Gene Summary

Gene:S100A2; S100 calcium binding protein A2
Aliases: CAN19, S100L
Summary:The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may have a tumor suppressor function. Chromosomal rearrangements and altered expression of this gene have been implicated in breast cancer. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein S100-A2
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
S100A2 is implicated in:
- calcium ion binding
- cellular_component
- endothelial cell migration
Data from Gene Ontology via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Latest Publications: S100A2 (cancer-related)

Long NP, Park S, Anh NH, et al.
High-Throughput Omics and Statistical Learning Integration for the Discovery and Validation of Novel Diagnostic Signatures in Colorectal Cancer.
Int J Mol Sci. 2019; 20(2) [PubMed] Free Access to Full Article Related Publications
The advancement of bioinformatics and machine learning has facilitated the discovery and validation of omics-based biomarkers. This study employed a novel approach combining multi-platform transcriptomics and cutting-edge algorithms to introduce novel signatures for accurate diagnosis of colorectal cancer (CRC). Different random forests (RF)-based feature selection methods including the area under the curve (AUC)-RF, Boruta, and Vita were used and the diagnostic performance of the proposed biosignatures was benchmarked using RF, logistic regression, naïve Bayes, and k-nearest neighbors models. All models showed satisfactory performance in which RF appeared to be the best. For instance, regarding the RF model, the following were observed: mean accuracy 0.998 (standard deviation (SD) < 0.003), mean specificity 0.999 (SD < 0.003), and mean sensitivity 0.998 (SD < 0.004). Moreover, proposed biomarker signatures were highly associated with multifaceted hallmarks in cancer. Some biomarkers were found to be enriched in epithelial cell signaling in

Bai Y, Li LD, Li J, Lu X
Prognostic values of S100 family members in ovarian cancer patients.
BMC Cancer. 2018; 18(1):1256 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Exhibiting high consistence in sequence and structure, S100 family members are interchangeable in function and they show a wide spectrum of biological processes, including proliferation, apoptosis, migration, inflammation and differentiation and the like. While the prognostic value of each individual S100 in ovarian cancer is still elusive. In current study, we investigated the prognostic value of S100 family members in the ovarian cancer.
METHODS: We used the Kaplan Meier plotter (KM plotter) database, in which updated gene expression data and survival information are from 1657 ovarian cancer patients, to assess the relevance of individual S100 family mRNA expression to overall survival in various ovarian cancer subtypes and different clinicopathological features.
RESULTS: It was found that high expression of S100A2 (HR = 1.18, 95%CI: 1.04-1.34, P = 0.012), S100A7A (HR = 1.3, 95%CI: 1.04-1.63, P = 0.02),S100A10 (HR = 1.2, 95%CI: 1.05-1.38, P = 0.0087),and S100A16 (HR = 1.23, 95%CI: 1-1.51, P = 0.052) were significantly correlated with worse OS in all ovarian cancer patients, while the expression of S100A1 (HR = 0.87, 95%CI: 0.77-0.99, P = 0.039), S100A3 (HR = 0.83, 95%CI: 0.71-0.96, P = 0.0011), S100A5 (HR = 0.84, 95%CI: 0.73-0.97, P = 0.017), S100A6 (HR = 0.84, 95%CI: 0.72-0.98, P = 0.024), S100A13 (HR = 0.85, 95%CI:0.75-0.97, P = 0.014) and S100G (HR = 0.86, 95%CI: 0.74-0.99, P = 0.041) were associated with better prognosis. Furthermore, we assessed the prognostic value of S100 expression in different subtypes and the clinicopathological features, including pathological grades, clinical stages and TP53 mutation status, of ovarian cancer patients.
CONCLUSION: Comprehensive understanding of the S100 family members may have guiding significance for the diagnosis and outcome of ovarian cancer patients.

Xiong TF, Pan FQ, Li D
Expression and clinical significance of S100 family genes in patients with melanoma.
Melanoma Res. 2019; 29(1):23-29 [PubMed] Free Access to Full Article Related Publications
Genes in the S100 family are abnormally expressed in a variety of tumor cells and are associated with clinical pathology, but their prognostic value in melanoma patients has not yet been fully elucidated. In this study, we extracted and profiled S100 family mRNA expression data and corresponding clinical data from the Gene Expression Omnibus database to analyze how expression of these genes correlates with clinical pathology. Compared with normal skin, S100A1, S100A13, and S100B were expressed at significantly higher levels in melanoma samples. S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, and S100P were all highly expressed in primary melanoma samples but were expressed at low levels in metastatic melanoma, and all of these genes were strongly correlated with each other (P<0.001). We found the expression of these S100 family genes to be significantly correlated with both lymphatic and distant melanoma metastasis, as well as with American Joint Committee on Cancer grade but not with Clark's grade, age, or sex. This suggests that expression of these genes may be related to the degree of tumor invasion. Although further validation through basic and clinical trials is needed, our results suggest that the S100 family genes have the potential to play an important role in the diagnosis of melanoma. S100 expression may be related to tumor invasion and may facilitate the early diagnosis of melanoma, allowing for a more accurate prognosis. Targeted S100 therapies are also potentially viable strategies in the context of melanoma.

Alajez NM
Large-Scale Analysis of Gene Expression Data Reveals a Novel Gene Expression Signature Associated with Colorectal Cancer Distant Recurrence.
PLoS One. 2016; 11(12):e0167455 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is the fourth-ranked cause of cancer-related deaths worldwide. Despite recent advances in CRC management, distant recurrence (DR) remains the major cause of mortality in patients with preoperative chemotherapy and radiotherapy, underscoring a need to precisely identify novel gene signatures for predicting the risk of systemic relapse. Herein, we integrated two independent CRC gene expression datasets: the GSE71222 dataset, including 26 patients who developed DR and 126 patients who did not develop DR, and the GSE21510 dataset, including 23 patients who developed DR and 76 patients who did not develop DR. Our data revealed 37 common upregulated genes (fold change (FC) ≥ 1.5, P < 0.05) and three common downregulated genes (FC ≤ 1.5, P < 0.05) between DR and non-recurrent patients from the two datasets. We subsequently validated the upregulated gene panel in the Cancer Genome Atlas CRC datasets (379 patients), which identified a five-gene signature (S100A2, VIP, HOXC6, DACT1, KIF26B) associated with poor overall survival (OS, log-rank test P-value: 1.19 × 10-4) and poor disease-free survival (DFS, log-rank test P-value: 0.002). In a Cox proportional hazards multiple regression model, the five-gene signature and tumor stage retained their significance as independent prognostic factors for CRC DFS and OS. Therefore, our data identified a novel DR gene expression signature associated with worse prognosis in CRC.

Wang T, Liang Y, Thakur A, et al.
Expression and clinicopathological significance of S100 calcium binding protein A2 in lung cancer patients of Chinese Han ethnicity.
Clin Chim Acta. 2017; 464:118-122 [PubMed] Related Publications
BACKGROUND: S100 family of calcium-binding proteins plays a significant role in the process of many kinds of tumors, including lung cancer. As an important member of this family, S100 calcium binding protein A2 (S100A2) has been confirmed to be associated with many biological processes, and has an abnormal expression in non-small cell lung cancer (NSCLC). However, the S100A2 status in lung cancer is still controversial and undefined.
METHODS: We evaluated the pattern and distribution of S100A2 in 109 cases of lung cancer, including five histological types (47 adenocarcinoma, 46 squamous cell carcinoma, 7 small cell carcinoma, 3 large cell carcinoma, and 6 atypical carcinoid), and 30 cases of paired adjacent normal lung tissues by means of immunohistochemistry.
RESULTS: Compared with the normal tissues (0/30), S100A2 experienced a dramatically upward trend of positive expression in lung cancer, with a positive rate of 68/109 (P<0.001). Specifically, squamous cell carcinoma, with 34/12, had the highest expression ratio, followed by large cell carcinoma (2/1), adenocarcinoma (31/16), and atypical carcinoid (1/5) respectively, while no S100A2 protein was detected in small cell carcinoma. Meanwhile, we firstly demonstrated that the high expression of S100A2 was significantly associated with the incidence of lymph node metastasis in adenocarcinoma (P=0.013).
CONCLUSIONS: The association between high S100A2 expression and NSCLC at the level of tissue, and S100A2 may serve as an effective biomarker for the diagnosis and prognosis of NSCLC in future.

Ying J, Wang J, Ji H, et al.
Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation.
Gene. 2016; 585(1):58-64 [PubMed] Related Publications
Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer.

Mahale A, Alkatan H, Alwadani S, et al.
Altered gene expression in conjunctival squamous cell carcinoma.
Mod Pathol. 2016; 29(5):452-60 [PubMed] Related Publications
Conjunctival squamous cell carcinoma is a malignancy of the ocular surface. The molecular drivers responsible for the development and progression of this disease are not well understood. We therefore compared the transcriptional profiles of eight snap-frozen conjunctival squamous cell carcinomas and one in situ lesion with normal conjunctival specimens in order to identify diagnostic markers or therapeutic targets. RNA was analyzed using oligonucleotide microarrays, and a wide range of transcripts with altered expression identified, including many dysregulated in carcinomas arising at other sites. Among the upregulated genes, we observed more than 30-fold induction of the matrix metalloproteinases, MMP-9 and MMP-11, as well as a prominent increase in the mRNA level of a calcium-binding protein important for the intracellular calcium signaling, S100A2, which was induced over 20-fold in the tumor cohort. Clusterin was the most downregulated gene, with an approximately 180-fold reduction in the mRNA expression. These alterations were all confirmed by qPCR in the samples used for initial microarray analysis. In addition, immunohistochemical analysis confirmed the overexpression of MMP-11 and S100A2, as well as reductions in clusterin, in several independent in situ carcinomas of conjunctiva. These data identify a number of alterations, including upregulation of MMP-9, MMP-11, and S100A2, as well as downregulation of clusterin, associated with epithelial tumorigenesis in the ocular surface.

Masuda T, Ishikawa T, Mogushi K, et al.
Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer.
Int J Oncol. 2016; 48(3):975-82 [PubMed] Free Access to Full Article Related Publications
We aimed to identify a novel prognostic biomarker related to recurrence in stage II and III colorectal cancer (CRC) patients. Stage II and III CRC tissue mRNA expression was profiled using an Affymetrix Gene Chip, and copy number profiles of 125 patients were generated using an Affymetrix 250K Sty array. Genes showing both upregulated expression and copy number gains in cases involving recurrence were extracted as candidate biomarkers. The protein expression of the candidate gene was assessed using immunohistochemical staining of tissue from 161 patients. The relationship between protein expression and clinicopathological features was also examined. We identified 9 candidate genes related to recurrence of stage II and III CRC, whose mRNA expression was significantly higher in CRC than in normal tissue. Of these proteins, the S100 calcium-binding protein A2 (S100A2) has been observed in several human cancers. S100A2 protein overexpression in CRC cells was associated with significantly worse overall survival and relapse-free survival, indicating that S100A2 is an independent risk factor for stage II and III CRC recurrence. S100A2 overexpression in cancer cells could be a biomarker of poor prognosis in stage II and III CRC recurrence and a target for treatment of this disease.

Woo T, Okudela K, Mitsui H, et al.
Up-Regulation of S100A11 in Lung Adenocarcinoma - Its Potential Relationship with Cancer Progression.
PLoS One. 2015; 10(11):e0142642 [PubMed] Free Access to Full Article Related Publications
We previously reported that patients with lung adenocarcinomas with KRAS gene mutations and strong proliferating activity had poorer outcomes, even in the early stage of the disease. The aim of the present study was to elucidate the potential molecular basis of these highly malignant lung tumors by focusing on S100 proteins (S100A2, S100A7, and S100A11), which are downstream targets of oncogenic KRAS and promoters of tumor progression. The immunohistochemical expression of S100 proteins was examined in 179 primary lung adenocarcinomas, and the potential relationships between their levels and clinicopathologic factors were analyzed. Among the three subtypes, S100A11 levels were significantly higher in adenocarcinomas with KRAS mutations and strong proliferating activity. They were also higher in adenocarcinomas with poorly differentiated tumors. Furthermore, higher levels of S100A11 were associated with shorter disease-free survival. These results suggest that the up-regulation of S100A11 plays a role in tumor progression, particularly in KRAS-mutated lung adenocarcinomas.

Hoff AM, Johannessen B, Alagaratnam S, et al.
Novel RNA variants in colorectal cancers.
Oncotarget. 2015; 6(34):36587-602 [PubMed] Free Access to Full Article Related Publications
With an annual estimated incidence of 1.4 million, and a five-year survival rate of 60%, colorectal cancer (CRC) is a major clinical burden. To identify novel RNA variants in CRC, we analyzed exon-level microarray expression data from a cohort of 202 CRCs. We nominated 25 genes with increased expression of their 3' parts in at least one cancer sample each. To efficiently investigate underlying transcript structures, we developed an approach using rapid amplification of cDNA ends followed by high throughput sequencing (RACE-seq). RACE products from the targeted genes in 23 CRC samples were pooled together and sequenced. We identified VWA2-TCF7L2, DHX35-BPIFA2 and CASZ1-MASP2 as private fusion events, and novel transcript structures for 17 of the 23 other candidate genes. The high-throughput approach facilitated identification of CRC specific RNA variants. These include a recurrent read-through fusion transcript between KLK8 and KLK7, and a splice variant of S100A2. Both of these were overrepresented in CRC tissue and cell lines from external RNA-seq datasets.

Wasuworawong K, Roytrakul S, Paemanee A, et al.
Comparative Proteomic Analysis of Human Cholangiocarcinoma Cell Lines: S100A2 as a Potential Candidate Protein Inducer of Invasion.
Dis Markers. 2015; 2015:629367 [PubMed] Free Access to Full Article Related Publications
Cholangiocarcinoma (CCA) is a bile duct cancer, commonly found in Asia including Thailand and especially in the northeastern region of Thailand. To identify the proteins involved in carcinogenesis and metastasis of CCA, protein expression profiles of high-invasive KKU-M213 and low-invasive KKU-100 cell lines were compared using a comparative GeLC-MS/MS proteomics analysis. A total of 651 differentially expressed proteins were detected of which 27 protein candidates were identified as having functions involved in cell motility. A total of 22 proteins were significantly upregulated in KKU-M213, whereas 5 proteins were downregulated in KKU-M213. S100A2, a calcium-binding protein in S100 protein family, is upregulated in KKU-M213. S100A2 is implicated in metastasis development in several cancers. The protein expression level of S100A2 was verified by Western blot analysis. Intriguingly, high-invasive KKU-M213 cells showed higher expression of S100A2 than KKU-100 cells, consistent with proteomic data, suggesting that S100A2 may be a key protein involved in the progression of CCA. However, the biological function of S100A2 in cholangiocarcinoma remains to be elucidated. S100A2 might be a potential biomarker as well as a novel therapeutic target in CCA metastasis.

Zhang Y, Wang H, Wang J, et al.
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer.
Cancer Metastasis Rev. 2015; 34(2):249-64 [PubMed] Related Publications
The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.

Zha C, Jiang XH, Peng SF
iTRAQ-based quantitative proteomic analysis on S100 calcium binding protein A2 in metastasis of laryngeal cancer.
PLoS One. 2015; 10(4):e0122322 [PubMed] Free Access to Full Article Related Publications
Laryngeal cancer is the most frequent neoplasm in the head and neck region, with the vast majority of tumors originating from squamous cells. The survival rate of patients with laryngeal cancer has not improved substantially over the past 25 years. To acquire further knowledge regarding the molecules responsible for laryngeal cancer oncogenesis and, in turn, to improve target therapy iTRAQ and mass spectrometry analysis were utilized to detect differences in protein expression from 15 paired laryngeal cancer and adjacent non-cancerous tissue samples. Using mass spectrometry analysis, the expression levels of 100 proteins in laryngeal cancer samples were distinct from the non-tumor, non-cancerous samples. Further validation of the differentially expressed proteins S100A2, KRT16, FGB and HSPB1 were carried out using quantitative real-time RT-PCR, immunoblot and immunohistochemistry. Functional analysis of one of the highly expressed proteins, S100 calcium binding protein A2 (S100A2), was performed using RNA interference. As a consequence, attenuated S100A2 expression enhanced the ability of HEp-2 cell lines to migrate and invade in vitro. Our investigation complements the current understanding of laryngeal cancer progression. Furthermore, this study supports the concept that enhanced expression of S100A2 may be a promising strategy in developing novel cancer therapeutic drugs.

Zhang Q, Zhu M, Cheng W, et al.
Downregulation of 425G>a variant of calcium-binding protein S100A14 associated with poor differentiation and prognosis in gastric cancer.
J Cancer Res Clin Oncol. 2015; 141(4):691-703 [PubMed] Related Publications
PURPOSE: Altered level of S100 calcium-binding proteins is involved in tumor development and progression. However, their role in gastric cancer (GC) is not well documented. We investigated the expression pattern of S100 proteins and differentiation or prognosis as well as possible mechanisms in GC.
METHODS: RT-PCR, Western blot analysis, and immunohistochemistry were used to determine the mRNA and protein expression of S100 family genes in GC. The polymorphisms of promoter and 5'-UTR of S100A14 gene were identified and related to luciferase reporter gene activity. Association of S100A14 expression with clinicopathologic features and survival in GC was analyzed.
RESULTS: We detected upregulated S100A2, S100A6, S100A10, and S100A11 expression and downregulated S100P and S100B expression in GC. Particularly, we detected differential mRNA and protein expression of S100A14 in GC cell lines and primary tumors. Furthermore, S100A14 expression change was related to a differentiated GC phenotype, with an expression in 31/40 (77.5 %) samples of well-differentiated tumors and 29/85 (34.1 %) samples of poorly differentiated tumors (P < 0.001). Moreover, 5-year survival was better in GC cases with positive than negative S100A14 level (P = 0.02). The genetic variant 425G>A on the 5'-UTR of S100A14 was associated with reduced S100A14 expression in GC cells.
CONCLUSION: Decreased expression of S100A14 with presence of its genetic variant 425G>A may be associated with an undifferentiated phenotype and poor prognosis in GC.

Xu X, Su B, Xie C, et al.
Sonic hedgehog-Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells.
PLoS One. 2014; 9(7):e96441 [PubMed] Free Access to Full Article Related Publications
AIMS: The hedgehog signaling pathway plays an important role in EMT of pancreatic cancer cells, but the precise mechanisms remain elusive. Because S100A4 as a key EMT moleculer marker was found to be upregulated upon Gli1 in pancreatic cancer cells, we focused on the relationship between Shh-Gli1 signals and S100 genes family.
METHODS: On the base of cDNA microarray data, we investigated regulating mechanism of Gli1 to some members of S100A genes family in pancreatic cancer cell lines firstly. Then, the regulation of Gli1 to S100A4 gene was studied by molecular biology assays and the pro-metastasis effection of Gli1-dependent S100A4 was investigated in vitro. Finally, the expressions of Shh, Gli1, S100A4 and E-cadherin in pancreatic cancer tissues were studied by using immunohistochemistry assays.
RESULTS: Five members of the S100 genes family, S100A2, S100A4, S100A6, S100A11, and S100A14 were found to be downregulated significantly upon Gli1 knockdown. Gli1 enhancer prediction combining with in vitro data demonstrated that Gli1 primarily regulates S100A family members via cis-acting elements. Indeed, the data indicate S100A4 and vimentin genes were upregulated significantly by Shh/Gli1-expression increasing and E-cadherin was significantly reduced at the same time. Migration of PC cells was increased significantly in a dose-dependent manner of Gli1 expression (P<0.05) and siS100A4 significantly reversed the response of PC cells induced by L-Shh transduction (P<0.01).
CONCLUSION: Our data establish a novel connection between Shh-Gli1 signaling and S100A4 regulation, which imply that S100A4 might be one of the key factors in EMT mediated by Shh-Gli1 signaling in pancreatic cancer.

Tyszkiewicz T, Jarzab M, Szymczyk C, et al.
Epidermal differentiation complex (locus 1q21) gene expression in head and neck cancer and normal mucosa.
Folia Histochem Cytobiol. 2014; 52(2):79-89 [PubMed] Related Publications
Epidermal differentiation complex (EDC) comprises a number of genes associated with human skin diseases including psoriasis, atopic dermatitis and hyperkeratosis. These genes have also been linked to numerous cancers, among them skin, gastric, colorectal, lung, ovarian and renal carcinomas. The involvement of EDC components encoding S100 proteins, small proline-rich proteins (SPRRs) and other genes in the tumorigenesis of head and neck squamous cell cancer (HNSCC) has been previously suggested. The aim of the study was to systematically analyze the expression of EDC components on the transcript level in HNSCC. Tissue specimens from 93 patients with HNC of oral cavity and 87 samples from adjacent or distant grossly normal oral mucosawere analyzed. 48 samples (24 tumor and 24 corresponding surrounding tissue) were hybridized to Affymetrix GeneChip Human 1.0 ST Arrays. For validation by quantitative real-time PCR (QPCR) the total RNA from all180 samples collected in the study was analyzed with Real-Time PCR system and fluorescent amplicon specific-probes. Additional set of samples from 14 patients with laryngeal carcinoma previously obtained by HG-U133 Plus 2.0 microarray was also included in the analyses. The expression of analyzed EDC genes was heterogeneous. Two transcripts (S100A1 and S100A4) were significantly down-regulated in oral cancer when compared to normal mucosa (0.69 and 0.36-fold change, respectively), showing an opposite pattern of expression to the remaining S100 genes. Significant up-regulation in tumors was found for S100A11, S100A7, LCE3D, S100A3 and S100A2 genes. The increased expression of S100A7 was subsequently validated by QPCR, confirming significant differences. The remaining EDC genes, including all encoding SPRR molecules, did not show any differences between oral cancer and normal mucosa. The observed differences were also assessed in the independent set of laryngeal cancer samples, confirming the role of S100A3 and LCE3D transcripts in HNC. In HNC of oral cavity only one family of EDC genes (S100 proteins) showed significant cancer-related differences. A number of other transcripts which showed altered expression in HNC require further validation.

Buckley NE, D'Costa Z, Kaminska M, Mullan PB
S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability.
Cell Death Dis. 2014; 5:e1070 [PubMed] Free Access to Full Article Related Publications
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.

Lin SJ, Chang KP, Hsu CW, et al.
Low-molecular-mass secretome profiling identifies C-C motif chemokine 5 as a potential plasma biomarker and therapeutic target for nasopharyngeal carcinoma.
J Proteomics. 2013; 94:186-201 [PubMed] Related Publications
UNLABELLED: Cancer cell secretome profiling has been shown to be a promising strategy for identifying potential body fluid-accessible cancer biomarkers and therapeutic targets. However, very few reports have investigated low-molecular-mass (LMr) proteins (<15kDa) in the cancer cell secretome. In the present study, we applied tricine-SDS-gel-assisted fractionation in conjunction with LC-MS/MS to systemically identify LMr proteins in the secretomes of three nasopharyngeal carcinoma (NPC) cell lines. We examined two NPC tissue transcriptome datasets to identify LMr genes/proteins that are highly upregulated in NPC tissues and also secreted/released from NPC cells, obtaining 35 candidates. We verified the overexpression of four targets (LSM2, SUMO1, RPL22, and CCL5) in NPC tissues by immunohistochemistry and demonstrated elevated plasma levels of two targets (S100A2 and CCL5) in NPC patients by ELISA. Notably, plasma CCL5 showed good power (AUC 0.801) for discriminating NPC patients from healthy controls. Additionally, functional assays revealed that CCL5 promoted migration of NPC cells, an effect that was effectively blocked by CCL5-neutralizing antibodies and maraviroc, a CCL5 receptor antagonist. Collectively, our data indicate the feasibility of the tricine-SDS-gel/LC-MS/MS approach for efficient identification of LMr proteins from cancer cell secretomes, and suggest that CCL5 is a potential plasma biomarker and therapeutic target for NPC.
BIOLOGICAL SIGNIFICANCE: Both LMr proteome and cancer cell secretome represent attractive reservoirs for discovery of cancer biomarkers and therapeutic targets. Our present study provides evidence for the practicality of using the tricine-SDS-PAGE/LC-MS/MS approach for in-depth identification of LMr proteins from the NPC cell secretomes, leading to the discovery of CCL5 as a potential plasma biomarker and therapeutic target for NPC. We believe that the modified GeLC-MS/MS approach used here can be further applied to explore extremely low-abundance, extracellular LMr proteins with important biological functions in other cell lines and biospecimens.

Naz S, Bashir M, Ranganathan P, et al.
Protumorigenic actions of S100A2 involve regulation of PI3/Akt signaling and functional interaction with Smad3.
Carcinogenesis. 2014; 35(1):14-23 [PubMed] Related Publications
S100 family of calcium-binding proteins is commonly upregulated in a variety of tumor types and is often associated with tumor progression. Among several S100 members, altered expression of S100A2 is a potential diagnostic and prognostic marker in cancer. Several reports suggest a role for S100A2 in metastasis. Earlier, our studies established regulation of S100A2 by transforming growth factor-β (TGF-β) and its involvement in TGF-β-mediated cancer cell invasion and migration. However, the molecular mechanisms of S100A2 protumorigenic actions remain unexplored. In the present study, we demonstrate that overexpression of S100A2 in A549 lung cancer cells induced epithelial-mesenchymal transition (EMT) followed by increased invasion, loose colony morphology in soft agar and enhanced Akt phosphorylation (Ser-473). Furthermore, overexpression of S100A2 led to increased tumor growth in immunocompromised mice. In agreement, immunohistochemical examination of resected xenograft tumors established inverse correlation between S100A2 and E-cadherin expression together with activated Akt signaling. Interestingly, our study demonstrates a strong dependence of S100A2 and Smad3 in TGF-β-induced Hep3B cell EMT and invasion. Most importantly, we demonstrate that these effects of S100A2 are manifested through functional interaction with Smad3, which is enhanced in the presence of high calcium and TGF-β. S100A2 stabilizes Smad3 and binds to its C-terminal MH2 domain. Additionally, loss of S100A2 attenuates the transcription of TGF-β/Smad3 target genes involved in tumor promotion, such as PA1-1 and vimentin. Collectively, our findings present the first mechanistic details of S100A2 protumorigenic actions and its involvement in TGF-β-mediated cancer cell invasion and EMT.

Supiot S, Gouraud W, Campion L, et al.
Early dynamic transcriptomic changes during preoperative radiotherapy in patients with rectal cancer: a feasibility study.
World J Gastroenterol. 2013; 19(21):3249-54 [PubMed] Free Access to Full Article Related Publications
AIM: To develop novel biomarkers of rectal radiotherapy, we measured gene expression profiles on biopsies taken before and during preoperative radiotherapy.
METHODS: Six patients presenting with a locally advanced rectal cancer (T>T2, N0/Nx, M0) eligible for preoperative radiotherapy (45 Gy in 25 fractions) were selected in a pilot study. Six tumor and 3 normal tissues biopsies were taken before and during radiotherapy, after a dose of 7.2 Gy at a median time of 1 h following irradiation (0:27-2:12). Tumor or normal tissue purity was assessed by a pathologist prior to RNA extraction. Mean RNA content was 23 μg/biopsy (14-37) before radiotherapy and 22.7 μg/biopsy (12-35) during radiotherapy. After RNA amplification, biopsies were analysed with 54K HG-U133A Plus 2.0 Affymetrix expression micro-arrays. Data were normalized according to MAS5 algorithm. A gene expression ratio was calculated as: (gene expression during radiotherapy - gene expression before radiotherapy)/gene expression before radiotherapy. Were selected genes that showed a ratio higher than ± 0.5 in all 6 patients.
RESULTS: Microarray analysis showed that preoperative radiotherapy significantly up-regulated 31 genes and down-regulated 6 genes. According to the Gene Ontology project classification, these genes are involved in protein metabolism (ADAMDEC1; AKAP7; CAPN5; CLIC5; CPE; CREB3L1; NEDD4L; RAB27A), ion transport (AKAP7; ATP2A3; CCL28; CLIC5; F2RL2; NEDD4L; SLC6A8), transcription (AKAP7; CREB3L1; ISX; PABPC1L; TXNIP), signal transduction (CAPN5; F2RL2; RAB27A; TNFRSF11A), cell adhesion (ADAMDEC1; PXDN; SPON1; S100A2), immune response (CCL28; PXDN; TNFRSF11A) and apoptosis (ITM2C; PDCD4; PVT1). Up-regulation of 3 genes (CCL28; CLIC5; PDCD4) was detected by 2 different probes and up-regulation of 2 genes (RAB27A; TXNIP) by 3 probes.
CONCLUSION: Micro-arrays can efficiently assess early transcriptomic changes during preoperative radiotherapy for rectal cancer, and may help better understand tumor radioresistance.

Zhang EY, Cristofanilli M, Robertson F, et al.
Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer.
J Proteome Res. 2013; 12(6):2805-17 [PubMed] Free Access to Full Article Related Publications
In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with reads per kilobase per million mapped reads (RPKM) values for ERBB2 (14.4, 400, and 300 for SUM149, SUM190, and SKBR3, respectively) and for EGFR (60.1, not detected, and 1.4 for the same 3 cell lines). We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines, growth factor receptor-bound protein 7 (GRB7), Crk-like protein (CRKL) and Catenin delta-1 (CTNND1) for ERBB signaling; caveolin 1 (CAV1), plectin (PLEC) for EGFR signaling; filamin A (FLNA) and actinin alpha1 (ACTN1) (associated with high levels of EGFR transcript) for integrin signalings; branched chain amino-acid transaminase 1 (BCAT1), carbamoyl-phosphate synthetase (CAD), nucleolin (NCL) (high levels of EGFR transcript); transferrin receptor (TFRC), metadherin (MTDH) (high levels of ERBB2 transcript) for MYC signaling; S100-A2 protein (S100A2), caveolin 1 (CAV1), Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD domain containing (PYCARD), and EPH receptor A2 (EPHA2) for PI3K signaling, p53 subpathway. Future studies of inflammatory breast cancer (IBC), from which the cell lines were derived, will be used to explore the significance of these observations.

Zhao Y, Zhang TB, Wang Q
Clinical significance of altered S100A2 expression in gastric cancer.
Oncol Rep. 2013; 29(4):1556-62 [PubMed] Related Publications
The S100A2 gene has been reported to be a putative tumor‑suppressor gene. Nevertheless, overexpression of S100A2 has been found in certain types of cancer. This study investigated S100A2 expression in tissue specimens of gastritis, intestinal metaplasia, adenomatous dysplasia and gastric cancer to determine its association with clinical features. A serial of tissue samples (gastritis, intestinal metaplasia, adenomatous dysplasia and gastric cancer samples) were used for quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR), western blotting and immunohistochemical analyses of S100A2 expression. The data revealed that there was a gradual loss of S100A2 expression from gastritis, intestinal metaplasia and dysplasia to cancer tissue specimens (p<0.001). In gastric cancer samples, loss of S100A2 expression was associated with increased tumor size, depth of invasion, lymph node metastasis and a poor prognosis (p<0.001). However, the intestinal type of gastric cancer expressed more S100A2 protein than the diffuse type (p<0.001). In conclusion, data from the present study demonstrated that loss of S100A2 expression contributes to gastric cancer development and progression; therefore, the determination of S100A2 expression levels may help to predict the carcinogenesis and aggressiveness of gastric cancer as well as patient survival.

Giráldez MD, Lozano JJ, Cuatrecasas M, et al.
Gene-expression signature of tumor recurrence in patients with stage II and III colon cancer treated with 5'fluoruracil-based adjuvant chemotherapy.
Int J Cancer. 2013; 132(5):1090-7 [PubMed] Related Publications
Although receiving adjuvant chemotherapy after radical surgery, a disappointing proportion of patients with colorectal cancer will develop tumor recurrence. Probability of relapse is currently predicted from pathological staging, there being a need for additional markers to further select high-risk patients. This study was aimed to identify a gene-expression signature to predict tumor recurrence in patients with Stages II and III colon cancer treated with 5'fluoruracil (5FU)-based adjuvant chemotherapy. Two-hundred and twenty-eight patients diagnosed with Stages II-III colon cancer and treated with surgical resection and 5FU-based adjuvant chemotherapy were included. RNA was extracted from formalin-fixed, paraffin-embedded tissue samples and expression of 27 selected candidate genes was analyzed by RT-qPCR. A tumor recurrence predicting model, including clinico-pathological variables and gene-expression profiling, was developed by Cox regression analysis and validated by bootstrapping. The regression analysis identified tumor stage and S100A2 and S100A10 gene expression as independently associated with tumor recurrence. The risk score derived from this model was able to discriminate two groups with a highly significant different probability of tumor recurrence (HR, 2.75; 95%CI, 1.71-4.39; p = 0.0001), which it was maintained when patients were stratified according to tumor stage. The algorithm was also able to distinguish two groups with different overall survival (HR, 2.68; 95%CI, 1.12-6.42; p = 0.03). Identification of a new gene-expression signature associated with a high probability of tumor recurrence in patients with Stages II and III colon cancer receiving adjuvant 5FU-based chemotherapy, and its combination in a robust, easy-to-use and reliable algorithm may contribute to tailor treatment and surveillance strategies.

Naz S, Ranganathan P, Bodapati P, et al.
Regulation of S100A2 expression by TGF-β-induced MEK/ERK signalling and its role in cell migration/invasion.
Biochem J. 2012; 447(1):81-91 [PubMed] Related Publications
S100A2, an EF hand calcium-binding protein, is a potential biomarker in several cancers and is also a TGF-β (transforming growth factor-β)-regulated gene in melanoma and lung cancer cells. However, the mechanism of S100A2 regulation by TGF-β and its significance in cancer progression remains largely unknown. In the present study we report the mechanism of S100A2 regulation by TGF-β and its possible role in TGF-β-mediated tumour promotion. Characterization of the S100A2 promoter revealed an AP-1 (activator protein-1) element at positions -1161 to -1151 as being the most critical factor for the TGF-β1 response. Chromatin immunoprecipitation and electrophoretic mobility-shift assays confirmed the functional binding of the AP-1 complex, predominantly JunB, to the S100A2 promoter in response to TGF-β1 in HaCaT keratinocytes. JunB overexpression markedly stimulated the S100A2 promoter which was blocked by the dominant-negative JunB and MEK1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1] inhibitor, PD98059. Intriguingly, despite the presence of a putative SMAD-binding element, S100A2 regulation by TGF-β1 was found to be SMAD3 independent. Interestingly, p53 protein and TGF-β1 show synergistic regulation of the S100A2 promoter. Finally, knockdown of S100A2 expression compromised TGF-β1-induced cell migration and invasion of Hep3B cells. Together our findings highlight an important link between the TGF-β1-induced MAPK and p53 signalling pathways in the regulation of S100A2 expression and pro-tumorigenic actions.

Lee K, Yun ST, Yun CO, et al.
S100A2 promoter-driven conditionally replicative adenovirus targets non-small-cell lung carcinoma.
Gene Ther. 2012; 19(10):967-77 [PubMed] Related Publications
S100A2, a member of the S100 family of calcium-binding proteins, has been implicated in carcinogenesis as both a tumor suppressor and stimulator. Here, we characterized promoter activity of S100A2, generated an S100A2 promoter-driven conditionally replicative adenovirus (Ad/SA), and evaluated its anti-tumor activity in vitro and in vivo. Promoter activity of S100A2 was greatly restricted to tumor cells, and the S100A2 promoter bound with typical nuclear targets of epidermal growth factor receptor (EGFR) signaling. EGF-stimulated EGFR phosphorylation induced S100A2 expression and further activated E1A expression of Ad/SA, which was restored by EGFR signal inhibition in a concentration-dependent manner in non-small-cell lung carcinoma (NSCLC). In two EGFR-activated tumor xenograft animal models, Ad/SA exhibited potent anti-tumor activity, whereas cetuximab, an EGFR-targeting anticancer drug, was active transiently or ineffective. Combined treatment with cetuximab or cisplatin plus Ad/SA resulted in enhanced anti-tumor activity. Immunohistochemical analysis of tumor sections showed moderate-to-high grade signals for EGFR and adenovirus, and a reduction in viable cells in Ad/SA-treated tumors. Collectively, these results demonstrate that the S100A2 promoter-driven adenovirus is a potent inhibitor of cancers, and further suggest that S100A2 is a target gene of EGFR signaling pathway in NSCLC.

Li J, Riau AK, Setiawan M, et al.
S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue.
Mol Vis. 2011; 17:2263-71 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To study the expression and cellular distribution of multiple S100A genes and proteins in normal corneal-limbal epithelium and ocular surface squamous cell carcinoma (SCC) tissue.
METHODS: Normal corneal-limbal tissue was obtained from the Lions Eye Bank, Tampa, FL. Ocular surface SCC tissues were excised from patients undergoing surgery at Singapore National Eye Centre. S100A mRNA expression was measured by quantitative PCR. S100 protein distribution was determined by immunofluorescent staining analysis.
RESULTS: Twelve S100 mRNAs were identified in human corneal and limbal epithelial cells. S100A2, A6, A8, A9, A10, and A11 mRNA was expressed at high level, while S100A1, A3, A4, A5, A6, A7, and A12 mRNA expression was low. The intracellular localization of S100A2, A6, A8, A9, A10 and A11 protein was determined in normal corneal-limbal and SCC tissues. S100A2 and S100A10 proteins were enriched in basal limbal epithelial cells of the normal tissue. S100A8 and S100A9 were found only at the surface of peripheral corneal and limbal epithelium. S100A6 was uniformly found at the plasma membrane of corneal and limbal epithelial cells. S100A11 was found at the supralayer limbal epithelial cells adjacent to the conjunctiva. SCC tissue showed typical pathological changes with expression of cytokeartin (CK) 14 and CK4 in the epithelial cells. All SCC epithelial cells were positive of S100A2, S100A10, S100A6 and S100A11 staining. Intracellular staining of S100A8 and S100A9 was found in several layers of SCC epithelium. Expression of S100A2 and S100A10 decreased dramatically in cultured limbal epithelial cells with increased passaging, which was accompanied by a small increase of S100A9 mRNA, with no changes of S100A8 gene expression. Serum and growth hormone depletion of the culture serum caused a small reduction of S100A2 and S100A10 gene expression, which was accompanied by a small increase of S100A9 mRNA while no changes of S100A8 expression was measured.
CONCLUSIONS: Normal corneal and limbal epithelial cells express a broad spectrum of S100 genes and proteins. Ocular surface SCC express high levels of S100A2, S100A10, S100A8 and S100A9 proteins. The expression of S100A2 and S100A10 is associated with limbal epithelial cell proliferation and differentiation.

Chivu Economescu M, Necula LG, Dragu D, et al.
Identification of potential biomarkers for early and advanced gastric adenocarcinoma detection.
Hepatogastroenterology. 2010 Nov-Dec; 57(104):1453-64 [PubMed] Related Publications
BACKGROUND/AIMS: This study aimed to understand gradual biological variations during gastric tumorigenesis, and to identify the candidate genes that are involved in tumor progression and metastasis.
METHODOLOGY: cDNA microarray data were obtained from 10 pair of cancerous and normal adjacent tissue from gastric adenocarcinoma patients. The samples were divided in primary and advanced gastric adenocarcinoma with lymph node metastasis. Validation of the microarray data was accomplished by quantitative RT-PCR on additional 41 samples. The significantly modified genes were grouped in clusters according to their functional annotation, and comparison was done regarding molecular mechanisms involved tumor progression.
RESULTS: A total of 136 genes were up-regulated and 96 genes were down-regulated by at least fourfold in tumor tissue. The analysis of gene clusters revealed a complex remodelling of normal gastric epithelium morphology and function associated with the tumorigenesis and metastasis. A large number of proteases are being overexpressed, together with keratins, genes associated with morphogenesis and anti-apoptosis. Between the most significant down-regulated genes, there were genes involved in gastric motility and synthesis and genes related to metabolic and pro-apoptotic processes. We also report, the identification of seven genes, significant up-regulated, that seem to be associated with tumor progression: KRT17, COL10A2, KIAA1199, SPP1, IL11, S100A2, and MMP3.
CONCLUSIONS: Our cDNA microarray study identified several genes that appeared to meet the criteria of a good biomarker, and may therefore be especially useful for the development of diagnostic tools, for the early detection, or for the prediction of tumor progression.

Scott R, Siegrist F, Foser S, Certa U
Interferon-alpha induces reversible DNA demethylation of the interferon-induced transmembrane protein-3 core promoter in human melanoma cells.
J Interferon Cytokine Res. 2011; 31(8):601-8 [PubMed] Related Publications
The interferon (IFN)-α response gene interferon-induced transmembrane protein 3 (IFITM3) has antiproliferative properties in a number of biological systems. In the human melanoma cell line D10, IFITM3 is constitutively expressed and we show that the core promoter is significantly hypomethylated compared to ME15 cells, where IFITM3 is tightly controlled. We demonstrate that treatment of ME15 cells with the demethylating agent 5'-aza-2'-deoxycytidine enhances IFITM3 expression after IFN-α treatment. In a time-course experiment, we show that IFN-α induces demethylation of specific CpG sites of the IFITM3 core promoter 6 h after stimulation and that promoter methylation is precisely re-set to the naïve state 24 h after stimulation. This cyclable modification of methylation requires costimulation with tumor growth factor-beta or expression of the calcium binding protein S100A2, which are known cofactors for enhancement of antiproliferative activity in ME15 cells. Thus, the transcriptional response to IFN-α can be enhanced by promoter demethylation of a subset of inducible genes such as IFITM3. This epigenetic modulation might be crucial to augment the immune response under critical conditions in vivo.

Russo SM, Ove R, Saif MW
Identification of prognostic and predictive markers in pancreatic adenocarcinoma. Highlights from the "2011 ASCO Gastrointestinal Cancers Symposium". San Francisco, CA, USA. January 20-22, 2011.
JOP. 2011; 12(2):92-5 [PubMed] Related Publications
Pancreatic cancer remains a significant cause of morbidity and mortality. While increasing treatment options have improved outcomes for many patients, they have also complicated decision-making for treatment. Unfortunately, most patients with pancreatic cancer die from their disease. Prognostic and predictive markers could play a role to improve treatment by identifying patients who may or may not require a given therapy, and determining those most likely to benefit from a therapy. At the 2011 American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium held in San Francisco, January 2011, several interesting abstracts were presented that focused on prognostic and predictive markers associated with pancreatic adenocarcinomas. These abstracts discuss progress made in identifying molecular subtypes of pancreatic cancers that may provide insight into selection of patients likely to benefit from certain therapies.

McKiernan E, McDermott EW, Evoy D, et al.
The role of S100 genes in breast cancer progression.
Tumour Biol. 2011; 32(3):441-50 [PubMed] Related Publications
The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman's correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. S100A2, Cancer Genetics Web: http://www.cancer-genetics.org/S100A2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999