BAK1

Gene Summary

Gene:BAK1; BCL2-antagonist/killer 1
Aliases: BAK, CDN1, BCL2L7, BAK-LIKE
Location:6p21.3
Summary:The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:bcl-2 homologous antagonist/killer
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (57)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Latest Publications: BAK1 (cancer-related)

Shterzer N, Heyman D, Shapiro B, et al.
Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes.
Virology. 2014; 468-470:647-59 [PubMed] Related Publications
In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis.

Wu H, Schiff DS, Lin Y, et al.
Ionizing radiation sensitizes breast cancer cells to Bcl-2 inhibitor, ABT-737, through regulating Mcl-1.
Radiat Res. 2014; 182(6):618-25 [PubMed] Related Publications
Breast-conserving surgery followed by radiation therapy has become the standard of care for early stage breast cancer. However, there are some patients that develop a local failure. We have previously shown that Bcl-2 overexpression was associated with an increased risk of local recurrence in patients with early stage breast cancer. The purpose of this study was to explore an approach to overcome radiation resistance by targeting pro-survival Bcl-2 family proteins in breast cancer cells. The breast cancer cell lines MCF-7, ZR-75-1 and MDA-MB231 were used in this study. siRNAs were employed to silence myeloid cell leukemia 1 (Mcl-1). A small molecule inhibitor of Bcl-2, ABT-737, was used to target anti-apoptotic Bcl-2 family proteins. Apoptosis was identified by FITC Annexin V, PI staining and Western blot analysis. The sensitivity to ionizing radiation and ABT-737 were measured by clonogenic assays. The effect of radiation and ABT-737 was also tested in a MCF-7 xenograft mouse model. Our data demonstrate that the combination of ABT-737 and radiation-induced apoptosis had an inhibitory effect on breast cancer cell proliferation. However, treatment with ABT-737 resulted in elevated Mcl-1 in breast cancer cell lines. Targeting Mcl-1 by siRNA sensitized MCF-7 cells to ABT-737. We revealed that radiation blunted Mcl-1 elevation induced by ABT-737, and that radiation downregulated Mcl-1 by promoting its degradation. Our results indicate that radiation and ABT-737 exert a synergistic effect on breast cancer cell lines through downregulating Mcl-1 and activating the bak-apoptotic pathway. These results support the combination of radiation and pro-survival Bcl-2 family inhibitor as a potential novel therapeutic strategy in the local-regional management of breast cancer.

Skender B, Hofmanová J, Slavík J, et al.
DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism.
Biochim Biophys Acta. 2014; 1841(9):1308-17 [PubMed] Related Publications
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.

Pineda S, Milne RL, Calle ML, et al.
Genetic variation in the TP53 pathway and bladder cancer risk. a comprehensive analysis.
PLoS One. 2014; 9(5):e89952 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk.
MATERIAL AND METHODS: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998-2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously.
RESULTS: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value≤0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value≥0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05-1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation.
DISCUSSION: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.

Ham S, Kim KH, Kwon TH, et al.
Luteolin induces intrinsic apoptosis via inhibition of E6/E7 oncogenes and activation of extrinsic and intrinsic signaling pathways in HPV-18-associated cells.
Oncol Rep. 2014; 31(6):2683-91 [PubMed] Related Publications
Luteolin, a flavonoid extracted from a number of plants with recognized anticancer, anti-inflammatory and anti-oxidative activities, inhibits angiogenic processes and modulates multidrug resistance. However, the efficacy and mechanisms of action of this flavonoid agent are still undergoing study. In order to elucidate whether luteolin exhibits an anticancer effect in cervical cancer cells, HeLa cells were incubated with luteolin and apoptosis was assessed by observing nuclear morphological changes, and performing Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Cell cycle analysis, western blotting, RT-PCR and mitochondrial membrane potential measurements were also carried out. Luteolin showed a significant dose-dependent cytotoxic effect only in human papillomavirus (HPV)-positive cervical cancer cells, when compared to its effect on HPV-negative cervical cancer C33A cells. Expression levels of human papilloma virus E6 and E7 oncogenes were suppressed, those of related factors pRb and p53 were recovered and E2F5 was increased by luteolin treatment. Furthermore, luteolin enhanced the expression of death receptors and death receptor downstream factors such as Fas/FasL, DR5/TRAIL and FADD in HeLa cells, and activated caspase cascades. In particular, luteolin enhanced the activity of caspase-3 and -8 in a dose-dependent manner. Activation of caspase-3 induced caspase-8 activity and vice versa. Luteolin also induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited Bcl-2 and Bcl-xL expression. In conclusion, luteolin exerts anticarcinogenic activity through inhibition of E6 and E7 expression and cross-activation of caspase-3 and -8. Taken together, these results suggest that luteolin induces inactivation of HPV-18 oncogene expression and apoptosis by activating the intrinsic and extrinsic pathways.

Chen J, Fu X, Wan Y, et al.
miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1.
Tumour Biol. 2014; 35(7):6293-302 [PubMed] Related Publications
Temozolomide (TMZ) is a promising chemotherapeutic agent for treating glioblastomas. However, resistance develops quickly with a high frequency. Glioblastoma stem cells (GSCs) causing resistance to drug therapy were considered to be one of key factors. The mechanisms underlying GSCs resistance to TMZ are not fully understood. MicroRNAs (miRNAs) have emerged to play important roles in tumorigenesis and drug resistance. Previous study showed that miR-125b was necessary for GSCs fission and for making stem cells insensitive to chemotherapy. Thus, exploring the functions and mechanisms of miR-125b action on TMZ-treated GSCs would be valuable. In this study, we found that miR-125b was up-regulated in TMZ-resistant cells, inhibition of which caused a marked increase of TMZ-induced cytotoxicity and apoptosis and a subsequent decrease in the resistance to TMZ in GSCs. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) was a direct target of miR-125b. Down-regulation of Bak1 inhibited TMZ-induced apoptosis and led to an increased resistance to TMZ. Restoring Bak1 expression recovered TMZ sensitivity on GSCs. Taken together; our data strongly support an important role for miR-125b on conferring TMZ resistance through targeting Bak1 expression.

Mosbech CH, Rechnitzer C, Brok JS, et al.
Recent advances in understanding the etiology and pathogenesis of pediatric germ cell tumors.
J Pediatr Hematol Oncol. 2014; 36(4):263-70 [PubMed] Related Publications
Pediatric germ cell tumors (GCTs) are rare neoplasms arising predominantly in the gonads and sacrococcygeal, mediastinal, and intracranial localizations. In this article, we review current knowledge of pathogenesis of pediatric GCTs, which differs from adult/adolescent GCTs. One distinctive feature is the absence of a progenitor stage, such as carcinoma in situ or gonadoblastoma, which are seen in adult/adolescent GCTs, except spermatocytic seminoma. The primordial germ cell (PGC) is the suggested origin of all GCTs, with variations in histology reflecting differentiation stage. Expression of pluripotency transcription factors OCT-3/4, NANOG, and AP-2γ in germinomas/seminomas/dysgerminomas is consistent with retaining a germ cell phenotype. Teratomas, in contrast, develop through a pathway of aberrant somatic differentiation of immature germ cells, and the yolk sac tumors and choriocarcinomas result from abnormal extraembryonic differentiation. In pediatric GCTs, origin is suggested at an earlier developmental stage because of predisposing genetic factors, although responsible genes remain largely unknown. Some extragonadal GCTs have been linked to overexpression of the KIT/KITLG system, allowing for survival of aberrantly migrated ectopic PGCs. Infant gonadal/sacrococcygeal GCTs may be caused by apoptosis-related pathways, consistent with an association with polymorphisms in BAK1. Although recent advances have identified candidate pathways, further effort is needed to answer central questions of pathogenesis of these fascinating tumors.

Sain S, Naoghare PK, Devi SS, et al.
Beta caryophyllene and caryophyllene oxide, isolated from Aegle marmelos, as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells.
Antiinflamm Antiallergy Agents Med Chem. 2014; 13(1):45-55 [PubMed] Related Publications
Aegle marmelos (Indian Bael) is a tree which belongs to the family of Rutaceae. It holds a prominent position in both Indian medicine and Indian culture. We have screened various fractions of Aegle marmelos extracts for their anticancer properties using in vitro cell models. Gas chromatography-Mass spectrometry (GC-MS) was employed to analyze the biomolecules present in the Aegle marmelos extract. Jurkat and human neuroblastoma (IMR-32) cells were treated with different concentrations of the fractionated Aegle marmelos extracts. Flow cytometric analysis revealed that optimal concentration (50 µg/ml) of beta caryophyllene and caryophyllene oxide fractions of Aegle marmelos extract can induce apoptosis in Jurkat cell line. cDNA expression profiling of pro-apoptotic and anti-apoptotic genes was carried out using real time PCR (RT-PCR). Down-regulation of anti-apoptotic genes (bcl-2, mdm2, cox2 and cmyb) and up-regulation of pro-apoptotic genes (bax, bak1, caspase-8, caspase-9 and ATM) in Jurkat and IMR-32 cells treated with the beta caryophyllene and caryophyllene oxide fractions of Aegle marmelos extract revealed the insights of the downstream apoptotic mechanism. Furthermore, in-silico approach was employed to understand the upstream target involved in the induction of apoptosis by the beta caryophyllene and caryophyllene oxide fractions of Aegle marmelos extract. Herein, we report that beta caryophyllene and caryophyllene oxide isolated from Aegle marmelos can act as potent anti-inflammatory agents and modulators of a newly established therapeutic target, 15-lipoxygenase (15-LOX). Beta caryophyllene and caryophyllene oxide can induce apoptosis in lymphoma and neuroblastoma cells via modulation of 15-LOX (up-stream target) followed by the down-regulation of anti-apoptotic and up-regulation of pro-apoptotic genes.

Larsen MJ, Thomassen M, Tan Q, et al.
RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families.
BMC Med Genomics. 2014; 7:9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family.
METHODS: In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis.
RESULTS: We show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist among non-BRCA1/2 breast cancers. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found.
CONCLUSIONS: Our finding indicates involvement of hereditary factors in non-BRCA1/2 breast cancer families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. This is the first study to provide a biological link between breast cancers from family members of high-risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to search for new high penetrance susceptibility genes.

Lennon JC, Bright SA, Carroll E, et al.
The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells.
Biochem Pharmacol. 2014; 87(4):611-24 [PubMed] Related Publications
Neuroblastoma, a malignancy of neuroectoderrmal origin, accounts for 15% of childhood cancer deaths. Despite advances in understanding the biology, it remains one of the most difficult paediatric cancers to treat. A major obstacle in the effective treatment of neuroblastoma is the development of multidrug resistance (MDR). There is thus a compelling demand for new treatment strategies for this cancer that can bypass such resistance mechanisms. The pyrrolo-1,5-benzoxazepine (PBOX) compounds are a series of novel microtubule-targeting agents that potently induce apoptosis in various cancer cell lines, ex vivo patient samples and in vivo cancer models. In this study we examined the ability of two members, PBOX-6 and -15, to exhibit anti-cancer effects in a panel of drug sensitive and MDR neuroblastoma cell lines. The PBOX compounds potently reduced the viability of all neuroblastoma cells examined and exhibited a lower fold resistance in MDR cells when compared to standard chemotherapeutics. In addition, the PBOX compounds synergistically enhanced apoptosis induced by etoposide, carboplatin and doxorubicin. Exposure of drug sensitive and resistant cell lines to PBOX-6/carboplatin induced cleavage of Bcl-2, a downregulation of Mcl-1 and a concomitant increase in Bak. Furthermore, activation of caspase-3, -8 and -9 was demonstrated. Finally, gene silencing of Mcl-1 by siRNA was shown to sensitise both drug sensitive and multidrug resistant cells to carboplatin-induced apoptosis demonstrating the importance of Mcl-1 downregulation in the apoptotic pathway mediated by the PBOX compounds in neuroblastoma. In conclusion, our findings indicate the potential of the PBOX compounds in enhancing chemosensitivity in neuroblastoma.

Wu LF, Guo YT, Zhang QH, et al.
Enhanced antitumor effects of adenoviral-mediated siRNA against GRP78 gene on adenosine-induced apoptosis in human hepatoma HepG2 cells.
Int J Mol Sci. 2014; 15(1):525-44 [PubMed] Free Access to Full Article Related Publications
Our previous studies show that adenosine-induced apoptosis is involved in endoplasmic reticulum stress in HepG2 cells. In this study, we have investigated whether knockdown of GRP78 by short hairpin RNA (shRNA) increases the cytotoxic effects of adenosine in HepG2 cells. The adenovirus vector-delivered shRNA targeting GRP78 (Ad-shGRP78) was constructed and transfected into HepG2 cells. RT-PCR assay was used to determine RNA interference efficiency. Effects of knockdown of GRP78 on adenosine-induced cell viabilities, cell-cycle distribution and apoptosis, as well as relative protein expressions were determined by flow cytometry and/or Western blot analysis. The intracellular Ca2+ concentration was detected by laser scanning confocal microscope. Mitochondrial membrane potential (ΔΨm) was measured by a fluorospectrophotometer. The results revealed that GRP78 mRNA was significantly downregulated by Ad-shGRP78 transfection. Knockdown of GRP78 enhanced HepG2 cell sensitivity to adenosine by modulating G0/G1 arrest and stimulating Bax, Bak, m-calpain, caspase-4 and CHOP protein levels. Knockdown of GRP78 worsened cytosolic Ca2+ overload and ΔΨm loss. Knockdown of caspase-4 by shRNA decreased caspase-3 mRNA expression and cell apoptosis. These findings indicate that GRP 78 plays a protective role in ER stress-induced apoptosis and show that the combination of chemotherapy drug and RNA interference adenoviruses provides a new treatment strategy against malignant tumors.

Aporta A, Catalán E, Galán-Malo P, et al.
Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors.
Biochem Pharmacol. 2014; 87(3):410-23 [PubMed] Related Publications
Granulysin is a protein present in the granules of human CTL and NK cells, with cytolytic activity against microbes and tumors. Previous work demonstrated that granulysin caused cell death through mitochondrial damage with release of AIF and cytochrome c. However, the molecular mechanism and, especially, the type of cell death were still not well defined. In the present work we show that granulysin-induced cell death is apoptotic, with phosphatidylserine exposure preceding membrane breakdown and with caspase 3 activation. Granulysin-induced apoptosis is prevented in Jurkat cells over-expressing Bcl-xL or Bcl2, or lacking Bak and Bax or Bim expression, suggesting a central role of the mitochondrial apoptotic pathway. This apoptotic process is initiated by intracellular Ca(2+) increase and mitochondrial ROS generation. We have tested granulysin against other hematological tumor cells such as multiple myeloma cell lines, and cells from B cell chronic lymphocytic leukemia (B-CLL) patients, finding different degrees of sensitivity. We also show that granulysin induces the cleavage of Atg5 in the complex formed with Atg12, without affecting autophagy. In conclusion, granulysin induces apoptosis on hematological tumor cells and on cells from B-CLL patients, opening the door to research on its use as a new anti-tumoral treatment.

Sørensen KP, Thomassen M, Tan Q, et al.
Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer.
Breast Cancer Res Treat. 2013; 142(3):529-36 [PubMed] Related Publications
Expression of HOX transcript antisense intergenic RNA (HOTAIR)--a long non-coding RNA--has been examined in a variety of human cancers, and overexpression of HOTAIR is correlated with poor survival among breast, colon, and liver cancer patients. In this retrospective study, we examine HOTAIR expression in 164 primary breast tumors, from patients who do not receive adjuvant treatment, in a design that is paired with respect to the traditional prognostic markers. We show that HOTAIR expression differs between patients with or without a metastatic endpoint, respectively. Survival analysis shows that high HOTAIR expression in primary tumors is significantly associated with worse prognosis independent of prognostic markers (P = 0.012, hazard ratio (HR) 1.747). This association is even stronger when looking only at estrogen receptor (ER)-positive tumor samples (P = 0.0086, HR 1.985). In ER-negative tumor samples, we are not able to detect a prognostic value of HOTAIR expression, probably due to the limited sample size. These results are successfully validated in an independent dataset with similar associations (P = 0.018, HR 1.825). In conclusion, our findings suggest that HOTAIR expression may serve as an independent biomarker for the prediction of the risk of metastasis in ER-positive breast cancer patients.

An JS, Huang MN, Song YM, et al.
A preliminary study of genes related to concomitant chemoradiotherapy resistance in advanced uterine cervical squamous cell carcinoma.
Chin Med J (Engl). 2013; 126(21):4109-15 [PubMed] Related Publications
BACKGROUND: Tumor intrinsic chemoradiotherapy resistance is the primary factor in concomitant chemoradiotherapy failure in advanced uterine cervical squamous cell carcinoma. This study aims to identify a set of genes and molecular pathways related to this condition.
METHODS: Forty patients with uterine cervical squamous cell carcinoma in International Federation of Gynecology and Obstetrics stage IIb or IIIb, treated with platinum-based concomitant chemoradiotherapy between May 2007 and December 2012, were enrolled in this trial. Patients included chemoradiotherapy resistant (n = 20) and sensitive (n = 20) groups. Total RNA was extracted from fresh tumor tissues obtained by biopsy before treatment and microarray analysis was performed to identify genes differentially expressed between the two groups.
RESULTS: Microarray analysis identified 108 genes differentially expressed between concomitant chemoradiotherapy resistant and sensitive patients. Functional pathway cluster analysis of these genes revealed that DNA damage repair, apoptosis, cell cycle, Map kinase signal transduction, anaerobic glycolysis and glutathione metabolism were the most relevant pathways. Platelet-derived growth factor receptor alpha (PDGFRA) and protein kinase A type 1A (PRKAR1A) were significantly upregulated in the chemoradiosensitive group, while lactate dehydrogenase A (LDHA), bcl2 antagonist/killer 1 (BAK1), bcl2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and cyclin-dependent kinase 7 (CDK7) were upregulated in the chemoradiotherapy resistant group.
CONCLUSION: We have identified seven genes that are differentially expressed in concomitant chemoradiotherapy resistant and sensitive uterine cervical squamous cell carcinomas, which may represent primary predictors for this condition.

Yang PY, Hu DN, Liu FS
Cytotoxic effect and induction of apoptosis in human cervical cancer cells by Antrodia camphorata.
Am J Chin Med. 2013; 41(5):1169-80 [PubMed] Related Publications
Antrodia camphorata is a Chinese herb indigenous to Taiwan. Previous reports demonstrated that it could induce apoptosis in some cancer cells. The purpose of this study was to investigate the apoptotic effect of the crude extract of A. camphorata in cervical cancer cells. Two human cervical cancer cell lines, HeLa and C-33A, were treated with extract of A. camphorata (10-1000 μg/mL). We found that A. camphorata extract was cytotoxic to both cervical cancer cells in a dose- and time-dependent manner as examined by MTT assay. Treatment with A. camphorata extract at 400 μg/mL induced a 2.3- and 4.4-fold increase in oligonucleosome formation from the cleaved chromosomal DNA in HeLa and C-33A cells, respectively. A. camphorata extract also activated caspase-3, -8, and -9 activities and increased the cytosolic level of cytochrome c in both cell lines as the dosage increased. Furthermore, A. camphorata extract increased expressions of Bak, Bad and Bim, while decreasing expressions of Bcl-2 and Bcl-xL of the Bcl-2 family proteins in HeLa and C-33A cells. The expression of IAP proteins, XIAP and survivin, was also decreased in both cervical cancer cells after treatment with A. camphorata. Our in vitro study suggests that A. camphorata is cytotoxic to cervical cancer cells through both extrinsic and intrinsic apoptotic mechanisms. It could be used as a novel phytotherapeutic agent or auxiliary therapy in the treatment of cervical cancer.

Viedma-Rodriguez R, Baiza-Gutman LA, García-Carrancá A, et al.
Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells.
Int J Oncol. 2013; 43(6):1777-86 [PubMed] Free Access to Full Article Related Publications
Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψ(m)), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 μM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45 ± 6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM.

Qin R, Shen H, Cao Y, et al.
Tetrandrine induces mitochondria-mediated apoptosis in human gastric cancer BGC-823 cells.
PLoS One. 2013; 8(10):e76486 [PubMed] Free Access to Full Article Related Publications
Tetrandrine, a bis-benzylisoquinoline alkaloid isolated from the dried root of Hang-Fang-Chi (Stephaniatetrandra S. Moore), has been reported to possess anti-cancer effects on many tumors. In this study, we investigated tetrandrine-induced apoptosis on human gastric cancer BGC-823 cells in vitro and in vivo. The results showed that tetrandrine significantly inhibited cell viability in a dose- and time-dependent manner and induced apoptosis. It increased the apoptosis; upregulation of Bax, Bak, and Bad; and downregulation of Bcl-2 and Bcl-xl in BGC-823 cells. Moreover, tetrandrine increased the activation of caspase-3 and -9, release of cytochrome c, and upregulation of apaf-1, suggesting that tetrandrine-induced apoptosis was related to the mitochondrial pathway. Meanwhile, pretreatment with the pan-caspase inhibitor z-VAD-fmk in BGC-823 cells reduced tetrandrine-induced apoptosis by blocking activation of caspases. Furthermore, tetrandrine effectively inhibited tumor growth via apoptosis induction, which was verified by immunohistochemical analysis in a nude mouse xenograft model. Taken together, we concluded that tetrandrine significantly inhibited the proliferation of gastric cancer BGC-823 cells through mitochondria-dependent apoptosis, which may play a promising role in gastric cancer therapy.

Scarfò L, Ghia P
Reprogramming cell death: BCL2 family inhibition in hematological malignancies.
Immunol Lett. 2013 Sep-Oct; 155(1-2):36-9 [PubMed] Related Publications
The BCL2 family members play a central role in regulating programmed cell death (apoptosis) and arbitrating the cellular fate through an accurate balance between pro-apoptotic (BAX, BAK, and BH3-only proteins) and pro-survival (BCL2 and its closest homologues, BCLXL, BCLW and MCL-1) factors. Deregulation of BCL2 family proteins contributes to programmed cell death evasion, that is a hallmark of human cancers and it is often related to (chemo)therapy resistance. High BCL2 levels have been detected in most human lymphoid malignancies, not limited to follicular lymphoma (where the role of BCL2 overexpression is driven by the t[14;18] translocation) but also B-cell chronic lymphocytic leukemia (CLL) and multiple myeloma. For all these reasons, the opportunity to induce apoptosis by targeting BCL2 proteins is considered a potentially promising therapeutic approach in hematological malignancies. BCL2 family inhibition strategies currently explored in phase 1, 2 and 3 clinical trials are essentially two: (1) the use of antisense-based strategies to knockdown BCL2 or BCLXL expression (e.g. oblimersen) or (2) the use of synthetic BH3 mimetics i.e. small molecules binding to anti-apoptotic inhibitors thereby allowing the pro-apoptotic activity of BH3-only molecules (e.g. obatoclax, AT-101, ABT-737 and its derivatives ABT-263 and ABT-199). Several of these drugs demonstrated relevant clinical activity as single-agent or in combination therapy, with the most significant drawbacks in clinical use being represented by challenging pharmacokinetic profile (e.g. iv administration, high-levels of plasma proteins binding) and on-target side effects (e.g. gastrointestinal toxicity and thrombocytopenia). Further clinical development of the current compounds (e.g. ABT-199), showing high efficacy but devoid of the most threatening drug-related toxicities, is eagerly awaited. Hopefully, in the next future, BCL2 inhibitors (alone or in combination with immuno- and/or chemo-therapeutic agents) will represent target-specific drugs expanding our therapeutic armamentarium in the fight against hematologic malignancies.

Mu D, Gao Z, Guo H, et al.
Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1.
PLoS One. 2013; 8(9):e74922 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Sodium butyrate, a histone deacetylase inhibitor, has emerged as a promising anticancer drug for multiple cancers. Recent studies have indicated that sodium butyrate could inhibit the progression of prostate cancer; however, the exact mechanism is still unclear. The aim of this study was to investigate the mechanism of sodium butyrate action in prostate cancer DU145 cells.
METHODS: The inhibitory effects of NaB on cell growth were detected by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrrazolium bromide assay. Cell apoptosis was determined by flow cytometric analysis of DU145 cells stained with annexin V and PI. Hoechst 33258 and fluorescence microscopes were used to observe the nuclear morphology of DU145 cells after treatment with NaB. ANXA1 knockdown cells were established through transfection with ANXA1 siRNA. ANXA1 mRNA levels were measured by qRT-PCR. Bcl-2, Bax, ANXA1, ERK1/2 and pERK1/2 were detected by western blot.
RESULTS: NaB significantly inhibited the growth and induction apoptosis of DU145 and PC3 cells in a dose-dependent manner. Expression of the anti-apoptosis gene Bcl-xl and Bcl-2 in DU145 cells are decreased and expression of the pro-apoptosis gene Bax and Bak increased after NaB treatment. Further studies have demonstrated that NaB up-regulated the expression of ANXA1 and that the tumor inhibition action of NaB was reduced markedly through knockdown of the ANXA1 gene in DU145 cells. Moreover, the siANXA1 cells showed that cell proliferation increased and cell apoptosis was induced by the inactivation of extracellular regulated kinase (ERK).
CONCLUSION: Our results support a significant correlation between NaB functions and ANXA1 expression in prostate cancer, and pave the way for further studying the molecular mechanism of NaB actions in cancers.

Wu J, Du C, Lv Z, et al.
The up-regulation of histone deacetylase 8 promotes proliferation and inhibits apoptosis in hepatocellular carcinoma.
Dig Dis Sci. 2013; 58(12):3545-53 [PubMed] Related Publications
BACKGROUND: Histone deacetylase 8 (HDAC8), a member of class I HDACs, has been reported to be involved in transcriptional regulation, cell cycle progression, and developmental events, and several studies have shown that HDAC8 plays a critical role in tumorigenesis. However, the expression level and the potential role of HDAC8 in hepatocellular carcinoma (HCC) remain unclear.
AIM: The purpose of this study was to investigate protein expression of HDAC8 in HCC tissues and the effects of HDAC8 knockdown on the proliferation and apoptosis of liver cancer cells, and to explore the possible mechanisms.
METHODS: First, we used quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemical staining, and western blot to examine the mRNA and protein expression of HDAC8 in HCC cell lines and tissues. Then, we assessed the correlation between clinicopathological parameters and the protein expression of HDAC8. Furthermore, we employed the interfering RNA method to explore the potential role of HDAC8 in HCC progression in vitro.
RESULTS: Our results showed that expression of HDAC8 was significantly up-regulated both in HCC cell lines and tumor tissues compared to human normal liver cell line LO2 and corresponding non-tumor tissues. Moreover, we found that HDAC8 knockdown could dramatically inhibit HCC cell proliferation and enhance the apoptosis rate in vitro. Western blot revealed that intrinsic apoptotic pathway proteins, including BAX, BAD, and BAK, were elevated after HDAC8 knockdown. The cleavage of caspase-3 and PARP, which are downstream of intrinsic apoptotic pathway, were also enhanced. In addition, suppression of HDAC8 also elevated the expression of p53 and acetylation of p53 at Lys382, whereas the acetylation of p53 at Lys373 did not change.
CONCLUSIONS: Our study revealed that HDAC8 was overexpressed in HCC. HDAC8 knockdown suppresses tumor growth and enhances apoptosis in HCC via elevating the expression of p53 and acetylation of p53 at Lys382. HDAC8 might serve as a potential therapeutic target in HCC.

Sarosiek KA, Chi X, Bachman JA, et al.
BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response.
Mol Cell. 2013; 51(6):751-65 [PubMed] Free Access to Full Article Related Publications
Apoptosis is a highly regulated form of cell death that controls normal homeostasis as well as the antitumor activity of many chemotherapeutic agents. Commitment to death via the mitochondrial apoptotic pathway requires activation of the mitochondrial pore-forming proteins BAK or BAX. Activation can be effected by the activator BH3-only proteins BID or BIM, which have been considered to be functionally redundant in this role. Herein, we show that significant activation preferences exist between these proteins: BID preferentially activates BAK while BIM preferentially activates BAX. Furthermore, we find that cells lacking BAK are relatively resistant to agents that require BID activation for maximal induction of apoptosis, including topoisomerase inhibitors and TRAIL. Consequently, patients with tumors that harbor a loss of BAK1 exhibit an inferior response to topoisomerase inhibitor treatment in the clinic. Therefore, BID and BIM have nonoverlapping roles in the induction of apoptosis via BAK and BAX, affecting chemotherapy response.

Cruickshanks N, Hamed HA, Booth L, et al.
Histone deacetylase inhibitors restore toxic BH3 domain protein expression in anoikis-resistant mammary and brain cancer stem cells, thereby enhancing the response to anti-ERBB1/ERBB2 therapy.
Cancer Biol Ther. 2013; 14(10):982-96 [PubMed] Free Access to Full Article Related Publications
The present studies focused on defining the mechanisms by which anoikis-resistant (AR) mammary carcinoma cells can be reverted to a therapy-sensitive phenotype. AR mammary carcinoma cells had reduced expression of the toxic BH3 domain proteins BAX, BAK, NOXA, and PUMA. In AR cells expression of the protective BCL-2 family proteins BCL-XL and MCL-1 was increased. AR cells were resistant to cell killing by multiple anti-tumor cell therapies, including ERBB1/2 inhibitor + MCL-1 inhibitor treatment, and had a reduced autophagic flux response to these therapies, despite similarly exhibiting increased levels of LC3II processing. Knockdown of MCL-1 and BCL-XL caused necro-apoptosis in AR cells to a greater extent than in parental cells. Pre-treatment of anoikis-resistant cells with histone deacetylase inhibitors (HDACIs) for 24 h increased the levels of toxic BH3 domain proteins, reduced MCL-1 levels, and restored/re-sensitized the cell death response of AR tumor cells to multiple toxic therapies. In vivo, pre-treatment of AR breast tumors in the brain with valproate restored the chemo-sensitivity of the tumors and prolonged animal survival. These data argue that one mechanism to enhance the anti-tumor effect of chemotherapy could be HDACI pre-treatment.

Wang L, Chen B, Wang Y, et al.
hClock gene expression in human colorectal carcinoma.
Mol Med Rep. 2013; 8(4):1017-22 [PubMed] Related Publications
In this study, we aimed to investigate changes in the expression of human Clock (hClock), a gene at the core of the circadian gene family, in colorectal carcinomas (CRCs) and to discuss the possible effects. Previous studies have revealed that the disruption of circadian rhythms is one of the endogenous factors that contribute to the initiation and development of CRCs. However, the underlying molecular changes to the circadian genes associated with CRCs have not been explored. Immunofluorescence and quantitative polymerase chain reaction (qPCR) analysis of the hCLOCK protein and gene expression were performed in 30 cases of CRC. The hCLOCK protein was expressed in all specimens obtained from 30 CRC patients. Higher levels of hCLOCK expression were observed in human CRC tissues compared with the paired non-cancerous tissues. hCLOCK expression was significantly higher in poorly differentiated, or late-stage, Dukes' grade tumors and in 64.3% of tumor cases with lymph node metastasis. The hClock gene was expressed in all specimens. A significantly higher expression of hClock was found in human CRC cases compared with paired non-cancerous tissues. There was a strong positive linear correlation between hClock gene expression and protein expression in human CRCs. A strong positive linear correlation was also found between hClock gene expression and ARNT, HIF-1α and VEGF expression in human CRCs. There was no significant correlation between hClock and Bak, Bax, Bid, tumor necrosis factor receptor I (TNFR I) and TNFR II. The circadian gene hClock was stably expressed in human colorectal mucosa and was important in regulating the expression of downstream clock-controlled genes. hCLOCK may interact with HIF-1α/ARNT and activate VEGF to stimulate tumor angiogenesis and metastasis.

Lin Y, Yang X, Lu M, et al.
Herbal compound triptolide synergistically enhanced antitumor activity of vasostatin120-180.
Anticancer Drugs. 2013; 24(9):945-57 [PubMed] Related Publications
Angiogenesis is essential for the survival and growth of most tumors. As such, targeting the tumor neovasculature is an attractive strategy for effective cancer therapy. Angiogenesis inhibitors have strong therapeutic potential as antitumor agents in suppressing tumor growth and metastatic progression. The functional domain within amino acid residues 120-180 of vasostatin (VAS) has been confirmed to be effective in inhibiting the proliferation, migration, and invasiveness of cancer cells by its suppressive capacity against angiogenesis. Triptolide (TPL) is an active component extracted from the traditional Chinese herbal medicine Tripterygium wilfordii Hook F that has shown antitumor activities in various cancer cell types. However, its therapeutic application is limited by its toxicity in normal tissues and complications caused in patients. In this study, we attempted to investigate the synergistic antitumor activity of TPL and VAS in solid tumor cells. Our results showed that the sensitivity of combined therapy using TPL and VAS was higher than that of monotherapy using TPL or VAS. Apoptosis induced by the combined treatment was accompanied by activation of caspase-9, caspase-8, and caspase-3. Upregulation of proapoptotic protein (Bax, Bak, and Bad) expression and suppression of NF-κB transcriptional activity and its targeting antiapoptotic genes (c-FLIP, cIAP, Bcl-2, Bcl-xl, and Mcl-1) may contribute to the synergistic effects of this combination therapy. Further, using a mouse xenograft model, we demonstrated that combined treatment completely suppressed tumor growth as compared with treatment with TPL or VAS alone. These results suggest that the combination of TPL and VAS at lower concentrations may produce a synergistic antitumor effect that warrants further investigation for its potential clinical applications.

Ye CG, Chen GG, Ho RL, et al.
Epigenetic upregulation of Bak by ZBP-89 inhibits the growth of hepatocellular carcinoma.
Biochim Biophys Acta. 2013; 1833(12):2970-9 [PubMed] Free Access to Full Article Related Publications
Zinc-binding protein-89 regulates Bak to facilitate apoptosis in cancer cells. This study examined if zinc-binding protein-89 regulates Bak through an epigenetic mechanism in hepatocellular carcinoma. We first demonstrated that the expression of Bak was reduced but the levels of deoxyribonucleic acid methyltransferase 1 and histone deacetylase 3 were increased in hepatocellular carcinoma cancer tissues compared to the corresponding non-cancer tissues. Moreover, there was a negative correlation between Bak expression and deoxyribonucleic acid methyltransferase 1 levels in hepatocellular carcinoma. Administration of zinc-binding protein-89 downregulated histone deacetylase 3 expression and suppressed the activities of histone deacetylase and deoxyribonucleic acid methyltransferase, which led to maintenance of histone acetylation status, inhibited the binding of methyl-CpG-binding protein 2 to genomic deoxyribonucleic acid and demethylated CpG islands in the Bak promoter in hepatocellular carcinoma cells. Using the xenograft mouse tumor model, we demonstrated that zinc-binding protein-89 or inhibitors of either epigenetic enzymes could stimulate Bak expression, induce apoptosis, and arrest tumor growth and that the maximal effort was achieved when zinc-binding protein-89 and the enzyme inhibitors were used in combination. Conclusively, zinc-binding protein-89 upregulates the expression of Bak by targeting multiple components of the epigenetic pathway in hepatocellular carcinoma.

Solís-Paredes M, Eguía-Aguilar P, Chico-Ponce de León F, et al.
Epigenetic modifications in cell lines of human astrocytoma differentially regulate expression of apoptotic genes.
Childs Nerv Syst. 2014; 30(1):123-9 [PubMed] Related Publications
OBJECTS: Epigenetic alterations, known as epimutations, act by deregulating gene expression. These epimutations are reversible through the action of chromatin modifiers such as DNA methylation (DNA-met) and histone deacetylases (HDAC) inhibitors. The present study evaluated the effect of 5-azacitidine (5-aza) and sodium butyrate (NaBu) as inhibitors of DNA-met and HDAC, respectively, in the expression of genes involved in apoptosis.
METHODS: D54-MG, U373-MG, and T98G cell lines were exposed to 8 mM of NaBu and 12 μM of 5-aza, as well as a combination of both, for 24 h. The expression of the Bcl-2, Bak-1, Bax, Caspase-3, and Caspase-9 genes was assessed by RT-PCR.
RESULTS: They show that the Bcl-2, Caspase-3, and Caspase-9 genes were not expressed by the U373-MG and T98G lines, and that the D54-MG line did not express Bak-1. After treatment, however, these cell lines expressed all of the genes due to the effect of 5-aza on Bak-1 in D54-MG and Caspase-9 in T98G, which suggests repression by DNA-met. Meanwhile, Bcl-2, Caspase-3, and Caspase-9 were in the U373-MG and T98G lines expressed after NaBu treatment. The effect of 5-aza induced an increase in the expression of Bax and Bcl-2, while NaBu produced a similar effect on the Bak-1 and Bax genes.
CONCLUSIONS: Results reveal that histone deacetylation is the principle mechanism for repressing these genes and that their basal expression is regulated primarily by this form of histone modification.

Wang YD, Cai N, Wu XL, et al.
OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway.
Cell Death Dis. 2013; 4:e760 [PubMed] Free Access to Full Article Related Publications
Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene that maintains the pluripotency and self-renewal properties of embryonic stem cells. Although there is emerging evidence that it can function as oncogene in several cancers, the role in mediating cervical cancer remains unexplored. Here we found that OCT4 protein expression showed a pattern of gradual increase from normal cervix to cervical carcinoma in situ and then to invasive cervical cancer. Overexpression of OCT4 in two types of cervical cancer cells promotes the carcinogenesis, and inhibits cancer cell apoptosis. OCT4 induces upregulation of miR-125b through directly binding to the promoter of miR-125b-1 confirmed by chromatin immunoprecipitation analysis. MiRNA-125b overexpression suppressed apoptosis and expression of BAK1 protein. In contrast, miR-125b sponge impaired the anti-apoptotic effect of OCT4, along with the upregulated expression of BAK1. Significantly, Luciferase assay showed that the activity of the wild-type BAK1 3'-untranslated region reporter was suppressed and this suppression was diminished when the miR-125b response element was mutated or deleted. In addition, we observed negative correlation between levels of BAK1 and OCT4, and positive between OCT4 and miR-125b in primary cervical cancers. These findings suggest an undescribed regulatory pathway in cervical cancer, by which OCT4 directly induces expression of miR-125b, which inhibits its direct target BAK1, leading to suppression of cervical cancer cell apoptosis.

Ajeawung NF, Faure R, Jones C, Kamnasaran D
Preclinical evaluation of dipotassium bisperoxo (picolinato) oxovanadate V for the treatment of pediatric low-grade gliomas.
Future Oncol. 2013; 9(8):1215-29 [PubMed] Related Publications
AIM: The treatment of pediatric low-grade gliomas with current treatment modalities still remains ineffective among a subset of patients; hence, justifying the need to further investigate more effective therapies. Dipotassium bisperoxo (picolinato) oxovanadate V (Bpv[pic]), is a derivative of the trace metal vanadium and a potent inhibitor of protein tyrosine phosphatases, which are important mediators of oncogenic and tumor suppressive activities in cancers. In this study, we undertook a preclinical evaluation of the antineoplastic functions of Bpv(pic) in the treatment of pediatric low-grade gliomas.
MATERIALS & METHODS: We utilized pediatric low-grade glioma cell lines (Res186, Res259 and R286) in a wide variety of cancer assays to determine whether Bpv(pic) can abrogate the neoplastic properties of these cells.
RESULTS: Our preclinical evaluation of the antineoplastic properties of Bpv(pic) in pediatric low-grade gliomas reveals a significant dose-dependent decrease in cell viability as a consequence of decreased proliferation and sustained induction of growth arrest and apoptosis. Bpv(pic) significantly decreases cell migration/invasion and anchorage-independent growth in soft agarose. Within cells, Bpv(pic) functions by attenuating CDC25A activity, and by decreasing the expression of multiple protein tyrosine phosphatases, DNA repair genes, microtubule-associated genes, such as PLK1, AURKA and HDAC6, and conversely augmenting the expression of proapoptotic mediators such as BAK, AIFM and CTSL1.
CONCLUSION: Collectively, our data strongly suggest novel evidence of Bpv(pic) being a potent antineoplastic drug and a suitable alternative for the treatment of pediatric low-grade gliomas.

Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I
p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells.
Mol Cell Biochem. 2013; 381(1-2):61-8 [PubMed] Related Publications
p53 protein is probably the best known tumor suppressor. Earlier reports proved that human breast cancer cells expressing mutant p53 displayed resistance to apoptosis. This study is intended to investigate, the potential applications of RNA interference (RNAi) to block p53 expression, as well as its subsequent effect on cell growth, apoptosis and migration on a triple negative human breast cancer cell line (Hs578T). p53siRNA significantly reduced cell index (CI) compared to the control and we observed an inhibition of cellular migration in the interval of time between 0 and 30 h, as shown in the data obtained by dynamic evaluation using the xCELLigence System. Also, by using PCR-array technology, a panel of 84 key genes involved in apoptosis was investigated. Our studies indicate that the knockdown of p53 expression by siRNA modulates several genes involved in cell death pathways and apoptosis, showing statistically significant gene expression differences for 22 genes, from which 18 were upregulated and 4 were downregulated. The present research also emphasizes the important role of BCL-2 pro-apoptotic family of genes (Bim, Bak, and Bax) in activating apoptosis and reducing cell proliferation by p53siRNA treatment. Death receptors cooperate with BCL-2 pro-apoptotic genes in reducing cell proliferation. The limited success may be due to the activation of the antiapoptotic gene Mcl-1, and it may be associated with the resistance of triple negative breast cancer cells to cancer treatment. Thus, targeting p53siRNA pathways using siRNA may serve as a promising therapeutic strategy for the treatment of breast cancers.

Alonso EN, Orozco M, Eloy Nieto A, Balogh GA
Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells.
J Med Food. 2013; 16(7):602-17 [PubMed] Free Access to Full Article Related Publications
It is already known that the Maitake (D-Fraction) mushroom is involved in stimulating the immune system and activating certain cells that attack cancer, including macrophages, T-cells, and natural killer cells. According to the U.S. National Cancer Institute, polysaccharide complexes present in Maitake mushrooms appear to have significant anticancer activity. However, the exact molecular mechanism of the Maitake antitumoral effect is still unclear. Previously, we have reported that Maitake (D-Fraction) induces apoptosis in breast cancer cells by activation of BCL2-antagonist/killer 1 (BAK1) gene expression. At the present work, we are identifying which genes are responsible for the suppression of the tumoral phenotype mechanism induced by Maitake (D-Fraction) in breast cancer cells. Human breast cancer MCF-7 cells were treated with and without increased concentrations of Maitake D-Fraction (36, 91, 183, 367 μg/mL) for 24 h. Total RNA were isolated and cDNA microarrays were hybridized containing 25,000 human genes. Employing the cDNA microarray analysis, we found that Maitake D-Fraction modified the expression of 4068 genes (2420 were upmodulated and 1648 were downmodulated) in MCF-7 breast cancer cells in a dose-dependent manner during 24 h of treatment. The present data shows that Maitake D-Fraction suppresses the breast tumoral phenotype through a putative molecular mechanism modifying the expression of certain genes (such as IGFBP-7, ITGA2, ICAM3, SOD2, CAV-1, Cul-3, NRF2, Cycline E, ST7, and SPARC) that are involved in apoptosis stimulation, inhibition of cell growth and proliferation, cell cycle arrest, blocking migration and metastasis of tumoral cells, and inducing multidrug sensitivity. Altogether, these results suggest that Maitake D-Fraction could be a potential new target for breast cancer chemoprevention and treatment.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BAK1, Cancer Genetics Web: http://www.cancer-genetics.org/BAK1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999