Cancer Overview
Research Indicators
Graph generated 29 August 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (10)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
PATZ1
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
PATZ1
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
PATZ1
COSMIC, Sanger Institute
Somatic mutation information and related details
PATZ1
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: PATZ1 (cancer-related)
Accurate diagnoses of sarcoma are sometimes challenging on conventional histomorphology and immunophenotype. Many specific genetic aberrations including chromosomal translocations have been identified in various sarcomas, which can be detected by fluorescence in situ hybridization and polymerase chain reaction analysis. Next-generation sequencing-based RNA sequencing can screen multiple sarcoma-specific chromosome translocations/fusion genes in 1 test, which is especially useful for sarcoma without obvious differentiation. In this report, we utilized RNA sequencing on formalin-fixed paraffin-embedded (FFPE) specimens to investigate the possibility of diagnosing sarcomas by identifying disease-specific fusion genes. Targeted RNA sequencing was performed on 6 sarcoma cases. The expected genetic alterations (clear cell sarcoma/EWSR1-ATF1, Ewing sarcoma/EWSR1-FLI1, myxoid liposarcoma/DDIT3-FUS) in four cases were detected and confirmed by secondary tests. Interestingly, three SS18 fusion genes (SS18-SSX2B, SS18-SSX2, and SS18-SSX4) were identified in a synovial sarcoma case. A rare fusion gene (EWSR1-PATZ1) was identified in a morphologically challenging case; which enabled us to establish the diagnosis of low grade glioneural tumor. In conclusion, RNA sequencing on FFPE specimen is a reliable method in establishing the diagnosis of sarcoma in daily practice.
Yang W, Lee KW, Srivastava RM, et al.
Immunogenic neoantigens derived from gene fusions stimulate T cell responses.Nat Med. 2019; 25(5):767-775 [
PubMed] Article available free on
PMC after 22/10/2019
Related Publications
Anti-tumor immunity is driven by self versus non-self discrimination. Many immunotherapeutic approaches to cancer have taken advantage of tumor neoantigens derived from somatic mutations. Here, we demonstrate that gene fusions are a source of immunogenic neoantigens that can mediate responses to immunotherapy. We identified an exceptional responder with metastatic head and neck cancer who experienced a complete response to immune checkpoint inhibitor therapy, despite a low mutational load and minimal pre-treatment immune infiltration in the tumor. Using whole-genome sequencing and RNA sequencing, we identified a novel gene fusion and demonstrated that it produces a neoantigen that can specifically elicit a host cytotoxic T cell response. In a cohort of head and neck tumors with low mutation burden, minimal immune infiltration and prevalent gene fusions, we also identified gene fusion-derived neoantigens that generate cytotoxic T cell responses. Finally, analyzing additional datasets of fusion-positive cancers, including checkpoint-inhibitor-treated tumors, we found evidence of immune surveillance resulting in negative selective pressure against gene fusion-derived neoantigens. These findings highlight an important class of tumor-specific antigens and have implications for targeting gene fusion events in cancers that would otherwise be less poised for response to immunotherapy, including cancers with low mutational load and minimal immune infiltration.
Ashley CW, Da Cruz Paula A, Kumar R, et al.
Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression.Gynecol Oncol. 2019; 152(1):11-19 [
PubMed]
Related Publications
OBJECTIVE: Mutational signatures provide insights into the biological processes shaping tumor genomes and may inform patient therapy. We sought to define the mutational signatures of i) endometrioid and serous endometrial carcinomas (ECs), stratified into the four molecular subtypes, ii) uterine carcinosarcomas, and iii) matched primary and metastatic ECs.
METHODS: Whole-exome sequencing MC3 data from primary endometrioid and serous carcinomas (n = 232) and uterine carcinosarcomas (n = 57) from The Cancer Genome Atlas (TCGA), and matched primary and metastatic ECs (n = 61, 26 patients) were reanalyzed, subjected to mutational signature analysis using deconstructSigs, and correlated with clinicopathologic and genomic data.
RESULTS: POLE (ultramutated) and MSI (hypermutated) molecular subtypes displayed dominant mutational signatures associated with POLE mutations (15/17 cases) and microsatellite instability (55/65 cases), respectively. Most endometrioid and serous carcinomas of copy-number low (endometrioid) and copy-number high (serous-like) molecular subtypes, and carcinosarcomas displayed a dominant aging-associated signature 1. Only 15% (9/60) of copy-number high (serous-like) ECs had a dominant signature 3 (homologous recombination DNA repair deficiency (HRD)-related), a prevalence significantly lower than that found in high-grade serous ovarian carcinomas (54%, p < 0.001) or basal-like breast cancers (46%, p < 0.001). Shifts from aging- or POLE- to MSI-related mutational processes were observed in the progression from primary to metastatic ECs in a subset of cases.
CONCLUSIONS: The mutational processes underpinning ECs vary even among tumors of the same TCGA molecular subtype and in the progression from primary to metastatic ECs. Only a minority of copy-number high (serous-like) ECs display genomics features of HRD and would likely benefit from HRD-directed therapies.
Qian D, Liu H, Wang X, et al.
Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival.Int J Cancer. 2019; 144(8):1867-1876 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
The complement system plays an important role in the innate and adaptive immunity, complement components mediate tumor cytolysis of antibody-based immunotherapy, and complement activation in the tumor microenvironment may promote tumor progression or inhibition, depending on the mechanism of action. In the present study, we conducted a two-phase analysis of two independently published genome-wide association studies (GWASs) for associations between genetic variants in a complement-related immunity gene-set and overall survival of non-small cell lung cancer (NSCLC). The GWAS dataset from Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial was used as the discovery, and multivariate Cox proportional hazards regression with false-positive report probability for multiple test corrections were performed to evaluate associations between 14,699 single-nucleotide polymorphisms (SNPs) in 111 genes and survival of 1,185 NSCLC patients. The identified significant SNPs in a single-locus analysis were further validated with 984 NSCLC patients in the GWAS dataset from the Harvard Lung Cancer Susceptibility (HLCS) Study. The results showed that two independent, potentially functional SNPs in two genes (VWF rs73049469 and ITGB2 rs3788142) were significantly associated with NSCLC survival, with a combined hazards ratio (HR) of 1.22 [95% confidence interval (CI) = 1.07-1.40, P = 0.002] and 1.16 (1.07-1.27, 6.45 × 10
Ganly I, Makarov V, Deraje S, et al.
Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes.Cancer Cell. 2018; 34(2):256-270.e5 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
The molecular foundations of Hürthle cell carcinoma (HCC) are poorly understood. Here we describe a comprehensive genomic characterization of 56 primary HCC tumors that span the spectrum of tumor behavior. We elucidate the mutational profile and driver mutations and show that these tumors exhibit a wide range of recurrent mutations. Notably, we report a high number of disruptive mutations to both protein-coding and tRNA-encoding regions of the mitochondrial genome. We reveal unique chromosomal landscapes that involve whole-chromosomal duplications of chromosomes 5 and 7 and widespread loss of heterozygosity arising from haploidization and copy-number-neutral uniparental disomy. We also identify fusion genes and disrupted signaling pathways that may drive disease pathogenesis.
Siegfried A, Rousseau A, Maurage CA, et al.
EWSR1-PATZ1 gene fusion may define a new glioneuronal tumor entity.Brain Pathol. 2019; 29(1):53-62 [
PubMed]
Related Publications
We investigated the challenging diagnostic case of a ventricular cystic glioneuronal tumor with papillary features, by RNA sequencing using the Illumina TruSight RNA Fusion panel. We did not retrieve the SLC44A1-PRKCA fusion gene specific for papillary glioneuronal tumor, but an EWSR1-PATZ1 fusion transcript. RT-PCR followed by Sanger sequencing confirmed the EWSR1-PATZ1 fusion. It matched with canonic EWSR1 fusion oncogene, juxtaposing the entire N-terminal transcriptional activation domain of EWSR1 gene and the C-terminal DNA binding domain of a transcription factor gene, PATZ1. PATZ1 protein belongs to the BTB-ZF (broad-complex, tramtrack and bric-à-brac -zinc finger) family. It directly regulates Pou5f1 and Nanog and is essential to maintaining stemness by inhibiting neural differentiation. EWSR1-PATZ1 fusion is a rare event in tumors: it was only reported in six round cell sarcomas and in three gliomas of three exclusively molecular studies. The first reported glioma was a BRAF
Riaz SK, Khan JS, Shah STA, et al.
Involvement of hedgehog pathway in early onset, aggressive molecular subtypes and metastatic potential of breast cancer.Cell Commun Signal. 2018; 16(1):3 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
BACKGROUND: Dysregulation of hedgehog pathway is observed in numerous cancers. Relevance of hedgehog pathway genes in cancer cohort and inhibition of its downstream effector (GLI1) towards metastasis in cell lines are explored in the study.
METHOD: One hundred fifty fresh tumours of breast cancer patients were collected for the study. Based on differential expression, panel of 6 key regulators of the pathway (SHH, DHH, IHH, PTCH1, SMO and GLI1) in microarray datasets were identified. Expressional profiles of aforementioned genes were later correlated with clinico-pathological parameters in Pakistani breast cancer cohort at transcript and protein levels. In addition, GLI1 over expressing breast cancer cell lines (MDA-MB-231 and MCF-7) were treated with GANT61 to explore its probable effects on metastasis.
RESULT: SHH, DHH, PTCH1 and GLI1 were significantly over-expressed in tumours as compared with respective normal mammary tissues. A significant correlation of SHH, DHH and GLI1 expression with advanced tumour size, stages, grades, nodal involvement and distant metastasis was observed (p < 0.05). Over-expression of SHH, DHH and GLI1 was significantly related with patients having early onset and pre-menopausal status. Of note, hedgehog pathway was frequently up regulated in luminal B and triple negative breast cancer affected women. In addition, positive correlations were observed among aforementioned members of pathway and Ki67 (r-value: 0.63-0.78) emphasizing their role towards disease progression. Exposure of GANT61 (inhibitor for GLI1) significantly restricted cell proliferation, reduced cell motility and invasion.
CONCLUSION: Role of activated hedgehog pathway in breast cancer metastasis provides a novel target for cancer therapy against aggressive cancer subtypes.
Fedele M, Crescenzi E, Cerchia L
The POZ/BTB and AT-Hook Containing Zinc Finger 1 (PATZ1) Transcription Regulator: Physiological Functions and Disease Involvement.Int J Mol Sci. 2017; 18(12) [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
PATZ1 is a zinc finger protein, belonging to the POZ domain Krüppel-like zinc finger (POK) family of architectural transcription factors, first discovered in 2000 by three independent groups. Since that time accumulating evidences have shown its involvement in a variety of biological processes (i.e., embryogenesis, stemness, apoptosis, senescence, proliferation, T-lymphocyte differentiation) and human diseases. Here we summarize these studies with a focus on the PATZ1 emerging and controversial role in cancer, where it acts as either a tumor suppressor or an oncogene. Finally, we give some insight on clinical perspectives using PATZ1 as a prognostic marker and therapeutic target.
Dalin MG, Katabi N, Persson M, et al.
Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions.Nat Commun. 2017; 8(1):1197 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Myoepithelial carcinoma (MECA) is an aggressive salivary gland cancer with largely unknown genetic features. Here we comprehensively analyze molecular alterations in 40 MECAs using integrated genomic analyses. We identify a low mutational load, and high prevalence (70%) of oncogenic gene fusions. Most fusions involve the PLAG1 oncogene, which is associated with PLAG1 overexpression. We find FGFR1-PLAG1 in seven (18%) cases, and the novel TGFBR3-PLAG1 fusion in six (15%) cases. TGFBR3-PLAG1 promotes a tumorigenic phenotype in vitro, and is absent in 723 other salivary gland tumors. Other novel PLAG1 fusions include ND4-PLAG1; a fusion between mitochondrial and nuclear DNA. We also identify higher number of copy number alterations as a risk factor for recurrence, independent of tumor stage at diagnosis. Our findings indicate that MECA is a fusion-driven disease, nominate TGFBR3-PLAG1 as a hallmark of MECA, and provide a framework for future diagnostic and therapeutic research in this lethal cancer.
Tian XQ, Guo FF, Sun DF, et al.
Downregulation of ZNF278 arrests the cell cycle and decreases the proliferation of colorectal cancer cells via inhibition of the ERK/MAPK pathway.Oncol Rep. 2017; 38(6):3685-3692 [
PubMed]
Related Publications
Zinc finger protein 278 is a zinc finger transcription factor encoded on the 22q12.2 chromosome. Previous studies revealed that ZNF278 expression was significantly upregulated in colorectal cancer (CRC) tissue compared to adjacent non-tumor tissue. However, the expression and specific roles of ZNF278 in CRC remain unknown. ZNF278 expression was knocked down using specific siRNAs, which was confirmed by western blotting, and the effects of ZNF278 siRNAs on CRC cell proliferation were investigated. In addition, the effects of ZNF278 overexpression were confirmed by western blotting and cell proliferation assay. Correlations between ZNF278 and the ERK/MAPK pathway were also detected by western blotting. We found that ZNF278 knockdown significantly induced cell cycle arrest, resulting in cyclin D1/E1 downregulation and p21 upregulation. Moreover, we demonstrated that downregulation of ZNF278 decreased the proliferation of CRC cells via inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway for the first time. In conclusion, ZNF278 played a prominent role in the pathogenesis of CRC, and promoted CRC cell proliferation via the ERK/MAPK pathway, suggesting that it may act as a potential target in the diagnosis or treatment of CRC.
Riaz N, Havel JJ, Makarov V, et al.
Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab.Cell. 2017; 171(4):934-949.e16 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.
Riaz N, Blecua P, Lim RS, et al.
Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes.Nat Commun. 2017; 8(1):857 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
BRCA1 and BRCA2 are involved in homologous recombination (HR) DNA repair and are germ-line cancer pre-disposition genes that result in a syndrome of hereditary breast and ovarian cancer (HBOC). Whether germ-line or somatic alterations in these genes or other members of the HR pathway and if mono- or bi-allelic alterations of HR-related genes have a phenotypic impact on other cancers remains to be fully elucidated. Here, we perform a pan-cancer analysis of The Cancer Genome Atlas (TCGA) data set and observe that bi-allelic pathogenic alterations in homologous recombination (HR) DNA repair-related genes are prevalent across many malignancies. These bi-allelic alterations often associate with genomic features of HR deficiency. Further, in ovarian, breast and prostate cancers, bi-allelic alterations are mutually exclusive of each other. The combination of these two properties facilitates reclassification of variants of unknown significance affecting DNA repair genes, and may help personalize HR directed therapies in the clinic.Germline mutations in homologous recombination (HR) DNA repair genes are linked to breast and ovarian cancer. Here, the authors show that mutually exclusive bi-allelic inactivation of HR genes are present in other cancer types and associated with genomic features of HR deficiency, expanding the potential use of HR-directed therapies.
Johnson A, Severson E, Gay L, et al.
Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures.Oncologist. 2017; 22(12):1478-1490 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
BACKGROUND: Pediatric brain tumors are the leading cause of death for children with cancer in the U.S. Incorporating next-generation sequencing data for both pediatric low-grade (pLGGs) and high-grade gliomas (pHGGs) can inform diagnostic, prognostic, and therapeutic decision-making.
MATERIALS AND METHODS: We performed comprehensive genomic profiling on 282 pediatric gliomas (157 pHGGs, 125 pLGGs), sequencing 315 cancer-related genes and calculating the tumor mutational burden (TMB; mutations per megabase [Mb]).
RESULTS: In pLGGs, we detected genomic alterations (GA) in 95.2% (119/125) of tumors.
CONCLUSION: Comprehensive genomic profiling of pediatric gliomas provides objective data that promote diagnostic accuracy and enhance clinical decision-making. Additionally, TMB could be a biomarker to identify pediatric glioblastoma (GBM) patients who may benefit from immunotherapy.
IMPLICATIONS FOR PRACTICE: By providing objective data to support diagnostic, prognostic, and therapeutic decision-making, comprehensive genomic profiling is necessary for advancing care for pediatric neuro-oncology patients. This article presents the largest cohort of pediatric low- and high-grade gliomas profiled by next-generation sequencing. Reportable alterations were detected in 95% of patients, including diagnostically relevant lesions as well as novel oncogenic fusions and mutations. Additionally, tumor mutational burden (TMB) is reported, which identifies a subpopulation of hypermutated glioblastomas that harbor deleterious mutations in DNA repair genes. This provides support for TMB as a potential biomarker to identify patients who may preferentially benefit from immune checkpoint inhibitors.
Malik MFA, Riaz SK, Waqar SH, et al.
Role of Plexin B1 in a Breast Cancer Cohort of Pakistani Patients and its Contribution Towards Cancer Metastasis as Indicated by an Anticancer Res. 2017; 37(8):4483-4488 [
PubMed]
Related Publications
BACKGROUND/AIM: In the current study, the role of plexin B1 in breast cancer metastasis was explored.
MATERIALS AND METHODS: Freshly-excised tumours along with background tissues of affected patients (n=121) were collected from Pakistani hospitals and processed for RNA isolation and cDNA synthesis. Using quantitative polymerase chain reaction, expression of plexin B1 was evaluated and correlated with clinicopathological parameters. Furthermore, involvement of plexin B1 in metastasis was explored by generating gene knockdown in MDA-MB-231 and MCF-7 breast cancer cells.
RESULTS: Poorly-differentiated tumours showed low plexin B1 expression in comparison to well-differentiated ones. Similarly, reduced plexin B1 expression correlated positively with advanced tumour stage and metastasis. Loss of plexin B1 significantly reduced cell adhesion in comparison with respective control cell lines (p<0.05). Knockdown of plexin B1 in MDA-MB-231 cells led to a remarkable increase in cell motility in contrast to the respective control.
CONCLUSION: Loss of plexin B1 expression might play a pivotal role in enhancing the metastatic potential of breast cancer cells.
Riaz SK, Ye L, Sahar NE, et al.
Transcriptional Profiling of Sonic Hedgehog in a Prospective Cohort of Breast Cancer in a Pakistani Population.Anticancer Res. 2017; 37(8):4449-4454 [
PubMed]
Related Publications
BACKGROUND/AIM: Constitutive activation of Sonic hedgehog (SHH) has been observed in different types of cancers. In the present study, expressional profiling of SHH in a breast cancer cohort (n=150) of a Pakistani population and its association with different molecular subtypes have been explored.
MATERIALS AND METHODS: qRT-PCR and IHC were performed for expression analysis of SHH and its association with ER, PR, HER2 and Ki-67 were also statistically analyzed.
RESULTS: A significant over-expression of SHH was observed in tumor tissues in comparison to their respective controls (p<0.0001). A strong positive correlation was seen between SHH and proliferation marker (r=0.635, p=0). SHH expression was significantly high among patients with advanced tumor grade, stage, nodal involvement and metastasis. Furthermore, both luminal-B and triple-negative subtypes of cohort showed increased expression of SHH.
CONCLUSION: Based on these findings, SHH may be used as a potential biomarker for breast carcinogenesis.
Knudsen ES, Vail P, Balaji U, et al.
Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers.Clin Cancer Res. 2017; 23(15):4429-4440 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Foo TK, Tischkowitz M, Simhadri S, et al.
Compromised BRCA1-PALB2 interaction is associated with breast cancer risk.Oncogene. 2017; 36(29):4161-4170 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
The major breast cancer suppressor proteins BRCA1 and BRCA2 play essential roles in homologous recombination (HR)-mediated DNA repair, which is thought to be critical for tumor suppression. The two BRCA proteins are linked by a third tumor suppressor, PALB2, in the HR pathway. While truncating mutations in these genes are generally pathogenic, interpretation of missense variants remains a challenge. To date, patient-derived missense variants that disrupt PALB2 binding have been identified in BRCA1 and BRCA2; however, there has not been sufficient evidence to prove their pathogenicity in humans, and no variants in PALB2 that disrupt either its BRCA1 or BRCA2 binding have been reported. Here we report on the identification of a novel PALB2 variant, c.104T>C (p.L35P), that segregates in a family with a strong history of breast cancer. Functional analyses showed that L35P abrogates the PALB2-BRCA1 interaction and completely disables its abilities to promote HR and confer resistance to platinum salts and PARP inhibitors. Whole-exome sequencing of a breast cancer from a c.104T>C carrier revealed a second, somatic, truncating mutation affecting PALB2, and the tumor displays hallmark genomic features of tumors with BRCA mutations and HR defects, cementing the pathogenicity of L35P. Parallel analyses of other germline variants in the PALB2 N-terminal BRCA1-binding domain identified multiple variants that affect HR function to varying degrees, suggesting their possible contribution to cancer development. Our findings establish L35P as the first pathogenic missense mutation in PALB2 and directly demonstrate the requirement of the PALB2-BRCA1 interaction for breast cancer suppression.
Mutter RW, Riaz N, Ng CK, et al.
Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer.J Pathol. 2017; 242(2):165-177 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression, and whole-exome sequencing was employed to ascertain the aetiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumour-specific DNA repair defects. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Ogden A, Garlapati C, Li XB, et al.
Multi-institutional study of nuclear KIFC1 as a biomarker of poor prognosis in African American women with triple-negative breast cancer.Sci Rep. 2017; 7:42289 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Nuclear KIFC1 (nKIFC1) predicts worse outcomes in breast cancer, but its prognostic value within racially distinct triple-negative breast cancer (TNBC) patients is unknown. Thus, nKIFC1 expression was assessed by immunohistochemistry in 163 African American (AA) and 144 White TNBC tissue microarrays (TMAs) pooled from four hospitals. nKIFC1 correlated significantly with Ki67 in White TNBCs but not in AA TNBCs, suggesting that nKIFC1 is not merely a surrogate for proliferation in AA TNBCs. High nKIFC1 weighted index (WI) was associated with significantly worse overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS) (Hazard Ratios [HRs] = 3.5, 3.1, and 3.8, respectively; P = 0.01, 0.009, and 0.007, respectively) in multivariable Cox models in AA TNBCs but not White TNBCs. Furthermore, KIFC1 knockdown more severely impaired migration in AA TNBC cells than White TNBC cells. Collectively, these data suggest that nKIFC1 WI an independent biomarker of poor prognosis in AA TNBC patients, potentially due to the necessity of KIFC1 for migration in AA TNBC cells.
Ascierto ML, Makohon-Moore A, Lipson EJ, et al.
Transcriptional Mechanisms of Resistance to Anti-PD-1 Therapy.Clin Cancer Res. 2017; 23(12):3168-3180 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Ng CKY, Piscuoglio S, Geyer FC, et al.
The Landscape of Somatic Genetic Alterations in Metaplastic Breast Carcinomas.Clin Cancer Res. 2017; 23(14):3859-3870 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Ma J, Setton J, Morris L, et al.
Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM.Oncotarget. 2017; 8(6):10312-10323 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Radiation therapy is a mainstay of cancer treatment, yet the molecular determinants of clinical response are poorly understood. We identified exceptional responders to radiotherapy based on clinical response, and investigated the associated tumor sequencing data in order to identify additional patients with similar mutations. Among head and neck squamous cell cancer patients receiving palliative radiotherapy at our institution, we identified one patient with documented complete metabolic response. Targeted sequencing analysis of the tumor identified a somatic frame-shift mutation in ATM, a gene known to be associated with radio-sensitivity in the germline. To validate the association of somatic ATM mutation with radiotherapy response, we identified eight patients with ATM truncating mutations who received radiotherapy, all of whom demonstrated excellent responses with a median local control period of 4.62 years. Analysis of 22 DNA repair genes in The Cancer Genome Atlas (TCGA) data revealed mutations in 15.9% of 9064 tumors across 24 cancer types, with ATM mutations being the most prevalent. This is the first study to suggest that exceptional responses to radiotherapy may be determined by mutations in DNA repair genes. Sequencing of DNA repair genes merits attention in larger cohorts and may have significant implications for the personalization of radiotherapy.
Franco R, Scognamiglio G, Valentino E, et al.
PATZ1 expression correlates positively with BAX and negatively with BCL6 and survival in human diffuse large B cell lymphomas.Oncotarget. 2016; 7(37):59158-59172 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Non-Hodgkin lymphomas (NHLs) include a heterogeneous group of diseases, which differ in both cellular origin and clinical behavior. Among the aggressive malignancies of this group, the diffuse large B-cell lymphomas (DLBCLs) are the most frequently observed. They are themselves clinically and molecularly heterogeneous and have been further sub-divided in three sub-types according to different cell of origin, mechanisms of oncogenesis and clinical outcome. Among them, the germinal center B-cell-like (GCB) derives from the germinal center and expresses the BCL6 oncogene. We have previously shown that Patz1-knockout mice develop B-cell neoplasias, suggesting a tumor suppressor role for PATZ1 in human NHLs. Here, by immunohistochemical analysis of a tissue-microarray including 170 NHLs, we found that PATZ1 nuclear expression is down-regulated in follicular lymphomas and DLBCLs. Moreover, consistent with our previous results showing a PATZ1-dependent regulation of BCL6 and BAX transcription, we show that low PATZ1 nuclear expression significantly correlates with high BCL6 expression, mainly in DLBCLs, and with low BAX expression, also considering separately follicular lymphomas and DLBCLs. Finally, by analyzing overall and progression-free survival in DLBCL patients that underwent rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy, low levels of PATZ1 were significantly associated to a worst outcome and demonstrated an independent prognostic factor in multivariate analysis, including known prognostic factors of DLBCL, IPI score and cell of origin (GCB/non-GCB). Therefore, we propose PATZ1 as a new prognostic marker of DLBCLs, which may act as a tumor suppressor by enhancing apoptosis through inhibiting and enhancing transcription of BCL6 and BAX, respectively.
Pervez A, Riaz SK, Mehmood A, et al.
Expression analysis of human epidermal growth factor receptor type 2 transcripts in breast cancer cohort and its association with clinical features.J Cancer Res Ther. 2016 Apr-Jun; 12(2):1036-9 [
PubMed]
Related Publications
AIM OF STUDY: Increased expression of human epidermal growth factor receptor type 2 (HER2) is significantly associated with poor prognosis in breast cancer patients. However, data on HER2 at transcript levels in Pakistani mammary tumor affected females is still limited. In the current study, HER2 transcripts were explored in breast cancer cohort and correlated with various clinical parameters.
MATERIALS AND METHODS: Freshly excised tumors along with adjacent normal background tissues of 94 patients were collected at the time of surgery and immediately stored in RNAlater ® solution. Clinical data for these samples (disease stage, grade, age, and menopausal status) was also retrieved after a subsequent follow-up. Isolation of RNA and cDNA synthesis was done using an already established protocol. HER2 expression was evaluated using the quantitative real-time polymerase chain reaction (qRT-PCR) technique while β-actin was used as an internal control.
RESULTS: In the given cohort, 31 (33%) patients were found positive for HER2. These tumors showed a pronounced increase in HER2 as compared to controls (P = 0.0004). Interestingly, the significant relevance of high HER2 mRNA among moderately differentiated tumor tissues in comparison to controls was also observed (P = 0.02). A significant association of HER2 levels with premenopausal status was also reported.
CONCLUSION: Based on these findings, early screening of HER2 using qRT-PCR should be incorporated for breast cancer patients of Pakistani population diagnosis.
Lok BH, Gardner EE, Schneeberger VE, et al.
PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer.Clin Cancer Res. 2017; 23(2):523-535 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
PURPOSE: PARP inhibitors (PARPi) are a novel class of small molecule therapeutics for small cell lung cancer (SCLC). Identification of predictors of response would advance our understanding, and guide clinical application, of this therapeutic strategy.
EXPERIMENTAL DESIGN: Efficacy of PARP inhibitors olaparib, rucaparib, and veliparib, as well as etoposide and cisplatin in SCLC cell lines, and gene expression correlates, was analyzed using public datasets. HRD genomic scar scores were calculated from Affymetrix SNP 6.0 arrays. In vitro talazoparib efficacy was measured by cell viability assays. For functional studies, CRISPR/Cas9 and shRNA were used for genomic editing and transcript knockdown, respectively. Protein levels were assessed by immunoblotting and immunohistochemistry (IHC). Quantitative synergy of talazoparib and temozolomide was determined in vitro In vivo efficacy of talazoparib, temozolomide, and the combination was assessed in patient-derived xenograft (PDX) models.
RESULTS: We identified SLFN11, but not HRD genomic scars, as a consistent correlate of response to all three PARPi assessed, with loss of SLFN11 conferring resistance to PARPi. We confirmed these findings in vivo across multiple PDX and defined IHC staining for SLFN11 as a predictor of talazoparib response. As temozolomide has activity in SCLC, we investigated combination therapy with talazoparib and found marked synergy in vitro and efficacy in vivo, which did not solely depend on SLFN11 or MGMT status.
CONCLUSIONS: SLFN11 is a relevant predictive biomarker of sensitivity to PARP inhibitor monotherapy in SCLC and we identify combinatorial therapy with TMZ as a particularly promising therapeutic strategy that warrants further clinical investigation. Clin Cancer Res; 23(2); 523-35. ©2016 AACR.
Wang Y, Sun SN, Liu Q, et al.
Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression.Cancer Discov. 2016; 6(9):1022-35 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
UNLABELLED: In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy.
SIGNIFICANCE: Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932.
Abdulrahman N, Jaballah M, Poomakkoth N, et al.
Inhibition of p90 ribosomal S6 kinase attenuates cell migration and proliferation of the human lung adenocarcinoma through phospho-GSK-3β and osteopontin.Mol Cell Biochem. 2016; 418(1-2):21-9 [
PubMed]
Related Publications
p90 ribosomal S6 kinase (p90RSK) constitutes a family of serine/threonine kinases that have been shown to be involved in cell proliferation of various malignancies via direct or indirect effects on the cell-cycle machinery. We investigated the role of p90RSK in lung adenocarcinomas and whether the inhibition of p90RSK diminishes cancer progression. Moreover, we investigated the involvement of glycogen synthase kinase-3β (GSK-3β) and osteopontin (OPN) in the p90RSK-induced lung adenocarcinoma progression. p90RSK, OPN, and GSK-3β protein expressions were examined in the A549 human lung adenocarcinoma cell line in the presence and absence of BI-D1870 (BID), a p90RSK inhibitor. Gene expression of anti-apoptotic and pro-apoptotic markers namely Bcl2 and Bax, respectively, were studied by reverse transcription polymerase chain reaction. In addition, the A549 lung adenocarcinoma cell line was characterized for cell proliferation using the MTT assay and cell migration using the scratch migration assay. Our study revealed that total RSK1 protein expression is over expressed in the A549 human lung adenocarcinoma cell line, an effect which is significantly reduced upon pretreatment with BID (69.32 ± 12.41 % of control; P < 0.05). The inhibition of p90RSK also showed a significant suppression of cell proliferation (54.3 ± 6.73 % of control; P < 0.01) and cell migration (187.90 ± 16.10 % of control; P < 0.01). Treatment of the A549 cells with BID regressed the expression of Bcl2 mRNA (56.92 ± 6.07 % of control; P < 0.01). BID also regressed protein expression of OPN (79.57 ± 5.32 % of control; P < 0.05) and phospho-GSK-3β (73.04 ± 8.95 % of control; P < 0.05). The p90RSK has an essential role in promoting tumor growth and proliferation in non-small cell lung cancer (NSCLC). BID may serve as an alternative cancer treatment in NSCLC.
Bushey RT, Moody MA, Nicely NL, et al.
A Therapeutic Antibody for Cancer, Derived from Single Human B Cells.Cell Rep. 2016; 15(7):1505-1513 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.
Reznik E, Miller ML, Şenbabaoğlu Y, et al.
Mitochondrial DNA copy number variation across human cancers.Elife. 2016; 5 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities.
Morris LG, Riaz N, Desrichard A, et al.
Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival.Oncotarget. 2016; 7(9):10051-63 [
PubMed] Article available free on
PMC after 15/04/2020
Related Publications
As tumors accumulate genetic alterations, an evolutionary process occurs in which genetically distinct subclonal populations of cells co-exist, resulting in intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly defined. Data are limited with respect to whether ITH is an independent determinant of patient survival outcomes, across different cancer types. Here, we report the results of a pan-cancer analysis of over 3300 tumors, showing a varied landscape of ITH across 9 cancer types. While some gene mutations are subclonal, the majority of driver gene mutations are clonal events, present in nearly all cancer cells. Strikingly, high levels of ITH are associated with poorer survival across diverse types of cancer. The adverse impact of high ITH is independent of other clinical, pathologic and molecular factors. High ITH tends to be associated with lower levels of tumor-infiltrating immune cells, but this association is not able to explain the observed survival differences. Together, these data show that ITH is a prognostic marker in multiple cancers. These results illuminate the natural history of cancer evolution, indicating that tumor heterogeneity represents a significant obstacle to cancer control.