non-Small Cell Lung Cancer Cells via Post-Transcriptional Regulation of MEK-1 Expression.
Cell Physiol Biochem. 2018; 51(1):217-227 [PubMed] Related Publications
BACKGROUND/AIM: Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL)-based therapies have been used in many human cancers. However, some tumors are resistant to TRAIL-induced cell death. Aldehyde dehydrogenase 1 (ALDH1) is a functional marker for identification of CSCs.
METHODS: In this study, we used the colony formation assay, AnnexinV/ PI double staining and PI staining to detect proliferation, apoptosis and cell cycle in ALDH1+ non-small cell lung cancer (NSCLC) cells with TRAIL treatment. In addition, we established xenograft mouse models to confirm the anti-tumor roles of TRAIL in vivo. Finally, gene array and western blot were used to detect the deeper mechanism of the susceptibility of ALDH1+ NSCLC cells to TRAIL.
RESULTS: We confirmed that TRAIL could inhibit proliferation, and induce apoptosis and G1 arrest in ALDH1+ NSCLC cells. Correspondingly, TRAIL was associated with decreased tumor size and the favorable survival rate of ALDH1+ cells established xenograft mouse models. ALDH1 could increase the death receptors (DR) 4 and DR5 expression in ALDH1+ NSCLC cells via activating MEK/ERK signaling pathway.
CONCLUSION: ALDH1 protein induced MEK-1 mRNA stability and promoted its translation via its 3'UTR.

Nazim UM, Park SY
Luteolin sensitizes human liver cancer cells to TRAIL‑induced apoptosis via autophagy and JNK‑mediated death receptor 5 upregulation.
Int J Oncol. 2019; 54(2):665-672 [PubMed] Related Publications
The tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) is a dynamic cytokine that initiates the apoptosis of cancer cells, but exhibits little or no toxicity in normal cells. Luteolin is a flavonoid compound frequently used in the treatment of cancer. In the current study, we demonstrate that treatment with luteolin and TRAIL exerts a synergistic effect and the mechanisms on TRAIL‑resistant Huh7 cells. The results demonstrated that luteolin induced an autophagic flux in human liver cancer cells. The attenuation of the autophagic flux by applying the specific inhibitor of autophagy, chloroquine, significantly suppressed DR5 expression. Treatment with genetically modified autophagy‑related 5 siRNA abrogated the luteolin‑mediated sensitizing effect of TRAIL. Furthermore, pre‑treatment with the c‑Jun N‑terminal kinase (JNK) inhibitor, SP600125, significantly attenuated the luteolin‑induced upregulation of DR5 expression, thereby suggesting that JNK activation promotes DR5 expression. Our findings also revealed that Akt phosphorylation was required for TRAIL sensitization. On the whole, the findings of this study indicated that luteolin effectively enhanced TRAIL‑initiated apoptosis, and that these effects were likely to be mediated by autophagy and JNK‑mediated DR5 expression.

Byun HS, Zhou W, Park I, et al.
C-27-carboxylated oleanane triterpenoids up-regulate TRAIL DISC assembly via p38 MAPK and CHOP-mediated DR5 expression in human glioblastoma cells.
Biochem Pharmacol. 2018; 158:243-260 [PubMed] Related Publications
Despite recent tremendous progress, targeting of TNF-related apoptosis-inducing ligand (TRAIL) as a cancer therapy has limited success in many clinical trials, in part due to inactivation of death inducing signaling complex (DISC)-mediated caspase-8 signaling cascade in highly malignant tumors such as glioblastoma. In this study, screening of constituents derived from Astilbe rivularis for TRAIL-sensitizing activity identified C-27-carboxylated oleanolic acid derivatives (C27OAs) including 3β-hydroxyolean-12-en-27-oic acid (C27OA-1), 3β,6β,7α-trihydroxyolean-12-en-27-oic acid (C27OA-2), and 3β-trans-p-coumaroyloxy-olean-12-en-27-oic acid (C27OA-3) as novel TRAIL sensitizers. Interestingly, these C27OAs did not affect apoptotic cell death induced by either ligation of other death receptor (DR) types, such as TNF and Fas or DNA damaging agents, which suggests that C27OAs effectively and selectively sensitize TRAIL-mediated caspase-8 activation. Mechanistically, C27OAs upregulate the expression of cell surface DR5 and DISC formation without affecting downstream intracellular apoptosis-related proteins. The upregulation of DR5 expression by C27OAs strictly depends on transactivation of C/EBP homology protein, which is regulated through the p38 MAPK pathway, rather than p53 and intracellular reactive oxygen species status. Taken together, our results identify the novel C27OAs as TRAIL sensitizers targeting the upstream DISC assembly of DR5, and provide a rationale for further development of C27OAs for facilitating TRAIL-based chemotherapy in glioblastoma patients.

Lim EJ, Yoon YJ, Heo J, et al.
Ciprofloxacin Enhances TRAIL-Induced Apoptosis in Lung Cancer Cells by Upregulating the Expression and Protein Stability of Death Receptors through CHOP Expression.
Int J Mol Sci. 2018; 19(10) [PubMed] Free Access to Full Article Related Publications
Ciprofloxacin (CIP) is a potent antimicrobial agent with multiple effects on host cells and tissues. Previous studies have highlighted their proapoptotic effect on human cancer cells. The current study showed that subtoxic doses of CIP effectively sensitized multiple cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Although TRAIL alone mediated the partial proteolytic processing of procaspase-3 in lung cancer cells, co-treatment with CIP and TRAIL efficiently restored the complete activation of caspases. We found that treatment of lung cancer with CIP significantly upregulated the expression and protein stability of death receptor (DR) 5. These effects were mediated through the regulation of transcription factor CCAT enhancer-binding protein homologous protein (CHOP) since the silencing of these signaling molecules abrogated the effect of CIP. Taken together, these results indicated that the upregulation of death receptor expression and protein stability by CIP contributed to the restoration of TRAIL-sensitivity in lung cancer cells.

Zhivkova V, Kiecker F, Langer P, Eberle J
Crucial role of reactive oxygen species (ROS) for the proapoptotic effects of indirubin derivative DKP-073 in melanoma cells.
Mol Carcinog. 2019; 58(2):258-269 [PubMed] Related Publications
Melanoma represents a prime example demonstrating the success of targeted therapy in cancer. Nevertheless, it remained a deadly disease until now, and the identification of new, independent strategies as well as the understanding of their molecular mechanisms may help to finally overcome the high mortality. Both indirubins and TNF-related apoptosis-inducing ligand (TRAIL) represent promising candidates. Here, the indirubin derivative DKP-073 is shown to trigger apoptosis in melanoma cells, which is enhanced by the combination with TRAIL and is accompanied by complete loss of cell viability. Addressing the signaling cascade, characteristic molecular steps were identified as caspase-3 activation, downregulation of XIAP, upregulation of p53 and TRAIL receptor 2, loss of mitochondrial membrane potential, and STAT-3 dephosphorylation. The decisive step, however, turned out to be the early production of ROS already at 1 h. This was proven by antioxidant pretreatment, which completely abolished apoptosis induction and loss of cell viability as well as abrogated all signaling effects listed above. Thus, ROS appeared as upstream of all proapoptotic signaling. The data indicate a dominant role of ROS in apoptosis regulation, and the new pathway may expose a possible Achilleś heel of melanoma.

Tian S, Xing YN, Xia P
The prognostic roles of circulating ALDH1
Biosci Rep. 2018; 38(5) [PubMed] Free Access to Full Article Related Publications
Circulating tumor cells can provide important diagnostic and prognostic information of the patients with non-small cell lung cancer (NSCLC). Aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, has been used in various tumors, including NSCLC. In the present study, we isolated the circulating ALDH1

Eustace AJ, Conlon NT, McDermott MSJ, et al.
Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL.
BMC Cancer. 2018; 18(1):965 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lapatinib has clinical efficacy in the treatment of trastuzumab-refractory HER2-positive breast cancer. However, a significant proportion of patients develop progressive disease due to acquired resistance to the drug. Induction of apoptotic cell death is a key mechanism of action of lapatinib in HER2-positive breast cancer cells.
METHODS: We examined alterations in regulation of the intrinsic and extrinsic apoptosis pathways in cell line models of acquired lapatinib resistance both in vitro and in patient samples from the NCT01485926 clinical trial, and investigated potential strategies to exploit alterations in apoptosis signalling to overcome lapatinib resistance in HER2-positive breast cancer.
RESULTS: In this study, we examined two cell lines models of acquired lapatinib resistance (SKBR3-L and HCC1954-L) and showed that lapatinib does not induce apoptosis in these cells. We identified alterations in members of the BCL-2 family of proteins, in particular MCL-1 and BAX, which may play a role in resistance to lapatinib. We tested the therapeutic inhibitor obatoclax, which targets MCL-1. Both SKBR3-L and HCC1954-L cells showed greater sensitivity to obatoclax-induced apoptosis than parental cells. Interestingly, we also found that the development of acquired resistance to lapatinib resulted in acquired sensitivity to TRAIL in SKBR3-L cells. Sensitivity to TRAIL in the SKBR3-L cells was associated with reduced phosphorylation of AKT, increased expression of FOXO3a and decreased expression of c-FLIP. In SKBR3-L cells, TRAIL treatment caused activation of caspase 8, caspase 9 and caspase 3/7. In a second resistant model, HCC1954-L cells, p-AKT levels were not decreased and these cells did not show enhanced sensitivity to TRAIL. Furthermore, combining obatoclax with TRAIL improved response in SKBR3-L cells but not in HCC1954-L cells.
CONCLUSIONS: Our findings highlight the possibility of targeting altered apoptotic signalling to overcome acquired lapatinib resistance, and identify potential novel treatment strategies, with potential biomarkers, for HER2-positive breast cancer that is resistant to HER2 targeted therapies.

Lian B, Yang D, Liu Y, et al.
miR-128 Targets the SIRT1/ROS/DR5 Pathway to Sensitize Colorectal Cancer to TRAIL-Induced Apoptosis.
Cell Physiol Biochem. 2018; 49(6):2151-2162 [PubMed] Related Publications
BACKGROUND/AIMS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an ideal anti-tumor drug because it exhibits selective cytotoxicity against cancer cells. However, certain cancer cells are resistant to TRAIL, and the potential mechanisms are still unclear. The aim of this study was to reduce the resistance of colorectal cancer (CRC) cells to TRAIL.
METHODS: Quantitative real-time PCR analysis was performed to detect the expression of microRNA-128 (miR-128) in tissues from patients with CRC and CRC cell lines. MTT assays were used to evaluate the effect of miR-128 on TRAIL-induced cytotoxicity against CRC cell lines. The distribution of death receptor 5 (DR5) and the production of reactive oxygen species (ROS) were detected by flow cytometry analysis. Western blot, flow cytometry, and luciferase reporter assays were performed to evaluate the potential mechanism and pathway of miR-128-promoted apoptosis in TRAIL-treated CRC cells.
RESULTS: MiR-128 expression was downregulated in tumor tissues from patients with CRC as well as in CRC cell lines in vitro. The enforced expression of miR-128 sensitized CRC cells to TRAIL-induced cytotoxicity by inducing apoptosis. Mechanistically, bioinformatics, western blot analysis, and luciferase reporter assays showed that miR-128 directly targeted sirtuin 1 (SIRT1) in CRC cells. miR-128 overexpression suppressed SIRT1 expression, which promoted the production of ROS in TRAIL-treated CRC cells. This increase of ROS subsequently induced DR5 expression, and thus increased TRAIL-induced apoptosis in CRC cells.
CONCLUSION: The combination of miR-128 with TRAIL may represent a novel approach for the treatment of CRC.

Daßler-Plenker J, Paschen A, Putschli B, et al.
Direct RIG-I activation in human NK cells induces TRAIL-dependent cytotoxicity toward autologous melanoma cells.
Int J Cancer. 2019; 144(7):1645-1656 [PubMed] Related Publications
Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate RNA (3pRNA) triggers anti-tumor immunity, which is dependent on natural killer (NK) cell activation and cytokine induction. However, to date, RIG-I expression and the functional consequences of RIG-I activation in NK cells have not been examined. Here, we show for the first time the expression of RIG-I in human NK cells and their activation upon RIG-I ligand (3pRNA) transfection. 3pRNA-activated NK cells killed melanoma cells more efficiently than NK cells activated by type I interferon. Stimulation of RIG-I in NK cells specifically increased the surface expression of membrane-bound TNF-related apoptosis-inducing ligand (TRAIL) on NK cells, while activated NK cell receptors were not affected. RIG-I-induced membrane-bound TRAIL initiated death-receptor-pathway-mediated apoptosis not only in allogeneic but also in autologous human leukocyte antigen (HLA) class I-positive and HLA class I-negative melanoma cells. These results identify the direct activation of RIG-I in NK cells as a novel mechanism for how RIG-I can trigger enhanced NK cell killing of tumor cells, underscoring the potential of RIG-I activation for tumor immunotherapy.

Malik YS, Sheikh MA, Xing Z, et al.
Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma.
Acta Biomater. 2018; 80:144-153 [PubMed] Related Publications
Glioblastoma remains the most resistant malignant brain tumor owing to the lack of an efficient delivery system for therapeutic genes or drugs, especially in outgrowing tumor islands. Cell-based delivery systems such as mesenchymal stem cells (MSCs) are a potential candidate in this regard. Conventionally, MSCs have been genetically modified for cancer therapy by using viral vectors that can illicit oncogenicity and limit their use in clinical trials. In this study, we have used nonviral agents such as the polylysine-modified polyethylenimine (PEI-PLL) copolymer to generate genetically engineered MSCs with suicidal genes, namely, HSV-TK and TRAIL. Our results demonstrated that an intratumoral injection of polymer-double-transfected MSCs along with prodrug ganciclovir injections can induce a significant synergistic therapeutic response both in vitro and in vivo compared to single plasmid transfections or untransfected MSCs. The proliferation marker Ki67 and the angiogenesis marker VEGF were also significantly reduced in treatment groups, whereas the TUNEL assay demonstrated that apoptosis is significantly increased after treatment. Our findings suggest that the PEI-PLL copolymer can successfully modify MSCs with therapeutic genes and can produce a pronounced impact during glioblastoma therapy. This study proposes a potential nonviral approach to develop a cell-based therapy for the treatment of glioma. STATEMENT OF SIGNIFICANCE: In this study, we have used a polylysine-modified polyethylenimine polymer (PEI-PLL) copolymer, a non viral transfection agent, for gene delivery in mesenchymal stem cells. These PEI-PLL-transfected mesenchymal stem cells with HSV-TK and TRAIL genes have the potential to treat glioma both in vitro and in vivo. This combinational therapy through PEI-PLL-transfected mesenchymal stem cells can provide cost-effective, low immunogenic, and tumor-targeted delivery of suicideal genes (HSV-TK and TRAIL) for promising glioblastoma treatment.

Kim SL, Min IS, Park YR, et al.
Lipocalin 2 inversely regulates TRAIL sensitivity through p38 MAPK-mediated DR5 regulation in colorectal cancer.
Int J Oncol. 2018; 53(6):2789-2799 [PubMed] Related Publications
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through death receptors (DRs)4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. In this study, we provide evidence demonstrating the role of lipocalin 2 (LCN2) in the TRAIL-mediated apoptosis of human colorectal cancer (CRC). By analyzing the mRNA expression data of 71 CRC tissues from patients, we found that DR5 was preferentially expressed in CRC tissues with a low LCN2 expression level compared to tissues with a high LCN2 expression level. Moreover, we analyzed the association between DR5 and LCN2 expression and this analysis revealed that DR5 expression in CRC tended to be inversely associated with LCN2 expression. By contrast, no association was found between the DR4 and LCN2 expression levels. The expression patterns of LCN2 in human CRC cell lines also exhibited an inverse association with DR5 expression. The knockdown of LCN2 by siRNA in the TRAIL‑resistant CRC cells expressing high levels of LCN2 led to a significant increase in TRAIL-induced apoptosis through the upregulation of DR5 protein and mRNA expression. The mechanism through which LCN2 silencing sensitized the CRC cells to TRAIL was dependent on the extrinsic pathway of apoptosis. In addition, we identified that the knockdown of LCN2 enhanced the sensitivity of the cells to TRAIL through the p38 MAPK/CHOP-dependent upregulation of DR5. Taken together, the findings of this study suggest that LCN2 is responsible for TRAIL sensitivity and LCN2 may thus prove to be a promising target protein in DR-targeted CRC therapy.

Zhu Z, Zhao L, Brittingham A, et al.
Anticancer Res. 2018; 38(9):5079-5086 [PubMed] Related Publications
BACKGROUND/AIM: Cervical cancer is one of the deadliest gynecological cancers in USA. The role of Trichomonas Vaginalis (T. Vag) in the etiology or pathogenesis of cervical cancer is still poorly understood and controversial.
MATERIALS AND METHODS: Clonogenic assay, PCNA staining, TUNEL staining and caspase-3 activity assay were used to investigate the direct in vitro effect of T. Vag on human cervical cancer by using HeLa cells. We further investigated the potential molecular mechanisms using RT-PCR and immunohistochemical staining.
RESULTS: We found that culture supernatant of T. Vag inhibited growth of HeLa cervical cancer cells and this correlated with up-regulation of p15. We also found that culture supernatant of T. Vag induced apoptosis of HeLa cells and this correlated with up-regulation of Fas, TRAIL and TRAILR1.
CONCLUSION: Culture supernatant of T. Vag inhibits growth of HeLa cervical cancer cells by inhibition of proliferation and promotion of apoptosis. Our study might be helpful to address the association between the development of cervical cancer and infection of T. Vag.

Saraf RS, Datta A, Sima C, et al.
An in-silico study examining the induction of apoptosis by Cryptotanshinone in metastatic melanoma cell lines.
BMC Cancer. 2018; 18(1):855 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastatic melanoma is an aggressive form of skin cancer that evades various anti-cancer treatments including surgery, radio-,immuno- and chemo-therapy. TRAIL-induced apoptosis is a desirable method to treat melanoma since, unlike other treatments, it does not harm non-cancerous cells. The pro-inflammatory response to melanoma by nF κB and STAT3 pathways makes the cancer cells resist TRAIL-induced apoptosis. We show that due to to its dual action on DR5, a death receptor for TRAIL and on STAT3, Cryptotanshinone can be used to increase sensitivity to TRAIL.
METHODS: The development of chemoresistance and invasive properties in melanoma cells involves several biological pathways. The key components of these pathways are represented as a Boolean network with multiple inputs and multiple outputs.
RESULTS: The possible mutations in genes that can lead to cancer are captured by faults in the combinatorial circuit and the model is used to theoretically predict the effectiveness of Cryptotanshinone for inducing apoptosis in melanoma cell lines. This prediction is experimentally validated by showing that Cryptotanshinone can cause enhanced cell death in A375 melanoma cells.
CONCLUSION: The results presented in this paper facilitate a better understanding of melanoma drug resistance. Furthermore, this framework can be used to detect additional drug intervention points in the pathway that could amplify the action of Cryptotanshinone.

Hu J, Wang H, Gu J, et al.
Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis.
Acta Biochim Biophys Sin (Shanghai). 2018; 50(10):1018-1027 [PubMed] Related Publications
Lung cancer has a high morbidity rate worldwide and is often resistant to therapy. Oncolytic virus therapy is a developing trend for cancer treatment. Thus, we constructed an oncolytic poxvirus carrying human trail gene that expresses a membrane-binding tumor necrosis factor and associated apoptosis-inducing ligand (TRAIL, Oncopox-trail). We hypothesized that the expression of trail would increase the efficacy of the oncolytic poxvirus. The effect of the TRAIL protein depends on the death receptors on the surface of different cancer cells. The expression of death receptors in lung cancer cell lines was analyzed by western blot analysis. In vitro, the oncolytic poxvirus carrying the trail gene displayed a better cytotoxicity at the cell level in the lung cancer cell line than that carrying the Oncopox-empty. TRAIL protein mainly induced apoptosis and inhibited necrosis. In vivo, two transplanted tumor models of human A549 lung cancer cells and mouse Lewis lung cancer cells were used to verify the anti-cancer effect of the oncolytic poxvirus carrying the trail gene. TUNEL staining results of the tumor histological sections also verified the anti-cancer effect. Similarly, through systemic administration of Oncopox-trail, the oncolytic poxvirus also exhibited anti-cancer effect.

Henrich IC, Young R, Quick L, et al.
USP6 Confers Sensitivity to IFN-Mediated Apoptosis through Modulation of TRAIL Signaling in Ewing Sarcoma.
Mol Cancer Res. 2018; 16(12):1834-1843 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Ewing sarcoma is the second most common sarcoma of the bone, afflicting predominantly the pediatric population. Although patients with localized disease exhibit favorable survival rates, patients with metastatic disease suffer a dismal 5-year rate of approximately 25%. Thus, there is a great need to develop treatments to combat the disseminated disease. Ubiquitin-specific protease 6 (USP6/TRE17) has been implicated as the key etiologic factor in several benign mesenchymal tumors, including nodular fasciitis and aneurysmal bone cyst (ABC). However, the role of USP6 in the biology of malignant entities remains unexplored. Previously, it was observed that USP6 is sufficient to drive formation of tumors mimicking ABC and nodular fasciitis, and that it functions through JAK1/STAT3 signaling. However, in the context of Ewing sarcoma, USP6 does not enhance the transformation, but rather triggers an IFN response signature, both in cultured Ewing sarcoma cells

Franiak-Pietryga I, Ostrowska K, Maciejewski H, et al.
Affecting NF-κB cell signaling pathway in chronic lymphocytic leukemia by dendrimers-based nanoparticles.
Toxicol Appl Pharmacol. 2018; 357:33-38 [PubMed] Related Publications
The complex genetic diversity of chronic lymphocytic leukemia (CLL) makes it difficult to determine the effective and durable therapy beneficial to patients. During the several past years' significant insights in the biology of the disease and its treatment have been made, allowing for the identification of promising novel therapeutic agents. The investigation of signaling pathways to understand the biological character of CLL together with the development of molecular profiling is key in personalized approach in therapy for this disease. As it was already proven, maltotriose (M3) modified fourth generation poly(propylene imine) dendrimers (PPI-G4) modulate BCR, TRAIL and WNT signaling pathway gene expression in CLL cells and strongly influence their survival by inducing apoptosis and inhibiting proliferation. The aim of this study was to evaluate the influence of PPI-G4-M3 dendrimers on NFκB pathway gene expression in CLL (MEC-1) cells with 60 K microarray, as it is one of the major factors in the pathogenesis of B-cell neoplasms. The findings were compared with those obtained with Fludarabine (FA) and the results indicate that PPI-G4-M3 dendrimers affect the expression of the examined genes and exert comparable effect on the CLL cells to FA. Dendrimers are one of the most potent groups of nanometer-sized macromolecules for closing the gap between the present ineffective treatment and the future effective personalized therapy due to their potential versatile biological properties.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TNFSF10, Cancer Genetics Web: http://www.cancer-genetics.org/TNFSF10.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999