Gene Summary

Gene:BIRC2; baculoviral IAP repeat containing 2
Aliases: API1, MIHB, HIAP2, RNF48, cIAP1, Hiap-2, c-IAP1
Summary:The protein encoded by this gene is a member of a family of proteins that inhibits apoptosis by binding to tumor necrosis factor receptor-associated factors TRAF1 and TRAF2, probably by interfering with activation of ICE-like proteases. This encoded protein inhibits apoptosis induced by serum deprivation and menadione, a potent inducer of free radicals. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:baculoviral IAP repeat-containing protein 2
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (32)
Pathways:What pathways are this gene/protein implicaed in?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: BIRC2 (cancer-related)

Hoskins JW, Jia J, Flandez M, et al.
Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A.
Carcinogenesis. 2014; 35(12):2670-8 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is driven by the accumulation of somatic mutations, epigenetic modifications and changes in the micro-environment. New approaches to investigating disruptions of gene expression networks promise to uncover key regulators and pathways in carcinogenesis. We performed messenger RNA-sequencing in pancreatic normal (n = 10) and tumor (n = 8) derived tissue samples, as well as in pancreatic cancer cell lines (n = 9), to determine differential gene expression (DE) patterns. Sub-network enrichment analyses identified HNF1A as the regulator of the most significantly and consistently dysregulated expression sub-network in pancreatic tumor tissues and cells (median P = 7.56×10(-7), median rank = 1, range = 1-25). To explore the effects of HNF1A expression in pancreatic tumor-derived cells, we generated stable HNF1A-inducible clones in two pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and observed growth inhibition (5.3-fold, P = 4.5×10(-5) for MIA PaCa-2 clones; 7.2-fold, P = 2.2×10(-5) for PANC-1 clones), and a G0/G1 cell cycle arrest and apoptosis upon induction. These effects correlated with HNF1A-induced down-regulation of 51 of 84 cell cycle genes (e.g. E2F1, CDK2, CDK4, MCM2/3/4/5, SKP2 and CCND1), decreased expression of anti-apoptotic genes (e.g. BIRC2/5/6 and AKT) and increased expression of pro-apoptotic genes (e.g. CASP4/9/10 and APAF1). In light of the established role of HNF1A in the regulation of pancreatic development and homeostasis, our data suggest that it also functions as an important tumor suppressor in the pancreas.

Mak PY, Mak DH, Ruvolo V, et al.
Apoptosis repressor with caspase recruitment domain modulates second mitochondrial-derived activator of caspases mimetic-induced cell death through BIRC2/MAP3K14 signalling in acute myeloid leukaemia.
Br J Haematol. 2014; 167(3):376-84 [PubMed] Related Publications
Overexpression of the apoptosis repressor with caspase recruitment domain (ARC, also termed NOL3) protein predicts adverse outcome in patients with acute myeloid leukaemia (AML) and confers drug resistance to AML cells. The second mitochondrial-derived activator of caspases (SMAC, also termed DIABLO) mimetic, birinapant, promotes extrinsic apoptosis in AML cells. SMAC mimetics induce cleavage of cellular inhibitor of apoptosis (cIAP) proteins, leading to stabilization of the nuclear factor-κB (NF-κB)-inducing kinase (MAP3K14, also termed NIK) and activation of non-canonical NF-κB signalling. To enhance the therapeutic potential of SMAC mimetics in AML, we investigated the regulation and role of ARC in birinapant-induced apoptosis. We showed that birinapant increases ARC in AML and bone marrow-derived mesenchymal stromal cells (MSCs). Downregulation of MAP3K14 by siRNA decreased ARC levels and suppressed birinapant-induced ARC increase. Reverse-phase protein array analysis of 511 samples from newly diagnosed AML patients showed that BIRC2 (also termed cIAP1) and ARC were inversely correlated. Knockdown of ARC sensitized, while overexpression attenuated, birinapant-induced apoptosis. Furthermore, ARC knockdown in MSCs sensitized co-cultured AML cells to birinapant-induced apoptosis. Our data demonstrate that ARC is regulated via BIRC2/MAP3K14 signalling and its overexpression in AML or MSCs can function as a resistant factor to birinapant-induced leukaemia cell death, suggesting that strategies to inhibit ARC will improve the therapeutic potential of SMAC mimetics.

Smetana J, Frohlich J, Zaoralova R, et al.
Genome-wide screening of cytogenetic abnormalities in multiple myeloma patients using array-CGH technique: a Czech multicenter experience.
Biomed Res Int. 2014; 2014:209670 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Characteristic recurrent copy number aberrations (CNAs) play a key role in multiple myeloma (MM) pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH) provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91). Incidence of hyperdiploidy was 49.5% (45/91); del(13)(q14) was detected in 57.1% (52/91); gain(1)(q21) occurred in 58.2% (53/91); del(17)(p13) was observed in 15.4% (14/91); and t(4;14)(p16;q32) was found in 18.6% (16/86). Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91). Most common deletions were found at 13q (58.9%), 1p (39.6%), and 8p (31.1%), whereas gain of whole 1q was the most often duplicated region (50.6%). Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

Skender B, Hofmanová J, Slavík J, et al.
DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism.
Biochim Biophys Acta. 2014; 1841(9):1308-17 [PubMed] Related Publications
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.

Wu P, Shi KJ, An JJ, et al.
The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells.
Cell Death Dis. 2014; 5:e1085 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.

Benetatos CA, Mitsuuchi Y, Burns JM, et al.
Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models.
Mol Cancer Ther. 2014; 13(4):867-79 [PubMed] Related Publications
The acquisition of apoptosis resistance is a fundamental event in cancer development. Among the mechanisms used by cancer cells to evade apoptosis is the dysregulation of inhibitor of apoptosis (IAP) proteins. The activity of the IAPs is regulated by endogenous IAP antagonists such as SMAC (also termed DIABLO). Antagonism of IAP proteins by SMAC occurs via binding of the N-terminal tetrapeptide (AVPI) of SMAC to selected BIR domains of the IAPs. Small molecule compounds that mimic the AVPI motif of SMAC have been designed to overcome IAP-mediated apoptosis resistance of cancer cells. Here, we report the preclinical characterization of birinapant (TL32711), a bivalent SMAC-mimetic compound currently in clinical trials for the treatment of cancer. Birinapant bound to the BIR3 domains of cIAP1, cIAP2, XIAP, and the BIR domain of ML-IAP in vitro and induced the autoubiquitylation and proteasomal degradation of cIAP1 and cIAP2 in intact cells, which resulted in formation of a RIPK1:caspase-8 complex, caspase-8 activation, and induction of tumor cell death. Birinapant preferentially targeted the TRAF2-associated cIAP1 and cIAP2 with subsequent inhibition of TNF-induced NF-κB activation. The activity of a variety of chemotherapeutic cancer drugs was potentiated by birinapant both in a TNF-dependent or TNF-independent manner. Tumor growth in multiple primary patient-derived xenotransplant models was inhibited by birinapant at well-tolerated doses. These results support the therapeutic combination of birinapant with multiple chemotherapies, in particular, those therapies that can induce TNF secretion.

Carter BZ, Mak PY, Mak DH, et al.
Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents.
J Natl Cancer Inst. 2014; 106(2):djt440 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Acute myeloid leukemia (AML) therapy has limited long-term efficacy because patients frequently develop disease relapse because of the inability of standard chemotherapeutic agents to target AML stem/progenitor cells. Here, we identify deregulated apoptotic components in AML stem/progenitor cells and investigate the individual and combinatorial effects of the novel inhibitor of apoptosis (IAP) protein antagonist and second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant and demethylating epigenetic modulators.
METHODS: Protein expression was measured by reversed-phase protein array in AML patient (n = 511) and normal (n = 21) samples and by western blot in drug-treated cells. The antileukemic activity of birinapant and demethylating agents was assessed in vitro and in an in vivo AML mouse xenograft model (n = 10 mice per group). All statistical tests were two-sided.
RESULTS: Compared with bulk AML cells, CD34(+)38(-) AML stem/progenitors expressed increased cIAP1 and caspase-8 levels and decreased SMAC levels (one-way analysis of variance followed by Tukey's multiple comparison test, P < .001). Birinapant induced death receptor-/caspase-8-mediated apoptosis in AML cells, including in AML stem/progenitor cells, but not in normal CD34(+) cells. Demethylating agents modulated extrinsic apoptosis pathway components and, when combined with birinapant, were highly synergistic in vitro (combination index < 1), and also more effective in vivo (P < .001, by Student t test, for the median survival of birinapant plus 5-azacytadine vs birinapant alone or vs controls).
CONCLUSIONS: cIAP1, SMAC, and caspase-8 appear to play a role in AML stem cell survival, and synergistic targeting of these cells with birinapant and demethylating agents shows potential utility in leukemia therapy.

Wang Q, Chen W, Bai L, et al.
Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway.
J Biol Chem. 2014; 289(9):5654-63 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
Although receptor-interacting protein 1 (RIP1) is well known as a key mediator in cell survival and death signaling, whether RIP1 directly contributes to chemotherapy response in cancer has not been determined. In this report, we found that, in human lung cancer cells, knockdown of RIP1 substantially increased cytotoxicity induced by the frontline anticancer therapeutic drug cisplatin, which has been associated with robust cellular reactive oxygen species (ROS) accumulation and enhanced apoptosis. Scavenging ROS dramatically protected RIP1 knockdown cells against cisplatin-induced cytotoxicity. Furthermore, we found that, in RIP1 knockdown cells, the expression of the hydrogen peroxide-reducing enzyme catalase was dramatically reduced, which was associated with increased miR-146a expression. Inhibition of microRNA-146a restored catalase expression, suppressed ROS induction, and protected against cytotoxicity in cisplatin-treated RIP1 knockdown cells, suggesting that RIP1 maintains catalase expression to restrain ROS levels in therapy response in cancer cells. Additionally, cisplatin significantly triggered the proteasomal degradation of cellular inhibitor of apoptosis protein 1 and 2 (c-IAP1 and c-IAP2), and X-linked inhibitor of apoptosis (XIAP) in a ROS-dependent manner, and in RIP1 knockdown cells, ectopic expression of c-IAP2 attenuated cisplatin-induced cytotoxicity. Thus, our results establish a chemoresistant role for RIP1 that maintains inhibitor of apoptosis protein (IAP) expression by release of microRNA-146a-mediated catalase suppression, where intervention within this pathway may be exploited for chemosensitization.

Omar HA, Arafa el-SA, Maghrabi IA, Weng JR
Sensitization of hepatocellular carcinoma cells to Apo2L/TRAIL by a novel Akt/NF-κB signalling inhibitor.
Basic Clin Pharmacol Toxicol. 2014; 114(6):464-71 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) cells are intrinsically resistant to tumour necrosis factor-related apoptosis ligand (Apo2L/TRAIL), in part, due to the compensatory activation of nuclear factor-kappaB (NF-κB). To broaden the clinical utilization of Apo2L/TRAIL in HCC, OSU-A9, a potent indole-3-carbinol-derived Akt/NF-κB signalling inhibitor was used to overcome the intrinsic resistance. The antitumour effects of OSU-A9, Apo2L/TRAIL and the therapeutic combination were assessed by MTT assay, caspase activation and PARP cleavage, and the synergistic interactions were determined by Calcusyn analysis. NF-κB reporter gene and RT-PCR were tested for the activation of NF-κB and the expression of death receptors (DR)4 and 5. OSU-A9 could sensitize HCC cells to Apo2L/TRAIL with high potency through down-regulation of Akt/NF-κB signalling. OSU-A9 dose-dependently reduced Akt phosphorylation and the expression and nuclear localization of RelA/p65, accompanied by parallel decreases in the expression of NF-κB target products, including Bcl-xL, Mcl-1, cIAP1, cIAP2 and survivin. Moreover, OSU-A9 increased DR5 expression through a reactive oxygen species (ROS)-dependent mechanism. Concertedly, these mechanisms underlie the synergistic interaction between OSU-A9 and Apo2L/TRAIL in mediating apoptotic death in HCC cells. The ability of OSU-A9 to accentuate Apo2L/TRAIL-induced apoptosis by inactivating Akt/NF-κB signalling might foster a promising therapeutic strategy for HCC.

Chromik J, Safferthal C, Serve H, Fulda S
Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis.
Cancer Lett. 2014; 344(1):101-9 [PubMed] Related Publications
The prognosis for patients with acute myeloid leukaemia (AML) is still poor, thus calling for novel treatment strategies. Here, we report that the small-molecule Smac mimetic BV6, which antagonizes Inhibitor of Apoptosis (IAP) proteins, acts in concert with cytarabine (AraC) to trigger cell death in AML cells in a highly synergistic manner (combination index 0.02-0.27). Similarly, BV6 cooperates with AraC to trigger cell death in primary AML samples, underscoring the clinical relevance of our findings. Molecular studies reveal that the TNFα-blocking antibody Enbrel significantly reduces BV6/AraC-induced cell death, demonstrating that an autocrine/paracrine TNFα loop mediates cell death. Furthermore, BV6 and AraC synergize to induce loss of mitochondrial membrane potential, caspase activation and DNA fragmentation, consistent with apoptotic cell death. Nevertheless, the caspase inhibitor zVAD.fmk fails to protect against BV6/AraC-induced cell death. Intriguingly, this cell death upon caspase inhibition is significantly reduced by pharmacological inhibition of two key components of necroptosis signaling, i.e. by RIP1 kinase inhibitor Necrostatin-1 or MLKL inhibitor NSA. Thus, BV6 sensitizes AML cells to AraC-induced cell death and overcomes apoptosis resistance by triggering necroptosis as alternative form of cell death. These findings have important implications for Smac mimetic-based strategies to bypass apoptosis resistance of AML.

Li G, Chang H, Zhai YP, Xu W
Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma.
Asian Pac J Cancer Prev. 2013; 14(9):4943-52 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis. Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy is poor, partially due to tumor metastasis, recurrence, and resistance to chemo- or radio-therapy. Recently, it was found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis. There are now 8 recognized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin and ILP-2. These proteins all contribute to inhibition of apoptosis, and provide new potential avenues of cancer treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP genes can be directed against cancers. This review will provide a brief introduction to recent developments of the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.

Yu M, Tong X, Qi B, et al.
Berberine enhances chemosensitivity to irinotecan in colon cancer via inhibition of NF‑κB.
Mol Med Rep. 2014; 9(1):249-54 [PubMed] Related Publications
Previous studies have shown that irinotecan (CPT‑11) impairs chemotherapy‑induced apoptosis by activating nuclear factor‑κB (NF‑κB) and a number of strategies have been employed to augment chemosensitivity through the suppression of NF‑κB activation. Berberine, a botanical alkaloid, was reported to enhance chemosensitivity to 5‑fluorouracil and doxorubicin by suppressing NF‑κB activation. In the present study, the effect of berberine on CPT‑11‑induced apoptosis was investigated through the inhibition of NF‑κB. Inhibition of NF‑κB activation by p65 small interfering RNA was shown to potentiate apoptosis induced by CPT‑11. Berberine suppressed CPT‑11‑induced NF‑κB activation in a dose‑dependent manner and enhanced chemosensitivity to CPT‑11 by downregulating NF‑κB activation of antiapoptotic genes, c‑IAP1, c‑IAP2, survivin and Bcl‑xL. The current observations indicate that berberine inhibits NF‑κB activation and may be used to enhance CPT‑11‑induced apoptosis in colon cancer.

Cai X, Lu W, Yang Y, et al.
Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells.
PLoS One. 2013; 8(10):e77126 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
Tumor necrosis factor-α (TNFα) activates both cell death and cell survival pathways. The activation of survival pathway renders most cancer cells resistant to TNF-induced cytotoxicity. We found that pretreatment with digitoflavone, a plant flavonoid, greatly sensitized TNFα-induced apoptotic cell death in several human pancreatic cancer cells. In search of the molecular basis of the sensitization effect of digitoflavone, digitoflavone was found to inhibit TNFα-induced activation of nuclear transcription factor-kappa B (NF-κB) which is the main survival factor in TNFα signaling. NF-κB suppression occurred through inhibition of IκBα kinase activation, IκBα phosphorylation, IκBα degradation, and NF-κB nuclear translocation. This inhibition correlated with suppression of NF-κB-dependent genes involved in antiapoptosis (mcl-1, bcl-2, bcl-xl, c-iap1, c-iap2, flip, and survivin), proliferation (c-myc, cyclin d1), and angiogenesis (vegf, cox-2, and mmp-9). In addition, digitoflavone can activate JNK through inhibition of NF-κB signaling, provide a continuous blockade of the feed-back inhibitory mechanism by JNK-induced NF-κB activation. This study found a novel function of digitoflavone and enhanced the value of digitoflavone as an anticancer agent.

Yadav VR, Sahoo K, Awasthi V
Preclinical evaluation of 4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid, in a mouse model of lung cancer xenograft.
Br J Pharmacol. 2013; 170(7):1436-48 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
BACKGROUND AND PURPOSE: 4-[3,5-Bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid CLEFMA is a new anti-cancer molecule. Here, we investigated changes in apoptosis and inflammatory markers during CLEFMA-induced tumour suppression.
EXPERIMENTAL APPROACH: Lung adenocarcinoma H441 and A549, and normal lung fibroblast CCL151 cell lines were used, along with a xenograft model of H441 cells implanted in mice. Tumour tissues were analysed by immunoblotting, immunohistochemistry and/or biochemical assays. The ex vivo results were confirmed by performing selected assays in cultured cells.
KEY RESULTS: CLEFMA-induced cell death was associated with cleavage of caspases 3/9 and PARP. In vivo, CLEFMA treatment resulted in a dose-dependent suppression of tumour growth and (18) F-fluorodeoxyglucose uptake in tumours, along with a reduction in the expression of the proliferation marker Ki-67. In tumour tissue homogenates, the anti-apoptotic markers (cellular inhibitor of apoptosis protein-1(cIAP1), Bcl-xL, Bcl-2, and survivin) were inhibited and the pro-apoptotic Bax and BID were up-regulated. Further, CLEFMA decreased translocation of phospho-p65-NF-κB into the nucleus. In vitro, it inhibited the DNA-binding and transcriptional activity of NF-κB. It also reduced the expression of COX-2 in tumours and significantly depressed serum TNF-α and IL-6 levels. These effects of CLEFMA were accompanied by a reduced transcription and/or translation of the invasion markers VEGF, MMP9, MMP10, Cyclin D1 and ICAM-1.
CONCLUSIONS AND IMPLICATIONS: Overall, CLEFMA inhibited growth of lung cancer xenografts and this tumour suppression was associated with NF-κB-regulated anti-inflammatory and anti-metastatic effects.

Okuhira K, Demizu Y, Hattori T, et al.
Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells.
Cancer Sci. 2013; 104(11):1492-8 [PubMed] Related Publications
Manipulation of protein stability with small molecules has a great potential for both basic research and clinical therapy. Recently, we have developed a series of hybrid small molecules named SNIPER (Specific and Non-genetic IAP-dependent Protein ERaser) that induces degradation of target proteins via ubiquitin-proteasome system. Here we report the activities of SNIPER(ER) that targets estrogen receptor alpha (ERα) for degradation. SNIPER(ER) induced degradation of ERα and inhibited estrogen-dependent expression of pS2 gene in an estrogen-dependent breast cancer cell line MCF-7. A proteasome inhibitor MG132 and siRNA-mediated downregulation of cIAP1 abrogated the SNIPER(ER)-induced ERα degradation, suggesting that the ERα is degraded by proteasome subsequent to cIAP1-mediated ubiquitylation. Intriguingly, after the ERα degradation, the SNIPER(ER)-treated MCF-7 cells undergo rapid cell death. Detailed analysis indicated that SNIPER(ER) caused necrotic cell death accompanied by a release of HMGB1, a marker of necrosis, from the cells. Following the ERα degradation, reactive oxygen species (ROS) was produced in the SNIPER(ER)-treated MCF-7 cells, and an anti-oxidant N-acetylcysteine inhibited the necrotic cell death. These results indicate that SNIPER(ER) induces ERα degradation, ROS production and necrotic cell death, implying a therapeutic potential of SNIPER(ER) as a lead for the treatment of ERα-positive breast cancers.

Maas C, Tromp JM, van Laar J, et al.
CLL cells are resistant to smac mimetics because of an inability to form a ripoptosome complex.
Cell Death Dis. 2013; 4:e782 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
In the lymph node (LN) environment, chronic lymphocytic leukemia (CLL) cells display increased NF-κB activity compared with peripheral blood CLL cells, which contributes to chemoresistance. Antagonists of cellular inhibitor of apoptosis proteins (cIAPs) can induce apoptosis in various cancer cells in a tumor necrosis factor-α (TNFα)-dependent manner and are in preclinical development. Smac-mimetics promote degradation of cIAP1 and cIAP2, which results in TNFR-mediated apoptosis via formation of a ripoptosome complex, comprising RIPK1, Fas-associated protein with death domain, FLICE-like inhibitory protein and caspase-8. CD40 stimulation of CLL cells in vitro is used as a model to mimic the LN microenvironment and results in NF-κB activation and TNFα production. In this study, we investigated the response of CLL cells to smac-mimetics in the context of CD40 stimulation. We found that treatment with smac-mimetics results in cIAP1 and cIAP2 degradation, yet although TNFα is produced, this did not induce apoptosis. Despite the presence of all components, the ripoptosome complex did not form upon smac-mimetic treatment in CLL cells. Thus, CLL cells seem to possess aberrant upstream NF-κB regulation that prevents ripoptosome formation upon IAP degradation. Unraveling the exact molecular mechanisms of disturbed ripoptosome formation may offer novel targets for treatment in CLL.

Sauer M, Reiners KS, Hansen HP, et al.
Induction of the DNA damage response by IAP inhibition triggers natural immunity via upregulation of NKG2D ligands in Hodgkin lymphoma in vitro.
Biol Chem. 2013; 394(10):1325-31 [PubMed] Related Publications
Evasion of apoptosis is a hallmark of cancer cells. Inhibitor of apoptosis proteins (IAPs) act as endogenous inhibitors of programmed cell death and are overexpressed in several tumors including Hodgkin lymphoma (HL). Preclinical studies indicate antitumor activity of IAP antagonists and clinical studies in hematological malignancies are underway. Here, we investigate the impact of the small molecule IAP antagonist LCL161 on HL cell lines. Although the antagonist caused rapid degradation of cIAP1 leading to TNFα secretion, LCL161 did not promote apoptosis significantly. However, LCL161 induced expression of MICA and MICB, ligands for the activating immune receptor NKG2D, and enhanced the susceptibility of HL cells to NKG2D-dependent lysis by NK cells. MICA/B upregulation was dependent on activation of the DNA damage response upon LCL161 treatment. Taken together, we demonstrate a novel link between IAP inhibition, DNA damage and immune recognition.

Simon-Keller K, Paschen A, Hombach AA, et al.
Survivin blockade sensitizes rhabdomyosarcoma cells for lysis by fetal acetylcholine receptor-redirected T cells.
Am J Pathol. 2013; 182(6):2121-31 [PubMed] Related Publications
Cellular immunotherapy may provide a strategy to overcome the poor prognosis of metastatic and recurrent rhabdomyosarcoma (RMS) under the current regimen of polychemotherapy. Because little is known about resistance mechanisms of RMS to cytotoxic T cells, we investigated RMS cell lines and biopsy specimens for expression and function of immune costimulatory receptors and anti-apoptotic molecules by RT-PCR, Western blot analysis, IHC, and cytotoxicity assays using siRNA or transfection-modified RMS cell lines, together with engineered RMS-directed cytotoxic T cells specific for the fetal acetylcholine receptor. We found that costimulatory CD80 and CD86 were consistently absent from all RMSs tested, whereas inducible T-cell co-stimulator ligand (ICOS-L; alias B7H2) was expressed by a subset of RMSs and was inducible by tumor necrosis factor α in two of five RMS cell lines. Anti-apoptotic survivin, along with other inhibitor of apoptosis (IAP) family members (cIAP1, cIAP2, and X-linked inhibitor of apoptosis protein), was overexpressed by RMS cell lines and biopsy specimens. Down-regulation of survivin by siRNA or pharmacologically in RMS cells increased their susceptibility toward a T-cell attack, whereas induction of ICOS-L did not. Treatment of RMS-bearing Rag(-/-) mice with fetal acetylcholine receptor-specific chimeric T cells delayed xenograft growth; however, this happened without definitive tumor eradication. Combined blockade of survivin and application of chimeric T cells in vivo suppressed tumor proliferation during survivin inhibition. In conclusion, survivin blockade provides a strategy to sensitize RMS cells for T-cell-based therapy.

Honegger A, Leitz J, Bulkescher J, et al.
Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells.
Int J Cancer. 2013; 133(7):1631-42 [PubMed] Related Publications
The human papillomavirus (HPV) E6/E7 oncogenes play a crucial role in the HPV-induced carcinogenesis. In this study, the authors investigated whether silencing of endogenous HPV E6/E7 expression may influence the contents or amounts of extracellular microvesicles (eMVs) released from HPV-positive cancer cells. It was found that eMVs secreted from HeLa cells are enriched for Survivin protein. RNA interference studies revealed that maintenance of both intracellular and microvesicular Survivin amounts was strongly dependent on continuous E6/E7 expression. This indicates that intracellular HPV activities are translated into visible alterations of protein contents in eMVs. Besides Survivin, eMVs from HeLa cells contain additional members of the inhibitor of apoptosis protein (IAP) family (XIAP, c-IAP1 and Livin). In contrast, no evidence for the presence of the HPV E6 and E7 oncoproteins in eMVs was obtained. Moreover, it was found that silencing of HPV E6/E7 expression led to a significant increase of exosomes-representing eMVs of endocytic origin-released from HeLa cells. This effect was associated with the reinduction of p53, stimulation of the p53 target genes TSAP6 and CHMP4C that can enhance exosome production and induction of senescence. Taken together, these results show that silencing of HPV E6/E7 oncogene expression profoundly affects both the composition and amounts of eMVs secreted by HPV-positive cancer cells. This indicates that HPVs can induce molecular signatures in eMVs that may affect intercellular communication and could be explored for diagnostic purposes.

Lee ST, Wong PF, He H, et al.
Alpha-tomatine attenuation of in vivo growth of subcutaneous and orthotopic xenograft tumors of human prostate carcinoma PC-3 cells is accompanied by inactivation of nuclear factor-kappa B signaling.
PLoS One. 2013; 8(2):e57708 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
BACKGROUND: Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined.
METHODOLOGY/PRINCIPAL FINDINGS: In the present study we show that suppression of NF-κB activation by α-tomatine occurs through inhibition of I kappa B alpha (IκBα) kinase activity, leading to sequential suppression of IκBα phosphorylation, IκBα degradation, NF-κB/p65 phosphorylation, and NF-κB p50/p65 nuclear translocation. Consistent with its ability to induce apoptosis, α-tomatine reduced TNF-α induced activation of the pro-survival mediator Akt and its inhibition of NF-κB activation was accompanied by significant reduction in the expression of NF-κB-dependent anti-apoptotic (c-IAP1, c-IAP2, Bcl-2, Bcl-xL, XIAP and survivin) proteins. We also evaluated the antitumor activity of α-tomatine against PC-3 cell tumors grown subcutaneously and orthotopically in mice. Our data indicate that intraperitoneal administration of α-tomatine significantly attenuates the growth of PC-3 cell tumors grown at both sites. Analysis of tumor material indicates that the tumor suppressing effects of α-tomatine were accompanied by increased apoptosis and lower proliferation of tumor cells as well as reduced nuclear translocation of the p50 and p65 components of NF-κB.
CONCLUSION/SIGNIFICANCE: Our study provides first evidence for in vivo antitumor efficacy of α-tomatine against the human androgen-independent prostate cancer. The potential usefulness of α-tomatine in prostate cancer prevention and therapy requires further investigation.

Yang L, Wang Q, Li D, et al.
Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins.
Apoptosis. 2013; 18(5):618-26 [PubMed] Related Publications
Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with other agents is a promising strategy to overcome TRAIL resistance in malignant cells. Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. However, whether wogonin enhances TRAIL's antitumor activity in vivo has never been studied. In this study, the effect of combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay. The expression levels of antiapoptotic proteins including long form of cellular FLICE-like inhibitory protein (cFLIPL), X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein 1 and 2 (cIAP-1 and cIAP-2) were markedly reduced in both cultured cells and xenografted tumor tissues after co-treatment with wogonin and TRAIL. The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL. These results show for the first time that wogonin enhances TRAIL's antitumor activity in vivo, suggesting this strategy has an application potential for clinical anticancer therapy.

Lee S, Yoon CY, Byun SS, et al.
The role of c-FLIP in cisplatin resistance of human bladder cancer cells.
J Urol. 2013; 189(6):2327-34 [PubMed] Related Publications
PURPOSE: We investigated the mechanisms underlying cisplatin resistance in human bladder cancer cells to provide novel molecular targets for the treatment of cisplatin resistant bladder cancer.
MATERIALS AND METHODS: The differential gene expression of cisplatin sensitive (T24) and resistant (T24R2) human bladder cancer cell lines was analyzed and validated by microarray and Western blot analysis. Changes in cisplatin sensitivity by c-FLIP knockdown and related mechanisms in T24R2 cells were assessed using the Cell Counting Kit-8 assay (Dojindo Molecular Technologies, Gaithersburg, Maryland) and Western blot. siRNA oligonucleotides that specifically target c-FLIP were prepared and siRNA transfection was done.
RESULTS: Microarray analysis revealed that the expression of 1,086 and 322 genes showed more than twofold and fourfold changes in the T24R2 and T24 cell lines, respectively. Especially genes involved in the c-FLIP related death receptor apoptosis pathway, including caspase 2 and 9, NF-kB, BID, c-FLIP, XIAP, and cIAP1 and 2, showed differential expression in the 2 cell lines. Western blot demonstrated complete cisplatin mediated suppression of c-FLIP expression in T24 cells but no change in c-FLIP expression was observed in T24R2 cells after cisplatin treatment in the same dose range. Suppression of c-FLIP expression in T24R2 cells by siRNA transfection rendered these cells significantly more sensitive to cisplatin treatment than untransfected T24R2 cells (p <0.05).
CONCLUSIONS: Results reveal that c-FLIP has an important role in the cisplatin resistance of human bladder cancer cells and c-FLIP modulation may at least partially reverse cisplatin resistance in bladder cancer cells.

Allensworth JL, Sauer SJ, Lyerly HK, et al.
Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism.
Breast Cancer Res Treat. 2013; 137(2):359-71 [PubMed] Related Publications
X-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K (d) > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.

Ma GF, Chen SY, Sun ZR, et al.
FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway.
Biochem Biophys Res Commun. 2013; 430(2):804-9 [PubMed] Related Publications
Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis in GC cells by regulating apoptotic signaling, which could be a promising therapeutic approach for gastric cancer.

Yang HJ, Youn H, Seong KM, et al.
Phosphorylation of ribosomal protein S3 and antiapoptotic TRAF2 protein mediates radioresistance in non-small cell lung cancer cells.
J Biol Chem. 2013; 288(5):2965-75 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
Radioresistance is considered as a main factor restricting efficacy of radiotherapy. However, the exact molecular mechanism of radioresistance has not been explained yet. In this study, to elucidate radioresistance mechanism in lung cancer, we compared radiation responses in two types of non-small cell lung cancer (NSCLC) cells with different radiosensitivity and identified key molecules conferring radioresistance. In radioresistant NSCLC cells, ionizing radiation (IR) led to casein kinase 2α (CK2α)- and PKC-mediated phosphorylation of rpS3 and TRAF2, respectively, which induced dissociation of rpS3-TRAF2 complex and NF-κB activation, resulting in significant up-regulation of prosurvival genes (cIAP1, cIAP2, and survivin). Also, dissociated phospho-rpS3 translocated into nucleus and bound with NF-κB complex (p65 and p50), contributing to p65 DNA binding property and specificity. However, in radiosensitive NSCLC cells, IR-mediated rpS3 phosphorylation was not detected due to the absence of CK2α overexpression. Consequently, IR-induced rpS3-TRAF2 complex dissociation, NF-κB activation, and prosurvival gene expression were not presented. Taken together, our findings revealed a novel radioresistance mechanism through functional orchestration of rpS3, TRAF2, and NF-κB in NSCLC cells. Moreover, we provided the first evidence for the function of rpS3 as a new TRAF2-binding protein and demonstrated that phosphorylation of both rpS3 and TRAF2 is a key control point of radioresistance in NSCLC cells. These results suggest that regulation of rpS3 and TRAF2 in combination with radiotherapy could have high pharmacological therapeutic potency for radioresistance of NSCLC.

Kollipara PS, Jeong HS, Han SB, Hong JT
(E)-2,4-bis(p-hydroxyphenyl)-2-butenal has an antiproliferative effect on NSCLC cells induced by p38 MAPK-mediated suppression of NF-κB and up-regulation of TNFRSF10B (DR5).
Br J Pharmacol. 2013; 168(6):1471-84 [PubMed] Article available free on PMC after 28/02/2015 Related Publications
BACKGROUND AND PURPOSE: The Maillard Reaction Products (MRPs) are known to be effective in chemoprevention. Here we focused on the anticancer effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (a MRP) on human non-small-cell lung cancer (NSCLC) cells and its mechanism of action.
EXPERIMENTAL APPROACH: We analysed the activity of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on NSCLC cells (NCI-H460 and A549) by use of Western blot analysis for major apoptotic proteins, MAPK, NF-κB and death receptor expression. We also used RT-PCR to determine its effects on death receptor mRNA expression, EMSA for effects on NF-κB DNA binding activity and colony formation assay for effects of inhibitors on (E)-2,4-bis(p-hydroxyphenyl)-2-butenal's actions.
KEY RESULTS: (E)-2,4-bis(p-hydroxyphenyl)-2-butenal induced a concentration (10-40 μg·mL⁻¹)- and time (30 min-72 h)-dependent inhibitory effect on the growth of NSCLC cells due to induction of apoptosis. Concomitantly, it significantly increased the expression of apoptotic proteins such as cleaved caspase-3, cleaved caspase-9, Bax and p53, but down-regulated the expression of anti-apoptotic proteins Bcl-2, cIAP1 and cIAP2. This effect was induced by up-regulation of MAPK and death receptor proteins TNFRSF12, TNFRSF10B and TNFRSF21, but suppression of NF-κB. Of the death receptors activated, only TNFRSF10B knock down with siRNA reversed the effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal. Even though all the MAPKs were activated, only pretreatment with a p38 MAPK inhibitor reversed (E)-2,4-bis(p-hydroxyphenyl)-2-butenal-induced cell growth inhibition, increase in cleaved caspase-3, -9 and TNFRSF10B expression, and NF-κB inactivation.
CONCLUSIONS AND IMPLICATIONS: (E)-2,4-bis(p-hydroxyphenyl)-2-butenal induces apoptosis in NSCLC cells by p38 MAPK-mediated suppression of NF-κB and activation of TNFRSF10B, which then activates the caspase-3 and caspase-9 pathways.

de Almagro MC, Vucic D
The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy.
Exp Oncol. 2012; 34(3):200-11 [PubMed] Related Publications
Cell death regulation is vital for maintenance of homeostasis and proper development of multicellular organisms. Inhibitor of apoptosis (IAP) proteins are implicated in multiple ways in cell death regulation, ranging from inhibition of apoptosis and necrosis to the regulation of cell cycle and inflammation. Due to their prominent ability to control cell death and elevated expression in a variety of cancer cell types, IAP proteins are attractive targets for the development of novel anti-cancer treatments. The most widely used strategy for targeting IAP proteins is based on mimicking the natural IAP antagonist, SMAC/DIABLO. IAP antagonists are currently being tested in humans and they were designed for anti-cancer therapy but they could potentially also be considered for treatments of the immune system disorders. In this manuscript we will review the functional roles of IAP proteins, specifically of c-IAP1, c-IAP2, ML-IAP and XIAP, and evaluate IAP targeting strategies for disease treatments. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".

Lee NJ, Choi DY, Song JK, et al.
Deficiency of C-C chemokine receptor 5 suppresses tumor development via inactivation of NF-κB and inhibition of monocyte chemoattractant protein-1 in urethane-induced lung tumor model.
Carcinogenesis. 2012; 33(12):2520-8 [PubMed] Related Publications
To evaluate the significance of C-C chemokine receptor type 5 (CCR5) in lung tumor development, we compared carcinogen-induced tumor growth in CCR5 knockout (CCR5(-/-)) mice and wild-type (CCR5(+/+)) mice. CCR5(-/-) mice showed reduced urethane (1g/kg)-induced tumor incidence when compared with those of CCR5(+/+) mice. We investigated the activation of nuclear factor-kappaB/STAT3 since these are implicated transcription factors in the regulation of genes involving tumor growth. Significant inhibition of DNA-binding activity of nuclear factor-kappaB and STAT3, and the translocation of p50 and p65 into the nucleus and the phosphorylation of IĸB were found in the lungs of CCR5(-/-) mice compared with the lungs of CCR5(+/+) mice. Expression of apoptotic protein such as cleaved caspase-3, cleaved PARP and Bax was elevated, whereas the expression levels of survival protein such as Bcl-2 and cIAP1 was decreased in the lungs of CCR5(-/-) mice. Interestingly, we found that the level of monocyte chemoattractant protein-1 (MCP-1), a tumor growth-promoting cytokine, was significantly reduced in the lung tumor tissue and blood of CCR5(-/-) mice compared with the level in CCR5(+/+) mice. In addition, CCR5 small interfering RNA (siRNA) and inhibitor of MCP-1 blocked lung cancer cell growth, which was abolished by the addition of MCP-1 protein in cultured lung cancer cells. Moreover, inactivation of CD8(+) cytotoxic T cell and dendritic cells was significantly increased in the blood, lung tumors and spleens of CCR5(-/-) mice compared with that of CCR5(+/+) mice. Therefore, these results showed that CCR5 deficiency suppressed lung tumor development through the inhibition of nuclear factor-kappaB/STAT3 pathways and the downregulation of MCP-1 in the carcinogen-induced lung tumor model.

Varfolomeev E, Moradi E, Dynek JN, et al.
Characterization of ML-IAP protein stability and physiological role in vivo.
Biochem J. 2012; 447(3):427-36 [PubMed] Related Publications
ML-IAP [melanoma IAP (inhibitor of apoptosis)] is an anti-apoptotic protein that is expressed highly in melanomas where it contributes to resistance to apoptotic stimuli. The anti-apoptotic activity and elevated expression of IAP family proteins in many human cancers makes IAP proteins attractive targets for inhibition by cancer therapeutics. Small-molecule IAP antagonists that bind with high affinities to select BIR (baculovirus IAP repeat) domains have been shown to stimulate auto-ubiquitination and rapid proteasomal degradation of c-IAP1 (cellular IAP1) and c-IAP2 (cellular IAP2). In the present paper, we report ML-IAP proteasomal degradation in response to bivalent, but not monovalent, IAP antagonists. This degradation required ML-IAP ubiquitin ligase activity and was independent of c-IAP1 or c-IAP2. Although ML-IAP is best characterized in melanoma cells, we show that ML-IAP expression in normal mammalian tissues is restricted largely to the eye, being most abundant in ciliary body epithelium and retinal pigment epithelium. Surprisingly, given this pattern of expression, gene-targeted mice lacking ML-IAP exhibited normal intraocular pressure as well as normal retinal structure and function. The results of the present study indicate that ML-IAP is dispensable for both normal mouse development and ocular homoeostasis.

Taniguchi H, Horinaka M, Yoshida T, et al.
Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules.
Mol Cancer Ther. 2012; 11(10):2294-300 [PubMed] Related Publications
Methylglyoxal is an essential component in glycolysis and is known to be an inducer of apoptosis. Glyoxalase I (GLO1) metabolizes and inactivates methylglyoxal. GLO1 is known to be overexpressed in cancer cells and causes resistance to anticancer agents. We show for the first time that methylglyoxal treatment or the silencing of GLO1 enhances sensitivity to the promising anticancer agent TRAIL in malignant tumor cells. Methylglyoxal suppressed the expression of antiapoptotic factors, X-linked inhibitor of apoptosis protein (XIAP), survivin, cIAP1, Bcl-2, and Bcl-xL, without affecting TRAIL receptors, DR4 and DR5. Knockdown of XIAP or survivin by siRNA also enhanced TRAIL-induced apoptosis, indicating that downregulation of XIAP and survivin expression by methylglyoxal contributes to the enhancement of TRAIL activity. Furthermore, methylglyoxal decreased NF-κB activity with or without TRAIL treatment. On the other hand, the knockdown of GLO1 by siRNA enhanced TRAIL-induced apoptosis via the downregulation of XIAP and survivin expression. In conclusion, our results strongly suggest that sensitivity to TRAIL is increased by inhibition of the glyoxalase pathway and that the combination of TRAIL with methylglyoxal or glyoxalase inhibitors may be useful for a novel combination chemotherapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BIRC2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999