ATRX

Gene Summary

Gene:ATRX; alpha thalassemia/mental retardation syndrome X-linked
Aliases: JMS, SHS, XH2, XNP, ATR2, SFM1, MRX52, RAD54, MRXHF1, RAD54L, ZNF-HX
Location:Xq21.1
Summary:The protein encoded by this gene contains an ATPase/helicase domain, and thus it belongs to the SWI/SNF family of chromatin remodeling proteins. This protein is found to undergo cell cycle-dependent phosphorylation, which regulates its nuclear matrix and chromatin association, and suggests its involvement in the gene regulation at interphase and chromosomal segregation in mitosis. Mutations in this gene are associated with an X-linked mental retardation (XLMR) syndrome most often accompanied by alpha-thalassemia (ATRX) syndrome. These mutations have been shown to cause diverse changes in the pattern of DNA methylation, which may provide a link between chromatin remodeling, DNA methylation, and gene expression in developmental processes. Multiple alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Aug 2013]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:transcriptional regulator ATRX
HPRD
Source:NCBIAccessed: 21 August, 2015

Ontology:

What does this gene/protein do?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Latest Publications: ATRX (cancer-related)


Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
N Engl J Med. 2015; 372(26):2481-98 [PubMed] Article available free on PMC after 25/12/2015 Related Publications
BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas.
METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes.
RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma.
CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).

Kim HS, Lee HS, Nam KH, et al.
Telomere length abnormalities and telomerase RNA component expression in gastroenteropancreatic neuroendocrine tumors.
Anticancer Res. 2015; 35(6):3501-10 [PubMed] Related Publications
Telomere lengths in normal human cells are tightly regulated within a narrow range. Telomere length abnormalities are prevalent genetic alterations in malignant transformation. We studied telomere length abnormalities, telomerase RNA component (TERC) expression, alpha-thalassemia X-linked mental retardation (ATRX) expression, and death domain-associated protein (DAXX) expression in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). We used tissue microarrays to perform telomere fluorescent in situ hybridization (FISH) and TERC in situ hybridization in 327 formalin-fixed paraffin-embedded tissues of GEP-NETs. Telomere length abnormalities were detected in 35% of 253 informative cases by using telomere FISH. Ten cases had altered lengthening of telomeres (ALT), an ALT-positive phenotype (4%), and 79 cases had telomere shortening (31%). The ALT-positive phenotype was significantly associated with tumors of pancreatic origin (7/10) and loss of ATRX or DAXX protein (8/10). Telomere shortening was significantly associated with low TERC expression. In the survival analysis, loss of ATRX or DAXX protein was associated with a decreased overall survival. Multivariate regression analysis showed that lymph node metastasis and high TERC expression were independent prognostic factors of reduced overall survival (OS) for patients with GEP-NETs. Our results showed that telomere lengthening (the ALT-positive phenotype) and telomere shortening accompanied by low TERC levels are two types of clinically significant telomere abnormalities in GEP-NETs.

Tong Y, Merino D, Nimmervoll B, et al.
Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes.
Cancer Cell. 2015; 27(5):712-27 [PubMed] Article available free on PMC after 11/05/2016 Related Publications
Choroid plexus carcinomas (CPCs) are poorly understood and frequently lethal brain tumors with few treatment options. Using a mouse model of the disease and a large cohort of human CPCs, we performed a cross-species, genome-wide search for oncogenes within syntenic regions of chromosome gain. TAF12, NFYC, and RAD54L co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3 were identified as oncogenes that are gained in tumors in both species and required for disease initiation and progression. TAF12 and NFYC are transcription factors that regulate the epigenome, whereas RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained oncogenes that cooperate in the formation of CPC and reveal potential avenues for therapy.

Yang J, AlTahan AM, Hu D, et al.
The role of histone demethylase KDM4B in Myc signaling in neuroblastoma.
J Natl Cancer Inst. 2015; 107(6):djv080 [PubMed] Related Publications
BACKGROUND: Epigenetic alterations, such as histone methylation, modulate Myc signaling, a pathway central to oncogenesis. We investigated the role of the histone demethylase KDM4B in N-Myc-mediated neuroblastoma pathogenesis.
METHODS: Spearman correlation was performed to correlate MYCN and KDM4B expression. RNA interference, microarray analysis, gene set enrichment analysis, and real-time polymerase chain reaction were used to define the functions of KDM4B. Immunoprecipitation and immunofluorescence were used to assess protein-protein interactions between N-Myc and KDM4B. Chromatin immunoprecipitation was used to assess the binding of Myc targets. Constitutive and inducible lentiviral-mediated KDM4B knockdown with shRNA was used to assess the effects on tumor growth. Kaplan-Meier survival analysis was used to assess the prognostic value of KDM4B expression. All statistical tests were two-sided.
RESULTS: KDM4B and MYCN expression were found to be statistically significantly correlated in a variety of cancers, including neuroblastoma (R = 0.396, P < .001). Functional studies demonstrated that KDM4B regulates the Myc pathway. N-Myc was found to physically interact with and recruit KDM4B. KDM4B was found to regulate neuroblastoma cell proliferation and differentiation in vitro and xenograft growth in vivo (5 mice/group, two-tailed t test, P ≤ 0.001). Finally, together with MYCN amplification, KDM4B was found to stratify a subgroup of poor-prognosis patients (122 case patients, P < .001).
CONCLUSIONS: Our findings provide insight into the epigenetic regulation of Myc via histone demethylation and proof-of-concept for inhibition of histone demethylases to target Myc signaling in cancers such as neuroblastoma.

Reis GF, Pekmezci M, Hansen HM, et al.
CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas.
J Neuropathol Exp Neurol. 2015; 74(5):442-52 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Lower-grade (World Health Organization Grades II and III) gliomas vary widely in clinical behavior and are classified as astrocytic, oligodendroglial, or mixed. Anaplasia depends greatly on mitotic activity, with CDKN2A loss considered as the most common mechanism for cell cycle dysregulation. We investigated whether loss of the CDKN2A gene is associated with overall survival across pathologically and genetically defined glioma subtypes. After adjustment for IDH mutation, sex, and age, CDKN2A deletion was strongly associated with poorer overall survival in astrocytomas but not in oligodendrogliomas or oligoastrocytomas. Molecular classification of astrocytomas by IDH mutation, TP53 mutation, and /or ATRX loss of expression revealed that CDKN2A loss in IDH/TP53 mutated tumors was strongly associated with worse overall survival. CDKN2A loss in IDH mutated tumors with ATRX loss was only weakly associated with worse overall survival. These findings suggest that CDKN2A testing may provide further clinical aid in lower-grade glioma substratification beyond IDH mutation and 1p19q codeletion status, particularly in IDH/TP53 mutated astrocytomas.

Leng S, Liu Y, Weissfeld JL, et al.
15q12 variants, sputum gene promoter hypermethylation, and lung cancer risk: a GWAS in smokers.
J Natl Cancer Inst. 2015; 107(5) [PubMed] Related Publications
BACKGROUND: Lung cancer is the leading cause of cancer-related mortality worldwide. Detection of promoter hypermethylation of tumor suppressor genes in exfoliated cells from the lung provides an assessment of field cancerization that in turn predicts lung cancer. The identification of genetic determinants for this validated cancer biomarker should provide novel insights into mechanisms underlying epigenetic reprogramming during lung carcinogenesis.
METHODS: A genome-wide association study using generalized estimating equations and logistic regression models was conducted in two geographically independent smoker cohorts to identify loci affecting the propensity for cancer-related gene methylation that was assessed by a 12-gene panel interrogated in sputum. All statistical tests were two-sided.
RESULTS: Two single nucleotide polymorphisms (SNPs) at 15q12 (rs73371737 and rs7179575) that drove gene methylation were discovered and replicated with rs73371737 reaching genome-wide significance (P = 3.3×10(-8)). A haplotype carrying risk alleles from the two 15q12 SNPs conferred 57% increased risk for gene methylation (P = 2.5×10(-9)). Rs73371737 reduced GABRB3 expression in lung cells and increased risk for smoking-induced chronic mucous hypersecretion. Furthermore, subjects with variant homozygote of rs73371737 had a two-fold increase in risk for lung cancer (P = .0043). Pathway analysis identified DNA double-strand break repair by homologous recombination (DSBR-HR) as a major pathway affecting susceptibility for gene methylation that was validated by measuring chromatid breaks in lymphocytes challenged by bleomycin.
CONCLUSIONS: A functional 15q12 variant was identified as a risk factor for gene methylation and lung cancer. The associations could be mediated by GABAergic signaling that drives the smoking-induced mucous cell metaplasia. Our findings also substantiate DSBR-HR as a critical pathway driving epigenetic gene silencing.

Joerger M, Huitema AD, Boot H, et al.
Germline TYMS genotype is highly predictive in patients with metastatic gastrointestinal malignancies receiving capecitabine-based chemotherapy.
Cancer Chemother Pharmacol. 2015; 75(4):763-72 [PubMed] Related Publications
PURPOSE: This work was initiated to extend data on the effect of pharmacogenetics and chemotherapy pharmacokinetics (PK) on clinical outcome in patients with gastrointestinal malignancies.
METHODS: We assessed 44 gene polymorphisms in 16 genes (TYMS, MTHFR, GSTP1, GSTM1, GSTT1, DPYD, XRCC1, XRCC3, XPD, ERCC1, RECQ1, RAD54L, ABCB1, ABCC2, ABCG2 and UGT2B7) in 64 patients with metastatic colorectal cancer (CRC) receiving capecitabine/oxaliplatin and 76 patients with advanced gastroesophageal cancer (GEC) receiving epirubicin/cisplatin/capecitabine, respectively. Plasma concentrations of anticancer drugs were measured for up to 24 h, and results were submitted to population PK analysis. We calculated the association between gene polymorphisms, chemotherapy exposure, tumor response, progression-free survival (PFS), overall survival (OS) and chemotherapy-related toxicity using appropriate statistical tests.
RESULTS: Patients with a low clearance of 5FU were at increased risk of neutropenia (P < 0.05) and hand-foot syndrome (P = 0.002). DPYD T85C, T1896C and A2846T mutant variants were associated with diarrhea (P < 0.05) and HFS (P < 0.02), and IVS14+1G>A additionally with diarrhea (P < 0.001). The TYMS 2R/3G, 3C/3G or 3G/3G promoter variants were associated with worse PFS in the CRC (HR = 2.0, P < 0.01) and GEC group (HR = 5.4, P < 0.001) and worse OS in the GEC group (HR = 4.7, P < 0.001). The GSTP1 A313G mutant variant was associated with a higher PFS (HR = 0.55, P = 0.001) and OS (HR = 0.60, P = 0.002) in the CRC group.
CONCLUSIONS: Germline polymorphisms of DPYD, TYMS and GSTP1 have a significant effect on toxicity and clinical outcome in patients receiving capecitabine-based chemotherapy for advanced colorectal or gastroesophageal cancer. These data should further be validated in prospective clinical studies.

Mur P, Mollejo M, Hernández-Iglesias T, et al.
Molecular classification defines 4 prognostically distinct glioma groups irrespective of diagnosis and grade.
J Neuropathol Exp Neurol. 2015; 74(3):241-9 [PubMed] Related Publications
According to World Health Organization criteria, diffuse gliomas are divided into several histological subtypes, including astrocytomas, oligodendrogliomas, and oligoastrocytomas, and 4 malignancy grades (I-IV). Molecular alterations, such as the isocitrate dehydrogenase gene (IDH) mutation or 1p/19q loss, are found in these tumors but are not included in the current classification system. Recently, mutation of α thalassemia/mental retardation syndrome X-linked (ATRX) gene and its loss of expression have been reported in infiltrating gliomas. We evaluated ATRX protein expression in 272 gliomas and its association with molecular and clinical features. Loss of ATRX expression was more common in tumors with an astrocytic component (astrocytomas II/III, 46.4%; oligoastrocytomas, 47.5%) but was uncommon in oligodendrogliomas (7.3%) and glioblastomas (0.9%). In astrocytic tumors, loss of ATRX expression was significantly associated with longer overall survival. Remarkably, on the basis of IDH mutation, 1p/19q codeletion, and ATRX expression, our study defined 4 molecularly and prognostically different groups of gliomas, showing the relevance of ATRX expression as a new marker for refining the molecular classification of gliomas and for distinguishing clinically distinct prognostic subgroups of patients.

Jiang Y, Oldridge DA, Diskin SJ, Zhang NR
CODEX: a normalization and copy number variation detection method for whole exome sequencing.
Nucleic Acids Res. 2015; 43(6):e39 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample normalization procedure of CODEX removes more noise than normalizing the tumor against the matched normal and that the segmentation procedure performs well in detecting CNVs with nested structures.

Flynn RL, Cox KE, Jeitany M, et al.
Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors.
Science. 2015; 347(6219):273-7 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication protein A (RPA) with telomeres after DNA replication, creating a recombinogenic nucleoprotein structure. Inhibition of the protein kinase ATR, a critical regulator of recombination recruited by RPA, disrupts ALT and triggers chromosome fragmentation and apoptosis in ALT cells. The cell death induced by ATR inhibitors is highly selective for cancer cells that rely on ALT, suggesting that such inhibitors may be useful for treatment of ALT-positive cancers.

Appin CL, Brat DJ
Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis.
Adv Anat Pathol. 2015; 22(1):50-8 [PubMed] Related Publications
Gliomas are a large and diverse group of primary brain tumors that include those that are diffusely infiltrative and others that are well-circumscribed and low grade. Diffuse gliomas are currently classified by the World Health Organization as astrocytomas, oligodendrogliomas, or oligoastrocytomas and range in grade from II to IV. Glioblastoma (GBM), World Health Organization grade IV, is the highest grade and most common form of astrocytoma. In the past, the diagnosis of gliomas was almost exclusively based on histopathologic features. More recently, improved understanding of molecular genetic underpinnings has led to ancillary molecular studies becoming standard for classification, prognostication, and predicting therapy response. Isocitrate dehydrogenase (IDH) mutations are frequent in grade II and III infiltrating gliomas and secondary GBMs. Infiltrating astrocytomas and secondary GBMs are characterized by IDH, TP53, and ATRX mutations, whereas oligodendrogliomas demonstrate 1p/19q codeletion and mutations in IDH, CIC, FUBP1, and the telomerase reverse transcriptase (TERT) promoter. Primary GBMs typically lack IDH mutations and are instead characterized by EGFR, PTEN, TP53, PDGFRA, NF1, and CDKN2A/B alterations and TERT promoter mutations. Pediatric GBMs differ from those in adults and frequently have mutations in H3F3A, ATRX, and DAXX, but not IDH. In contrast, circumscribed, low-grade gliomas of childhood, such as pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma, often harbor mutations or activating gene rearrangements in BRAF. Neuropathologic assessment of gliomas increasingly relies on ancillary testing of molecular alterations for proper classification and patient management.

Geis C, Fendrich V, Rexin P, et al.
Ileal neuroendocrine tumors show elevated activation of mammalian target of rapamycin complex.
J Surg Res. 2015; 194(2):388-93 [PubMed] Related Publications
BACKGROUND: Neuroendocrine tumors (NETs) of the ileum are sporadic tumors derived from submucosal gastrointestinal stem cells. They often show clinical symptoms only after hepatic metastasation when curative therapy is limited or impossible. In this study, we analyzed the expression of the candidate genes mammalian target of rapamycin (mTOR), alpha thalassemia/mental retardation syndrome X-linked (ATRX), and death domain-associated protein (DAXX) to investigate the specific oncogenetics and potential therapeutic options for ileal NETs.
METHODS: In a prospective database, all patients who underwent surgical removal of a NET of the ileum between 2001 and 2011 were specified. Expression analysis was performed for mTOR, ATRX, and DAXX by immunohistochemistry of paraffin-embedded tumor samples. To evaluate the results the immunoreactive score was applied. Normal tissue and tumor tissue were analyzed for the comparison of gene expression levels using quantitative-real-time polymerase chain reaction for ATRX and mTOR genes. Results were correlated under pathologic and clinical aspects.
RESULTS: A total of 69 patients were admitted to the study. Positive cytosolic expression of the potential oncogene mTOR was immunohistochemically detected in 76.2% of the human probes. A loss of nuclear ATRX expression was detected in 13.0% of the samples. A nonexpression of the DAXX-protein in cell nuclei was not found (0%). Gene transcript levels did not show a significant alteration in ileal NETs in comparison with normal tissue.
CONCLUSIONS: mTOR is overexpressed in ileal NETs. Additionally, the loss of ATRX expression was registered, thus underlying a tumorigenic role in a subgroup of these tumors. To enable potential therapeutic application of mTOR inhibitors, further trials with larger study groups are needed.

Suvà ML
Genetics and epigenetics of gliomas.
Swiss Med Wkly. 2014; 144:w14018 [PubMed] Related Publications
Gliomas are the most common primary intrinsic brain tumours. Their classification is based on phenotypic resemblance to normal glial cells (astrocytomas, oligodendrogliomas, mixed oligoastrocytomas) and pathological grading. Whereas this system is clinically relevant and has been the basis for our understanding of gliomas, systematic use of next-generation sequencing has transformed our knowledge of their pathogenesis and has uncovered genetic changes in an unanticipated number of genes and regulatory elements. In the past few years, in-depth analysis of low-grade astrocytomas and glioblastomas in both paediatric and adult populations has clarified our molecular understanding of these diseases, with distinct molecular events occurring in different age groups. In oligodendrogliomas, recent studies have highlighted mutations in candidate tumour suppressor genes located on 1p/19q, chromosome arms frequently deleted in this tumour. In this review, we discuss recent discoveries in the genetics of adult and paediatric gliomas, and highlight how some of the founding genetic mutations reshape the cancer epigenome. These studies provide an in-depth view of the molecular routes leading to brain tumour development and will be key for refining classification systems and improving clinical care.

Mangerel J, Price A, Castelo-Branco P, et al.
Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors.
Acta Neuropathol. 2014; 128(6):853-62 [PubMed] Related Publications
Although telomeres are maintained in most cancers by telomerase activation, a subset of tumors utilize alternative lengthening of telomeres (ALT) to sustain self-renewal capacity. In order to study the prevalence and significance of ALT in childhood brain tumors we screened 517 pediatric brain tumors using the novel C-circle assay. We examined the association of ALT with alterations in genes found to segregate with specific histological phenotypes and with clinical outcome. ALT was detected almost exclusively in malignant tumors (p = 0.001). ALT was highly enriched in primitive neuroectodermal tumors (12 %), choroid plexus carcinomas (23 %) and high-grade gliomas (22 %). Furthermore, in contrast to adult gliomas, pediatric low grade gliomas which progressed to high-grade tumors did not exhibit the ALT phenotype. Somatic but not germline TP53 mutations were highly associated with ALT (p = 1.01 × 10(-8)). Of the other alterations examined, only ATRX point mutations and reduced expression were associated with the ALT phenotype (p = 0.0005). Interestingly, ALT attenuated the poor outcome conferred by TP53 mutations in specific pediatric brain tumors. Due to very poor prognosis, one year overall survival was quantified in malignant gliomas, while in children with choroid plexus carcinoma, five year overall survival was investigated. For children with TP53 mutant malignant gliomas, one year overall survival was 63 ± 12 and 23 ± 10 % for ALT positive and negative tumors, respectively (p = 0.03), while for children with TP53 mutant choroid plexus carcinomas, 5 years overall survival was 67 ± 19 and 27 ± 13 % for ALT positive and negative tumors, respectively (p = 0.07). These observations suggest that the presence of ALT is limited to a specific group of childhood brain cancers which harbor somatic TP53 mutations and may influence the outcome of these patients. Analysis of ALT may contribute to risk stratification and targeted therapies to improve outcome for these children.

Sato S, Tsuchikawa T, Nakamura T, et al.
Impact of the tumor microenvironment in predicting postoperative hepatic recurrence of pancreatic neuroendocrine tumors.
Oncol Rep. 2014; 32(6):2753-9 [PubMed] Related Publications
The disease frequency of pancreatic neuroendocrine tumors (PNETs) has been growing, and postoperative hepatic recurrence (PHR) is one of the factors affecting patient prognosis. The present study aimed to investigate biomarkers of PNETs in the primary disease site to predict PHR using immunohistochemical analysis for tumor-infiltrating lymphocytes (TILs: CD3, CD8 and CD45RO), human leukocyte antigen (HLA) class I, α-thalassemia/mental retardation X-linked (ATRX), death domain-associated protein (DAXX), mammalian target of rapamycin (mTOR) and phospho-mTOR (p-mTOR). Correlations were analyzed between TILs and the biomarkers, clinicopathological features and prognosis. Sixteen patients with PNETs who underwent radical surgery at our hospital were reviewed. We analyzed the correlation between PHR and immunohistochemical characteristics, and also between disease-free survival (DFS) or overall survival (OS) and the immunohistochemical characteristics. We found that PHR was associated with the expression patterns of DAXX and p-mTOR. No association was found between PHR and patient background, TILs or other biomarkers. DFS was found to be associated with ATRX, DAXX and p-mTOR. OS was associated only with p-mTOR. In conclusion, ATRX, DAXX and p-mTOR are useful molecular biomarkers for predicting PHR in patients who undergo radical surgery for PNETs. Use of these biomarkers will enable earlier decisions on which patients may benefit from adjuvant therapy.

Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW
Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel.
PLoS One. 2014; 9(9):e108511 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response.

Cryan JB, Haidar S, Ramkissoon LA, et al.
Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas.
Oncotarget. 2014; 5(18):8083-92 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Classifying adult gliomas remains largely a histologic diagnosis based on morphology; however astrocytic, oligodendroglial and mixed lineage tumors can display overlapping histologic features. We used multiplexed exome sequencing (OncoPanel) on 108 primary or recurrent adult gliomas, comprising 65 oligodendrogliomas, 28 astrocytomas and 15 mixed oligoastrocytomas to identify lesions that could enhance lineage classification. Mutations in TP53 (20/28, 71%) and ATRX (15/28, 54%) were enriched in astrocytic tumors compared to oligodendroglial tumors of which 4/65 (6%) had mutations in TP53 and 2/65 (3%) had ATRX mutations. We found that oligoastrocytomas harbored mutations in TP53 (80%, 12/15) and ATRX (60%, 9/15) at frequencies similar to pure astrocytic tumors, suggesting that oligoastrocytomas and astrocytomas may represent a single genetic or biological entity. p53 protein expression correlated with mutation status and showed significant increases in astrocytomas and oligoastrocytomas compared to oligodendrogliomas, a finding that also may facilitate accurate classification. Furthermore our OncoPanel analysis revealed that 15% of IDH1/2 mutant gliomas would not be detected by traditional IDH1 (p.R132H) antibody testing, supporting the use of genomic technologies in providing clinically relevant data. In all, our results demonstrate that multiplexed exome sequencing can support evaluation and classification of adult low-grade gliomas with a single clinical test.

Howitt BE, Sholl LM, Dal Cin P, et al.
Targeted genomic analysis of Müllerian adenosarcoma.
J Pathol. 2015; 235(1):37-49 [PubMed] Related Publications
Müllerian adenosarcoma (MA) is a rare mixed mesenchymal tumour of the female genital tract, composed of malignant stroma and benign-appearing epithelium. Sarcomatous overgrowth (SO) is the only established histological variable associated with higher stage and shorter survival. Specific molecular or immunohistochemistry (IHC) tools for the diagnosis of MA are lacking. Our goal was to study genomic mutations and copy number variations (CNVs) in MA to understand better its pathobiology, and develop specific diagnostic and prognostic tools. DNA was extracted from 20 samples of MA from 18 subjects (12 without SO and 6 with SO), including two in which areas of both typical MA histology and SO were independently tested. Samples were analysed using a targeted next-generation sequencing assay interrogating exonic sequences of 275 cancer genes for mutations and CNVs as well as 91 introns across 30 genes for cancer-associated rearrangements. The mean number of mutations in MA with SO (mean 9.7; range 3-14) did not differ significantly from that in MA without SO (mean 9.6; range 5-16). MA with SO had significantly higher mean numbers of gene-level CNVs (24.6) compared to MA without SO (5; p = 0.0002). The most frequent amplification involved MDM2 and CDK4 (5/18; 28%), accompanied by focal CDK4 and MDM2 and diffuse HMGA2 expression using immunohistochemistry. MYBL1 amplification was seen in 4/18 (22%), predominantly in SO. Alterations in PIK3CA/AKT/PTEN pathway members were seen in 13/18 (72%). Notably, TP53 mutations were uncommon, present in only two cases with SO. Three out of 18 (17%) had mutations in ATRX, all associated with SO. No chromosomal rearrangements were identified. We have identified a number of recurrent genomic alterations in MA, including some associated with SO. Although further investigation of these findings is needed, confirmation of one or more may lead to new mechanistic insights and novel markers for this often difficult-to-diagnose tumour.

Liau JY, Tsai JH, Jeng YM, et al.
Leiomyosarcoma with alternative lengthening of telomeres is associated with aggressive histologic features, loss of ATRX expression, and poor clinical outcome.
Am J Surg Pathol. 2015; 39(2):236-44 [PubMed] Related Publications
Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. Recently, it was shown that 53% to 62% of leiomyosarcomas use the alternative lengthening of telomeres (ALT) as their telomere maintenance mechanism. The molecular basis of this mechanism has not been elucidated. Studies of pancreatic neuroendocrine tumor have suggested that the inactivation of either α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated (DAXX) protein is associated with the ALT phenotype. In this study, we sought to determine the clinicopathologic features of leiomyosarcoma with the ALT phenotype and the possible relationship between this phenotype and ATRX/DAXX expression. Telomerase reverse transcriptase gene (TERT) promoter mutation analysis was also performed. Ninety-two leiomyosarcomas derived from the uterus, retroperitoneum/intra-abdomen, and various other sites were analyzed. Telomere-specific fluorescence in situ hybridization revealed that 59% (51/86) of leiomyosarcomas had the ALT phenotype. Loss of ATRX expression was observed in 33% of the tumors (30/92), and all but 2 ATRX-deficient tumors were ALT positive. Both the ALT phenotype and loss of ATRX expression were associated with epithelioid/pleomorphic cell morphology, tumor necrosis, and poor differentiation. None of the 92 cases lost DAXX expression. No TERT promoter mutation was detected (n=39). For survival analysis, poor differentiation, high FNCLCC grade, tumor size, and ALT phenotype were correlated with poor overall survival in univariate analysis. Tumor size and ALT phenotype remained independent prognostic factors in multivariate analysis. We concluded that the ALT phenotype in the leiomyosarcoma is associated with aggressive histologic features, loss of ATRX expression, and poor clinical outcome.

Yuan F, Shi M, Ji J, et al.
KRAS and DAXX/ATRX gene mutations are correlated with the clinicopathological features, advanced diseases, and poor prognosis in Chinese patients with pancreatic neuroendocrine tumors.
Int J Biol Sci. 2014; 10(9):957-65 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
BACKGROUND AND AIM: Pancreatic neuroendocrine tumor (pNET) is a clinically rare and heterogeneous group of tumors; its pharmacogenetic characteristics are not fully understood. This study was designed to examine the relationship between key gene variations and disease development and prognosis among Chinese patients with pNET.
METHODS: Various pNET associated genes such as DAXX/ATRX, KRAS, MEN1, PTEN, TSC2, SMAD4/DPC, TP53 and VHL were analyzed in high-throughput sequencing. The links between the gene mutations and the clinicopathological features and prognosis of the patients were determined.
RESULTS: The somatic mutation frequencies of the DAXX/ATRX, KRAS, MEN1, mTOR pathway genes (PTEN and TSC2), SMAD4/DPC, TP53, and VHL in Chinese pNET patients were 54.05%, 10.81%, 35.14%, 54.05%, 2.70%, 13.51%, and 40.54%, respectively, while the same figures in Caucasians pNET patients were 43%, 0%, 44%, 15%, 0%, 3%, and 0%, respectively. The numbers of mutated genes were from 0 to 6; 4 patients with more than 3 mutated genes had higher proliferation (Ki-67) index or nerve vascular invasion or organ involvement, but only 9 of 27 patients with 3 or few mutated genes had such features. Mutations in KRAS and DAXX/ATRX, but not other genes analyzed, were associated with a shortened survival.
CONCLUSION: The mutation rates of these genes in Chinese pNET patients are different from those in Caucasians. A higher number of gene mutations and the DAXX/ATRX and KRAS gene mutations are correlated with a poor prognosis of patients with pNET.

Nobusawa S, Hirato J, Yokoo H
Molecular genetics of ependymomas and pediatric diffuse gliomas: a short review.
Brain Tumor Pathol. 2014; 31(4):229-33 [PubMed] Related Publications
Here, we review the recent literature on molecular discoveries in ependymomas and pediatric diffuse gliomas. Ependymomas can now be categorized into three location-related subgroups according to their biological profile: posterior fossa ependymomas, group A (PFA) and B (PFB), and supratentorial ependymomas. Although no recurrently mutated genes were found throughout these groups of ependymomas, PFA exhibited a CpG island methylator phenotype, PFB was associated with extensive chromosomal aberrations, and the C11orf95-RELA fusion gene was frequently observed in supratentorial ependymomas. Meanwhile, it has now become apparent that pediatric diffuse gliomas have a distinct genetic status from their adult counterparts, even though they share an indistinguishable histology. In pediatric low-grade diffuse gliomas, an intragenic duplication of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB/MYBL1 were found recurrently and mutually exclusively. As for non-brainstem high-grade tumors, in addition to H3F3A, TP53, and ATRX mutations, which were frequently observed in older children, recurrent fusions involving NTRK1, NTRK2, and NTRK3 were reported in infants younger than 3 years of age. Moreover, in diffuse intrinsic pontine gliomas (DIPG), recurrent somatic mutations of ACVR1 were found in association with HIST1H3B mutations.

Korf K, Wodrich H, Haschke A, et al.
The PML domain of PML-RARα blocks senescence to promote leukemia.
Proc Natl Acad Sci U S A. 2014; 111(33):12133-8 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
In most acute promyelocytic leukemia (APL) cases, translocons produce a promyelocytic leukemia protein-retinoic acid receptor α (PML-RARα) fusion gene. Although expression of the human PML fusion in mice promotes leukemia, its efficiency is rather low. Unexpectedly, we find that simply replacing the human PML fusion with its mouse counterpart results in a murine PML-RARα (mPR) hybrid protein that is transformed into a significantly more leukemogenic oncoprotein. Using this more potent isoform, we show that mPR promotes immortalization by preventing cellular senescence, impeding up-regulation of both the p21 and p19(ARF) cell-cycle regulators. This induction coincides with a loss of the cancer-associated ATRX/Daxx-histone H3.3 predisposition complex and suggests inhibition of senescence as a targetable mechanism in APL therapy.

Berbegall AP, Villamón E, Tadeo I, et al.
Neuroblastoma after childhood: prognostic relevance of segmental chromosome aberrations, ATRX protein status, and immune cell infiltration.
Neoplasia. 2014; 16(6):471-80 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Neuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations, α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years) formed part of the cohort. We performed single nucleotide polymorphism arrays, immunohistochemistry for immune markers (CD4, CD8, CD20, CD11b, CD11c, and CD68), and ATRX protein expression. Assorted genetic profiles were found with a predominant presence of a segmental chromosome aberration (SCA) profile. Preadolescent and adolescent NB tumors showed a higher number of SCA, including 17q gain and 11q deletion. There was also a marked infiltration of immune cells, mainly high and heterogeneous, in young and middle-aged adult tumors. ATRX negative expression was present in the tumors. The characteristics of preadolescent, adolescent, young adult, and middle-aged adult NB tumors are different, not only from childhood NB tumors but also from each other. Similar examinations of a larger number of such tumor tissues from cooperative groups should lead to a better older age-dependent tumor pattern and to innovative, individual risk-adapted therapeutic approaches for these patients.

Cai J, Yang P, Zhang C, et al.
ATRX mRNA expression combined with IDH1/2 mutational status and Ki-67 expression refines the molecular classification of astrocytic tumors: evidence from the whole transcriptome sequencing of 169 samples samples.
Oncotarget. 2014; 5(9):2551-61 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Astrocytic tumors are the most common primary brain tumors in adults. ATRX mutations have been identified in gliomas and are correlated with its loss of expression, which causes alternative lengthening of telomeres (ALT) leading to genomic instability. In this study, we aimed to explore the role of ATRX mRNA expression alteration in the progression and subclassification of astrocytic tumors and examine its impact on clinical outcome. We investigated ATRX mRNA expression and its association with IDH1 and IDH2 mutations in 169 adult astrocytic tumors using whole transcriptome sequencing. In our cohort, low ATRX mRNA expression was detected in 68% of astrocytomas, 50% of anaplastic astrocytomas and 41.6% of glioblastomas. Low ATRX expression closely overlapped with mutations in IDH1/2 (P<0.0001) in astrocytic tumors across WHO grades II-IV. Significant association between low ATRX expression and longer overall survival was identified in our cohort (P<0.01). ATRX combined with IDH1/2 and Ki-67 was used to re-classify patients with astrocytic tumors: group A1 containing IDH1/2 mutations and low ATRX expression predicted a better prognostic outcome, whereas group A3 carrying wild-type IDH1/2 and high Ki-67 expression had the shortest overall survival; IDH-mutant tumors with low ATRX expression and IDH-wild-type tumors with high Ki-67 expression were grouped into group A2. In summary, our results showed that ATRX in cooperation with IDH1/2 and Ki-67 defines three subgroups of astrocytic tumors regardless of the conventional WHO grades consensus. The molecular stratification in astrocytic tumors may aid in treatment strategy selection, therapeutic trial design, and clinical prognosis evaluation.

Ryan BM, Wang Y, Jen J, et al.
Evidence that the lung Adenocarcinoma EML4-ALK fusion gene is not caused by exposure to secondhand tobacco smoke during childhood.
Cancer Epidemiol Biomarkers Prev. 2014; 23(7):1432-4 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
BACKGROUND: The EML4-ALK fusion gene is more frequently found in younger, never smoking patients with lung cancer. Meanwhile, never smokers exposed to secondhand tobacco smoke (SHS) during childhood are diagnosed at a younger age compared with never smoking patients with lung cancer who are not exposed. We, therefore, hypothesized that SHS, which can induce DNA damage, is associated with the EML4-ALK fusion gene.
METHODS: We compared the frequency of the EML4-ALK fusion gene among 197 never smoker patients with lung cancer with and without a history of exposure to SHS during childhood at Mayo Clinic.
RESULTS: The EML4-ALK fusion gene was detected in 33% of cases from never smokers with a history of SHS exposure during childhood, whereas 47% of never smoking lung cancer cases without a history of childhood SHS exposure tested positive for the fusion gene.
CONCLUSIONS: The EML4-ALK fusion gene is not enriched in tumors from individuals exposed to SHS during childhood.
IMPACT: These data suggest that childhood exposure to SHS is not a significant etiologic cause of the EML4-ALK fusion gene in lung cancer.

Wu G, Diaz AK, Paugh BS, et al.
The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.
Nat Genet. 2014; 46(5):444-50 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase-RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.

Chen X, Bahrami A, Pappo A, et al.
Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.
Cell Rep. 2014; 7(1):104-12 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs) and copy number alterations (CNAs). To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue in a discovery cohort, as well as 14 samples in a validation cohort. Single-nucleotide variations (SNVs) exhibited a pattern of localized hypermutation called kataegis in 50% of the tumors. We identified p53 pathway lesions in all tumors in the discovery cohort, nine of which were translocations in the first intron of the TP53 gene. Beyond TP53, the RB1, ATRX, and DLG2 genes showed recurrent somatic alterations in 29%-53% of the tumors. These data highlight the power of whole-genome sequencing for identifying recurrent somatic alterations in cancer genomes that may be missed using other methods.

Liu X, McEachron TA, Schwartzentruber J, Wu G
Histone H3 mutations in pediatric brain tumors.
Cold Spring Harb Perspect Biol. 2014; 6(4):a018689 [PubMed] Related Publications
Until recently, mutations in histones had not been described in any human disease. However, genome-wide sequencing of pediatric high-grade gliomas revealed somatic heterozygous mutations in the genes encoding histones H3.1 and H3.3, as well as mutations in the chromatin modifiers ATRX and DAXX. The functional significance and mechanistic details of how these mutations affect the tumors is currently under intensive investigation. The information gained from these studies will shed new light on normal brain development as well as increase our understanding of the tumorigenic processes that drive pediatric high-grade gliomas.

Sarker AH, Chatterjee A, Williams M, et al.
NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.
PLoS One. 2014; 9(3):e90261 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

Haberler C, Wöhrer A
Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas.
Clin Neuropathol. 2014 Mar-Apr; 33(2):108-11 [PubMed] Article available free on PMC after 16/01/2016 Related Publications
Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ATRX, Cancer Genetics Web: http://www.cancer-genetics.org/ATRX.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999