Gene Summary

Gene:AMER1; APC membrane recruitment protein 1
Aliases: WTX, OSCS, FAM123B
Summary:The protein encoded by this gene upregulates trancriptional activation by the Wilms tumor protein and interacts with many other proteins, including CTNNB1, APC, AXIN1, and AXIN2. Defects in this gene are a cause of osteopathia striata with cranial sclerosis (OSCS). [provided by RefSeq, May 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:APC membrane recruitment protein 1
Source:NCBIAccessed: 29 August, 2019

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Wilms Tumour
  • Repressor Proteins
  • Oncogenes
  • MicroRNAs
  • Gene Deletion
  • Nuclear Proteins
  • Microsatellite Instability
  • Gene Expression Profiling
  • AMER1 (WTX)
  • beta Catenin
  • Genetic Predisposition
  • Point Mutation
  • Biomarkers, Tumor
  • Colorectal Cancer
  • Mutation
  • Loss of Heterozygosity
  • DNA Mutational Analysis
  • WT1
  • X Chromosome
  • Single Nucleotide Polymorphism
  • Wnt Proteins
  • Kidney
  • Kidney Cancer
  • Base Sequence
  • Neoplastic Cell Transformation
  • DNA Sequence Analysis
  • Signal Transduction
  • Signal Transducing Adaptor Proteins
  • Cancer Gene Expression Regulation
  • Tumor Suppressor Gene
  • Tumor Suppressor Proteins
  • Cell Line
  • IGF2
  • DNA Methylation
  • Childhood Cancer
  • Wilms Tumor Genes
  • Polymerase Chain Reaction
  • Chromosome X
  • Wnt Signaling Pathway
  • Infant
  • Immunohistochemistry
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AMER1 (cancer-related)

Zhu GF, Xu YW, Li J, et al.
Mir20a/106a-WTX axis regulates RhoGDIa/CDC42 signaling and colon cancer progression.
Nat Commun. 2019; 10(1):112 [PubMed] Free Access to Full Article Related Publications
Wilms tumor gene on the X chromosome (WTX) is a putative tumor suppressor gene in Wilms tumor, but its expression and functions in other tumors are unclear. Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in women and the second leading cause in men in the United States. We demonstrated that WTX frequently lost in CRC which was highly correlated with cell proliferation, tumor invasion and metastasis. Mechanistically, WTX loss disrupts the interaction between RhoGDIα and CDC42 by losing of the binding with RhoGDIα and triggers the activation of CDC42 and its downstream cascades, which promotes CRC development and liver metastasis. The aberrant upregulation of miR-20a/miR-106a were identified as the reason of WTX loss in CRC both in vivo and in vitro. These study defined the mechanism how miR-20a/miR-106a-mediated WTX loss regulates CRC progression and metastasis, and provided a potential therapeutic target for preventing CRC progression.

Armstrong AE, Gadd S, Huff V, et al.
A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children's Oncology Group study.
PLoS One. 2018; 13(12):e0208936 [PubMed] Free Access to Full Article Related Publications
This study explores the genomic alterations that contribute to the formation of a unique subset of low-risk, epithelial differentiated, favorable histology Wilms tumors (WT), tumors that have been characterized by their expression of post-induction renal developmental genes (Subset 1 WT). We demonstrate copy neutral loss of heterozygosity involving 19q13.32-q13.43, unaccompanied by evidence for imprinting by DNA methylation. We further identified loss-of-function somatic mutations in TRIM28 (also known as KAP1), located at 19q13, in 8/9 Subset 1 tumors analyzed. An additional germline TRIM28 mutation was identified in one patient. Retrospective evaluation of previously analyzed WT outside of Subset 1 identified an additional tumor with anaplasia and both TRIM28 and TP53 mutations. A major function of TRIM28 is the repression of endogenous retroviruses early in development. We depleted TRIM28 in HEK293 cells, which resulted in increased expression of endogenous retroviruses, a finding also demonstrated in TRIM28-mutant WT. TRIM28 has been shown by others to be active during early renal development, and to interact with WTX, another gene recurrently mutated in WT. Our findings suggest that inactivation of TRIM28 early in renal development contributes to the formation of this unique subset of FHWTs, although the precise manner in which TRIM28 impacts both normal renal development and oncogenesis remains elusive.

Phelps HM, Al-Jadiry MF, Corbitt NM, et al.
Molecular and epidemiologic characterization of Wilms tumor from Baghdad, Iraq.
World J Pediatr. 2018; 14(6):585-593 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
BACKGROUND: Wilms tumor (WT) is the most common childhood kidney cancer worldwide, yet its incidence and clinical behavior vary according to race and access to adequate healthcare resources. To guide and streamline therapy in the war-torn and resource-constrained city of Baghdad, Iraq, we conducted a first-ever molecular analysis of 20 WT specimens to characterize the biological features of this lethal disease within this challenged population.
METHODS: Next-generation sequencing of ten target genes associated with WT development and treatment resistance (WT1, CTNNB1, WTX, IGF2, CITED1, SIX2, p53, N-MYC, CRABP2, and TOP2A) was completed. Immunohistochemistry was performed for 6 marker proteins of WT (WT1, CTNNB1, NCAM, CITED1, SIX2, and p53). Patient outcomes were compiled.
RESULTS: Mutations were detected in previously described WT "hot spots" (e.g., WT1 and CTNNB1) as well as novel loci that may be unique to the Iraqi population. Immunohistochemistry showed expression domains most typical of blastemal-predominant WT. Remarkably, despite the challenges facing families and care providers, only one child, with combined WT1 and CTNNB1 mutations, was confirmed dead from disease. Median clinical follow-up was 40.5 months (range 6-78 months).
CONCLUSIONS: These data suggest that WT biology within a population of Iraqi children manifests features both similar to and unique from disease variants in other regions of the world. These observations will help to risk stratify WT patients living in this difficult environment to more or less intensive therapies and to focus treatment on cell-specific targets.

Lee DW, Han SW, Kang JK, et al.
Association Between Fusobacterium nucleatum, Pathway Mutation, and Patient Prognosis in Colorectal Cancer.
Ann Surg Oncol. 2018; 25(11):3389-3395 [PubMed] Related Publications
BACKGROUND: There is a close link between Fusobacterium nucleatum and colorectal cancer (CRC) tumorigenesis and chemoresistance. However, the genetic characteristics and clinical significance of CRC related with F. nucleatum remains unclear. This study evaluated the relationship between F. nucleatum, pathway mutation, and patient prognosis.
METHODS: Fusobacterium nucleatum amount in the tumor tissue and adjacent normal tissue were measured by quantitative polymerase chain reaction in adjuvant (N = 128) and metastatic (N = 118) cohorts. Patients were divided into binary (F. nucleatum-high and F. nucleatum-low) according to F. nucleatum amount. Targeted next-generation sequencing of 40 genes included in the 5 critical pathways (WNT, P53, RTK-RAS, PI3 K, and TGF-β) was performed in the adjuvant cohort.
RESULTS: Patients with MSI-H and CIMP-H had higher amount of F. nucleatum in tumor tissue. Fusobacterium nucleatum-high patients had higher rates of transition mutation and C to T (G to A) nucleotide change regardless of MSI status. In addition, mutation rate of AMER1 and ATM genes, and TGF-β pathway was higher in F. nucleatum-high patients. Fusobacterium nucleatum-high was associated with poor overall survival (OS) in the palliative cohort (26.4 vs. 30.7 months, p = 0.042). Multivariate analysis revealed F. nucleatum-high as an independent negative prognostic factor for OS [adjusted hazard ratio of 1.69 (95% confidence interval 1.04-2.75), p = 0.034]. However, F. nucleatum amount was not associated with recurrence in the adjuvant cohort.
CONCLUSIONS: F. nucleatum-high was associated with poor survival in metastatic CRC. In addition, we identified mutational characteristics of colorectal cancer according to F. nucleatum amount.

Sperotto F, Bisogno G, Opocher E, et al.
Osteopathia striata with cranial sclerosis and Wilms tumor: Coincidence or consequence?
Clin Genet. 2017; 92(6):674-675 [PubMed] Related Publications

Gadd S, Huff V, Walz AL, et al.
A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor.
Nat Genet. 2017; 49(10):1487-1494 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.

Thomas LE, Hurley JJ, Meuser E, et al.
Burden and Profile of Somatic Mutation in Duodenal Adenomas from Patients with Familial Adenomatous- and
Clin Cancer Res. 2017; 23(21):6721-6732 [PubMed] Related Publications

Slattery ML, Herrick JS, Mullany LE, et al.
The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer.
Genes Chromosomes Cancer. 2017; 56(11):769-787 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were used. We focus on genes most strongly associated with CRC (fold change (FC) of ≥1.5 or ≤0.67) that were statistically significant after adjustment for multiple comparisons. Of the 74 TSGs evaluated, 22 were associated with carcinoma/normal mucosa differential expression. Ten TSGs were up-regulated (FAM123B, RB1, TP53, RUNX1, MSH2, BRCA1, BRCA2, SOX9, NPM1, and RNF43); six TSGs were down-regulated (PAX5, IZKF1, GATA3, PRDM1, TET2, and CYLD); four were associated with MSI tumors (MLH1, PTCH1, and CEBPA down-regulated and MSH6 up-regulated); and two were associated with MSS tumors (PHF6 and ASXL1 up-regulated). Thirteen of these TSGs were associated with 44 miRNAs. Twenty-seven of the 59 OGs evaluated were dysregulated: 14 down-regulated (KLF4, BCL2, SSETBP1, FGFR2, TSHR, MPL, KIT, PDGFRA, GNA11, GATA2, FGFR3, AR, CSF1R, and JAK3), seven up-regulated (DNMT1, EZH2, PTPN11, SKP2, CCND1, MET, and MYC); three down-regulated for MSI (FLT3, CARD11, and ALK); two up-regulated for MSI (IDH2 and HRAS); and one up-regulated with MSS tumors (CTNNB1). These findings suggest possible co-regulatory function between TSGs, OGs, and miRNAs, involving both direct and indirect associations that operate through feedback and feedforward loops.

Dey N, Krie A, Klein J, et al.
Down's Syndrome and Triple Negative Breast Cancer: A Rare Occurrence of Distinctive Clinical Relationship.
Int J Mol Sci. 2017; 18(6) [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Down's syndrome (DS), the most common genetic cause of significant intellectual disability in children and adults is caused by the trisomy of either all or a part of human chromosome 21 (HSA21). Patients with DS mostly suffer from characteristic tumor types. Although individual patients of DS are at a higher risk for acute leukemia and testicular cancers, other types of solid tumors including breast cancers are mostly uncommon and have significantly lower-than-expected age-adjusted incidence rates. Except for an increased risk of retinoblastomas, and lymphomas, the risk of developing solid tumors has been found to be lower in both children and adults, and breast cancer was found to be almost absent (Hasle H., The Lancet Oncology, 2001). A study conducted in the United States found only one death when 11.65 were expected (Scholl T et al., Dev Med Child Neurol. 1982). A recent study examined mammogram reports of women with DS treated in the largest medical facility specifically serving adults with DS in the United States. It was found that only 0.7% women with DS had been diagnosed with breast cancers (Chicoine B et al., Intellect Dev Disabil. 2015). Here we describe a case of breast cancer in a 25-year-old patient with DS. The disease was presented as lymph node positive carcinoma with alterations of tumor suppressor genes characteristic to the triple negative breast cancer subtype. Comprehensive Genomic Profiling (CGP) revealed a wild-type status for

Viel A, Bruselles A, Meccia E, et al.
A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer.
EBioMedicine. 2017; 20:39-49 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
8-Oxoguanine, a common mutagenic DNA lesion, generates G:C>T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C>T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.

Alexandrescu S, Akhavanfard S, Harris MH, Vargas SO
Clinical, Pathologic, and Genetic Features of Wilms Tumors With WTX Gene Mutation.
Pediatr Dev Pathol. 2017 Mar-Apr; 20(2):105-111 [PubMed] Related Publications
Clinical and pathologic features of patients with WTX-mutated Wilms tumor (WT) have not been studied in detail. We characterize the clinical and pathologic findings in WT with WTX abnormalities and provide comparison with WT without WTX mutation. Clinical, gross, and microscopic features in 35 patients with WT were examined. Karyotype was examined in a subset of cases. All cases had been previously analyzed for WTX, WT1, and CTNNB1 aberrations via array comparative genomic hybridization; OncoMap 4 high throughput genotyping was performed on 18 cases. Eleven tumors had WTX abnormality. No significant differences were identified between patients with mutated versus nonmutated WTX with respect to gender (45% versus 33% male), age (mean 3.9 versus 4.1 years), tumor size (mean 12.7 cm versus 12.8 cm), anaplasia (9% versus 12%), rhabdomyoblastic differentiation (18% versus 8%), cartilage differentiation (9% versus 4%), mucinous epithelial differentiation (9% versus 4%), nephrogenic rests (28% versus 21%), or relapse rate (11% versus 25%). Mutations in KRAS, MYC, and PIK3R1 were restricted to WTX-mutated WT, mutations in AKT, CKDN2A, EFGR, HRAS, MET, and RET were restricted to WT without WTX mutation, and mutations in BRAF, CTTNB1, NRAS, PDGFRA, and STK11 were seen in both groups. Our study revealed no clinical or pathologic distinctions between WT with and without WTX abnormality. This similarity lends support to the concept of a common tumorigenic pathway between WT with aberrant WTX and those without.

Zhang YY, Wang QM, Niu HL, et al.
The General Expression Analysis of WTX Gene in Normal and Cancer Tissues.
Pathol Oncol Res. 2017; 23(2):439-446 [PubMed] Related Publications
WTX (Wilms' tumor suppressor X chromosome) is a novel putative tumor suppressor gene in Wilms' tumor of kidney, its expression and function in other human cancers had not been explored. This study detected the expression of WTX in 459 cases of 15 organs of cancers and adjacent normal tissues by using immunohistochemical staining (IHC), and validated them by in situ hybridization (ISH) and quantitative real-time reverse transcription PCR (qRT-PCR). IHC and ISH data showed that WTX protein was generally expressed in normal tissues, but reduced expression in corresponding cancers. This study demonstrated that WTX downregulation is a common phenomenon in human cancers, WTX might be a general tumor-suppressor gene and biological marker of multiple cancer tissues. Apart from kidney, stomach is another target tissue of WTX gene. The germline and somatic mutations of WTX were screened in 12 gastric cancer patients and identified in one cases (8.3%). Mutation in the WTX gene might be one of the reasons of WTX loss in gastric cancer patients.

Ashktorab H, Mokarram P, Azimi H, et al.
Targeted exome sequencing reveals distinct pathogenic variants in Iranians with colorectal cancer.
Oncotarget. 2017; 8(5):7852-7866 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
PURPOSE: Next Generation Sequencing (NGS) is currently used to establish mutational profiles in many multigene diseases such as colorectal cancer (CRC), which is on the rise in many parts of the developing World including, Iran. Little is known about its genetic hallmarks in these populations.
AIM: To identify variants in 15 CRC-associated genes in patients of Iranian descent.
RESULTS: There were 51 validated variants distributed on 12 genes: 22% MSH3 (n = 11/51), 10% MSH6 (n = 5/51), 8% AMER1 (n = 4/51), 20% APC (n = 10/51), 2% BRAF (n = 1/51), 2% KRAS (n = 1/51), 12% PIK3CA (n = 6/51), 8% TGFβR2A (n = 4/51), 2% SMAD4 (n = 1/51), 4% SOX9 (n = 2/51), 6% TCF7L2 (n = 3/51), and 6% TP53 (n = 3/51). Most known and distinct variants were in mismatch repair genes (MMR, 32%) and APC (20%). Among oncogenes, PIK3CA was the top target (12%).
MATERIALS AND METHODS: CRC specimens from 63 Shirazi patients were used to establish the variant' profile on an Ion Torrent platform by targeted exome sequencing. To rule-out technical artifacts, the variants were validated in 13 of these samples using an Illumina NGS platform. Validated variants were annotated and compared to variants from publically available databases. An in-silico functional analysis was performed. MSI status of the analyzed samples was established.
CONCLUSION: These results illustrate for the first time CRC mutational profile in Iranian patients. MSH3, MSH6, APC and PIK3CA genes seem to play a bigger role in the path to cancer in this population. These findings will potentially lead to informed genetic diagnosis protocol and targeted therapeutic strategies.

Er TK, Su YF, Wu CC, et al.
Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer.
J Mol Med (Berl). 2016; 94(7):835-47 [PubMed] Related Publications
UNLABELLED: Recent molecular and pathological studies suggest that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), especially of the endometrioid and clear cell subtypes. Accordingly, this study had two cardinal aims: first, to obtain mutation profiles of EAOC from Taiwanese patients; and second, to determine whether somatic mutations present in EAOC can be detected in preneoplastic lesions. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from ten endometriosis patients with malignant transformation. Macrodissection was performed to separate four different types of cells from FFPE sections in six patients. The four types of samples included normal endometrium, ectopic endometriotic lesion, atypical endometriosis, and carcinoma. Ultra-deep (>1000×) targeted sequencing was performed on 409 cancer-related genes to identify pathogenic mutations associated with EAOC. The most frequently mutated genes were PIK3CA (6/10) and ARID1A (5/10). Other recurrently mutated genes included ETS1, MLH1, PRKDC (3/10 each), and AMER1, ARID2, BCL11A, CREBBP, ERBB2, EXT1, FANCD2, MSH6, NF1, NOTCH1, NUMA1, PDE4DIP, PPP2R1A, RNF213, and SYNE1 (2/10 each). Importantly, in five of the six patients, identical somatic mutations were detected in atypical endometriosis and tumor lesions. In two patients, genetic alterations were also detected in ectopic endometriotic lesions, indicating the presence of genetic alterations in preneoplastic lesion. Genetic analysis in preneoplastic lesions may help to identify high-risk patients at early stage of malignant transformation and also shed new light on fundamental aspects of the molecular pathogenesis of EAOC.
KEY MESSAGES: Molecular characterization of endometriosis-associated ovarian cancer genes by targeted NGS. Candidate genes predictive of malignant transformation were identified. Chromatin remodeling, PI3K-AKT-mTOR, Notch signaling, and Wnt/β-catenin pathway may promote cell malignant transformation.

Deng C, Dai R, Li X, Liu F
Genetic variation frequencies in Wilms' tumor: A meta-analysis and systematic review.
Cancer Sci. 2016; 107(5):690-9 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Over the last few decades, numerous biomarkers in Wilms' tumor have been confirmed and shown variations in prevalence. Most of these studies were based on small sample sizes. We carried out a meta-analysis of the research published from 1992 to 2015 to obtain more precise and comprehensive outcomes for genetic tests. In the present study, 70 out of 5175 published reports were eligible for the meta-analysis, which was carried out using Stata 12.0 software. Pooled prevalence for gene mutations WT1, WTX, CTNNB1, TP53, MYCN, DROSHA, and DGCR8 was 0.141 (0.104, 0.178), 0.147 (0.110, 0.184), 0.140 (0.100, 0.190), 0.410 (0.214, 0.605), 0.071 (0.041, 0.100), 0.082 (0.048, 0.116), and 0.036 (0.026, 0.046), respectively. Pooled prevalence of loss of heterozygosity at 1p, 11p, 11q, 16q, and 22q was 0.109 (0.084, 0.133), 0.334 (0.295, 0.373), 0.199 (0.146, 0.252), 0.151 (0.129, 0.172), and 0.148 (0.108, 0.189), respectively. Pooled prevalence of 1q and chromosome 12 gain was 0.218 (0.161, 0.275) and 0.273 (0.195, 0.350), respectively. The limited prevalence of currently known genetic alterations in Wilms' tumors indicates that significant drivers of initiation and progression remain to be discovered. Subgroup analyses indicated that ethnicity may be one of the sources of heterogeneity. However, in meta-regression analyses, no study-level characteristics of indicators were found to be significant. In addition, the findings of our sensitivity analysis and possible publication bias remind us to interpret results with caution.

Mur P, Aiza G, Sanz-Pamplona R, et al.
AMER1 Is a Frequently Mutated Gene in Colorectal Cancer--Letter.
Clin Cancer Res. 2015; 21(21):4985 [PubMed] Related Publications

Rashid M, Fischer A, Wilson CH, et al.
Adenoma development in familial adenomatous polyposis and MUTYH-associated polyposis: somatic landscape and driver genes.
J Pathol. 2016; 238(1):98-108 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) are inherited disorders associated with multiple colorectal adenomas that lead to a very high risk of colorectal cancer. The somatic mutations that drive adenoma development in these conditions have not been investigated comprehensively. In this study we performed analysis of paired colorectal adenoma and normal tissue DNA from individuals with FAP or MAP, sequencing 14 adenoma whole exomes (eight MAP, six FAP), 55 adenoma targeted exomes (33 MAP, 22 FAP) and germline DNA from each patient, and a further 63 adenomas by capillary sequencing (41 FAP, 22 MAP). With these data we examined the profile of mutated genes, the mutational signatures and the somatic mutation rates, observing significant diversity in the constellations of mutated driver genes in different adenomas, and loss-of-function mutations in WTX (9%; p < 9.99e-06), a gene implicated in regulation of the WNT pathway and p53 acetylation. These data extend our understanding of the early events in colorectal tumourigenesis in the polyposis syndromes.

Ma W, He L, Liu C, et al.
[Establishment of a colorectal cancer SW620 cell line stably over-expressing Wilm's tumor on X chromosome using a recombinant lentivirus vector].
Nan Fang Yi Ke Da Xue Xue Bao. 2015; 35(8):1122-7 [PubMed] Related Publications
OBJECTIVE: To construct a recombinant lentivirus vector for Wilm's tumor on X chromosome (WTX) gene and establish a colorectal cancer SW620 cell line with stable WTX over-expression.
METHODS: The full length coding region of WTX gene was amplified with PCR, and the amplified fragment was cloned into the lentivirus vector GV387. The recombinant lentivirus vector was transfected in 293T cells for packaging the virus, which was then transfected into colorectal cancer SW620 cells. The stably transfected cells were selected with G418, and the cellular expressions of WTX mRNA and protein were detected using quantitative PCR and Western blotting.
RESULTS: The recombinant plasmid was successfully constructed as verified by sequence analysis. Quantitative PCR and Western blotting results showed that trasnfection with the recombinant lentivirus significantly increased the expression levels of WTX in SW620 cells.
CONCLUSION: We successfully established a colorectal cancer cell lines with stable over-expression of WTX, which provides an essential cell model for studying the role of WTX in the tumorigenesis and progression of colorectal cancer.

Lovvorn HN, Pierce J, Libes J, et al.
Genetic and chromosomal alterations in Kenyan Wilms Tumor.
Genes Chromosomes Cancer. 2015; 54(11):702-15 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Wilms tumor (WT) is the most common childhood kidney cancer worldwide and poses a cancer health disparity to black children of sub-Saharan African ancestry. Although overall survival from WT at 5 years exceeds 90% in developed countries, this pediatric cancer is alarmingly lethal in sub-Saharan Africa and specifically in Kenya (36% survival at 2 years). Although multiple barriers to adequate WT therapy contribute to this dismal outcome, we hypothesized that a uniquely aggressive and treatment-resistant biology compromises survival further. To explore the biologic composition of Kenyan WT (KWT), we completed a next generation sequencing analysis targeting 10 WT-associated genes and evaluated whole-genome copy number variation. The study cohort was comprised of 44 KWT patients and their specimens. Fourteen children are confirmed dead at 2 years and 11 remain lost to follow-up despite multiple tracing attempts. TP53 was mutated most commonly in 11 KWT specimens (25%), CTNNB1 in 10 (23%), MYCN in 8 (18%), AMER1 in 5 (11%), WT1 and TOP2A in 4 (9%), and IGF2 in 3 (7%). Loss of heterozygosity (LOH) at 17p, which covers TP53, was detected in 18% of specimens examined. Copy number gain at 1q, a poor prognostic indicator of WT biology in developed countries, was detected in 32% of KWT analyzed, and 89% of these children are deceased. Similarly, LOH at 11q was detected in 32% of KWT, and 80% of these patients are deceased. From this genomic analysis, KWT biology appears uniquely aggressive and treatment-resistant.

Sanz-Pamplona R, Lopez-Doriga A, Paré-Brunet L, et al.
Exome Sequencing Reveals AMER1 as a Frequently Mutated Gene in Colorectal Cancer.
Clin Cancer Res. 2015; 21(20):4709-18 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
PURPOSE: Somatic mutations occur at early stages of adenoma and accumulate throughout colorectal cancer progression. The aim of this study was to characterize the mutational landscape of stage II tumors and to search for novel recurrent mutations likely implicated in colorectal cancer tumorigenesis.
EXPERIMENTAL DESIGN: The exomic DNA of 42 stage II, microsatellite-stable colon tumors and their paired mucosae were sequenced. Other molecular data available in the discovery dataset [gene expression, methylation, and copy number variations (CNV)] were used to further characterize these tumors. Additional datasets comprising 553 colorectal cancer samples were used to validate the discovered mutations.
RESULTS: As a result, 4,886 somatic single-nucleotide variants (SNV) were found. Almost all SNVs were private changes, with few mutations shared by more than one tumor, thus revealing tumor-specific mutational landscapes. Nevertheless, these diverse mutations converged into common cellular pathways, such as cell cycle or apoptosis. Among this mutational heterogeneity, variants resulting in early stop codons in the AMER1 (also known as FAM123B or WTX) gene emerged as recurrent mutations in colorectal cancer. Losses of AMER1 by other mechanisms apart from mutations such as methylation and copy number aberrations were also found. Tumors lacking this tumor suppressor gene exhibited a mesenchymal phenotype characterized by inhibition of the canonical Wnt pathway.
CONCLUSIONS: In silico and experimental validation in independent datasets confirmed the existence of functional mutations in AMER1 in approximately 10% of analyzed colorectal cancer tumors. Moreover, these tumors exhibited a characteristic phenotype.

Kim WJ, Wittner BS, Amzallag A, et al.
The WTX Tumor Suppressor Interacts with the Transcriptional Corepressor TRIM28.
J Biol Chem. 2015; 290(23):14381-90 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
WTX encodes a tumor suppressor implicated in the pediatric kidney cancer Wilms tumor and in mesenchymal differentiation with potentially distinct functions in the cytoplasm, at the plasma membrane, and in the nucleus. Although modulating components of the WNT signaling pathway is a proposed function for cytoplasmic and membrane-bound WTX, its nuclear properties are not well understood. Here we report that the transcriptional corepressor TRIM28 is the major binding partner for nuclear WTX. WTX interacted with the coiled coil domain of TRIM28 required for its binding to Krüppel-associated box domains of transcription factors and for its chromatin recruitment through its own coiled coil and proline-rich domains. Knockdown of endogenous WTX reduced the recruitment of TRIM28 to a chromatinized reporter sequence and its ability to repress a target transcript. In mouse embryonic stem cells where TRIM28 plays a major role in repressing endogenous retroviruses and long interspersed elements, knockdown of either TRIM28 or WTX combined with single molecule RNA sequencing revealed a highly significant shared set of differentially regulated transcripts, including derepression of non-coding repetitive sequences and their neighboring protein encoding genes (p < 1e-20). In mesenchymal precursor cells, depletion of WTX and TRIM28 resulted in analogous β-catenin-independent defects in adipogenic and osteogenic differentiation, and knockdown of WTX reduced TRIM28 binding to Pparγ promoter. Together, the physical and functional interaction between WTX and TRIM28 suggests that the nuclear fraction of WTX plays a role in epigenetic silencing, an effect that may contribute to its function as a regulator of cellular differentiation and tumorigenesis.

Tian F, Yourek G, Shi X, Yang Y
The development of Wilms tumor: from WT1 and microRNA to animal models.
Biochim Biophys Acta. 2014; 1846(1):180-7 [PubMed] Related Publications
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.

Al-Hussain T, Ali A, Akhtar M
Wilms tumor: an update.
Adv Anat Pathol. 2014; 21(3):166-73 [PubMed] Related Publications
Wilms tumor (WT) is the most common neoplasm of the kidney in children. It is an embryologic tumor that histologically mimics renal embryogenesis and is composed of a variable mixture of stromal, blastemal, and epithelial elements. Nephrogenic rests, generally considered to be precursor lesions of the WT, are foci of the embryonic metanephric tissue that persist after the completion of renal embryogenesis. These are classified as perilobar and intralobar based on their location and maybe present as single or multiple foci. Intralobar and perilobar rests and the tumors arising from these rests differ morphologically and are characterized by 2 different sets of genetic abnormalities involving 2 adjacent foci, WT1 and WT2, on the short arm of chromosome 11. WTs arising in the intralobar rests tend to be stromal predominant and have a mutation or deletion of WT1. Germline mutation in WT1 may be associated with syndromic conditions such as WAGR and Denys-Drash syndromes. Perilobar rests and their corresponding tumors usually have loss of imprinting/loss of heterozygosity involving WT2, which contains several parentally imprinted genes. Loss of function of these genes, if present constitutionally, may be associated with Beckwith-Wiedemann syndrome or may result in isolated hypertrophy. Abnormalities in several other genes may also be seen in WT. These include WTX, (on chromosome X), CTNNB1 (chromosome 3), and TP53 (chromosome 17) among others. WT with loss of heterozygosity at 1p and 16q may have poor prognosis, requiring aggressive therapy. Treatment modalities for WT have evolved over many decades, primarily through the efforts of Dr J Bruce Beckwith at National WT study. This work is now being carried out by Children Oncology Group in North America and International Society of Pediatric Oncology in Europe. Although their therapeutic approaches are somewhat different, both have reported excellent results with equally high cure rates.

Nishida S, Koido S, Takeda Y, et al.
Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer.
J Immunother. 2014 Feb-Mar; 37(2):105-14 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Wilms tumor gene (WT1) protein is an attractive target for cancer immunotherapy. We aimed to investigate the feasibility of a combination therapy consisting of gemcitabine and WT1 peptide-based vaccine for patients with advanced pancreatic cancer and to make initial assessments of its clinical efficacy and immunologic response. Thirty-two HLA-A*24:02 patients with advanced pancreatic cancer were enrolled. Patients received HLA-A*24:02-restricted, modified 9-mer WT1 peptide (3 mg/body) emulsified with Montanide ISA51 adjuvant (WT1 vaccine) intradermally biweekly and gemcitabine (1000 mg/m) on days 1, 8, and 15 of a 28-day cycle. This combination therapy was well tolerated. The frequencies of grade 3-4 adverse events for this combination therapy were similar to those for gemcitabine alone. Objective response rate was 20.0% (6/30 evaluable patients). Median survival time and 1-year survival rate were 8.1 months and 29%, respectively. The association between longer survival and positive delayed-type hypersensitivity to WT1 peptide was statistically significant, and longer survivors featured a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes both before and after treatment. WT1 vaccine in combination with gemcitabine was well tolerated for patients with advanced pancreatic cancer. Delayed-type hypersensitivity-positivity to WT1 peptide and a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes could be useful prognostic markers for survival in the combination therapy with gemcitabine and WT1 vaccine. Further clinical investigation is warranted to determine the effectiveness of this combination therapy.

Fujita A, Ochi N, Fujimaki H, et al.
A novel WTX mutation in a female patient with osteopathia striata with cranial sclerosis and hepatoblastoma.
Am J Med Genet A. 2014; 164A(4):998-1002 [PubMed] Related Publications
Osteopathia striata with cranial sclerosis (OSCS) is an X-linked dominant sclerosing bone dysplasia. Typically affected females show macrocephaly, characteristic facial appearance, cleft palate, mild learning difficulties, hearing loss, sclerosis of the long bones and skull, and longitudinal striations visible on radiographs of the long bones, pelvis and scapulae. Typically affected males usually die at the fetal or early neonatal stage. Because of its variable expressivity, which ranges from asymptomatic to fetal death, clinical diagnosis of OSCS can be difficult. Here, we identify a unique female patient presenting with severe macrocephaly, characteristic facial appearance, developmental delay, and hepatoblastoma. Exome sequencing identified a novel de novo nonsense mutation (c.1045C>T, p.Glu349*) in the WTX gene associated with OSCS. The OSCS diagnosis was confirmed in this patient based on the hallmark appearance of longitudinal striations in long bones when viewed by X-ray. WTX is also known as a tumor suppressor gene, and somatic mutations in that gene have been identified in Wilms tumors. In addition to this patient, although two patients with OSCS have been reported to have colorectal cancer or ovarian cancer, Wilms tumor has never been reported in association with this disorder. Tumor susceptibility in patients with OSCS is discussed.

Brauburger K, Akyildiz S, Ruppert JG, et al.
Adenomatous polyposis coli (APC) membrane recruitment 3, a member of the APC membrane recruitment family of APC-binding proteins, is a positive regulator of Wnt-β-catenin signalling.
FEBS J. 2014; 281(3):787-801 [PubMed] Related Publications
The adenomatous polyposis coli (APC) membrane recruitment (Amer) family proteins Amer1/Wilms tumour gene on the X chromosome and Amer2 are binding partners of the APC tumour suppressor protein, and act as negative regulators in the Wnt signalling cascade. So far, nothing has been known about the third member of the family, Amer3. Here we show that Amer3 binds to the armadillo repeat domain of APC, similarly to Amer1 and Amer2. Amer3 also binds to the Wnt pathway regulator conductin/axin2. Furthermore, we identified Amer1 as binding partner of Amer3. Whereas Amer1 and Amer2 are linked to the plasma membrane by an N-terminal membrane localization domain, Amer3 lacks this domain. Amer3 localizes to the cytoplasm and nucleus of epithelial cells, and this is dependent on specific nuclear import and export sequences. Functionally, exogenous Amer3 enhances the expression of a β-catenin/T-cell factor-dependent reporter gene, and knockdown of endogenous Amer3 reduces Wnt target gene expression in colorectal cancer cells. Thus, Amer3 acts as an activator of Wnt signalling, in contrast to Amer1 and Amer2, which are inhibitors, suggesting a nonredundant role of Amer proteins in the regulation of this pathway. Our data, together with those of previous studies, provide a comprehensive picture of similarities and differences within the Amer protein family.

Akhavanfard S, Vargas SO, Han M, et al.
Inactivation of the tumor suppressor WTX in a subset of pediatric tumors.
Genes Chromosomes Cancer. 2014; 53(1):67-77 [PubMed] Related Publications
WTX is a tumor suppressor gene expressed during embryonic development and inactivated in 20-30% of cases of Wilms tumor, the most common pediatric kidney cancer. WTX has been implicated in several cellular processes including Wnt signaling, WT1 transcription, NRF2 degradation, and p53 function. Given that WTX is widely expressed during embryonic development and has been recently shown to regulate mesenchymal precursor cells in several organs, we tested for the potential involvement of WTX in a panel of pediatric tumors and adult sarcomas. A total of 353 tumors were screened for WTX deletions by fluorescence in situ hybridization (FISH). Discrete somatic WTX deletions were identified in two cases, one hepatoblastoma and one embryonal rhabdomyosarcoma, and confirmed by array comparative genomic hybridization. Direct sequencing of the full WTX open reading frame in 24 hepatoblastomas and 21 embryonal rhabdomyosarcomas did not identify additional mutations in these tumor types. The presence of WTX mRNA was confirmed in hepatoblastomas and embryonal rhabdomyosarcomas without WTX deletions by RNA-in situ hybridization. Notably, tumors with evidence of WTX inactivation, Wilms tumor, hepatoblastoma and rhabdomyosarcoma, are primitive tumors that resemble undifferentiated precursor cells and are linked to overgrowth syndromes. These results indicate that WTX inactivation occurs in a wider variety of tumor types than previously appreciated and point to shared pathogenic mechanisms between a subset of pediatric malignancies.

Liu Y, Liu S
Berberine inhibits Wilms' tumor cell progression through upregulation of Wilms' tumor gene on the X chromosome.
Mol Med Rep. 2013; 8(5):1537-41 [PubMed] Related Publications
Wilms' tumor is a type of kidney cancer that affects young children. Although a number of Wilms' tumor samples have been collected through international trials, the mechanisms underlying its progression remain challenging to determine. Extensive studies have identified somatic mutations at several loci in Wilms' tumorigenesis, including WT1, catenin, Wilms' tumor gene on the X chromosome (WTX) and TP53. Berberine is a benzylisoquinoline alkaloid extracted from numerous types of medicinal plants and has been extensively used as a Chinese traditional medicine. Recently, berberine has been demonstrated to possess antitumoral activities. AMP-activated protein kinase (AMPK) is suggested to be one of the various cellular targets of berberine, which regulates tumor progression and metastasis. However, the specific involvement of berberine‑induced AMPK activation and its effects on the proliferation potential of Wilms' tumor cells remains unknown. The present study investigated the berberine‑induced activation of AMPK and its effects on G401 Wilms' tumor cell proliferation. The results demonstrated that berberine inhibited growth and decreased the expression of cell‑cycle regulators in these cells. At the molecular level, berberine treatment led to a significant increase of WTX expression and G401 cells were protected against berberine‑induced growth inhibition by small interfering RNA against WTX. In conclusion, these results suggest a novel mechanism that may contribute to the antineoplastic effects of berberine which was also demonstrated by recent population studies; however, further studies are required to investigate the potential therapeutic use of berberine in patients with Wilms' tumor.

Liu X, Wang Q, Niu H, et al.
Promoter methylation of Wilms' tumor gene on the X- chromosome in gastric cancer.
Nan Fang Yi Ke Da Xue Xue Bao. 2013; 33(3):318-21 [PubMed] Related Publications
OBJECTIVE: To investigate the changes in methylation levels of the promoters of the tumor suppressor gene Wilms' tumor gene on the X-chromosome (WTX) and its possible role in gastric cancer.
METHODS: WTX promoter methylation levels were detected in 20 pairs of specimens of gastric cancer and matched normal tissues and in 3 gastric cancer cell lines (MGC803, SCG7901, and BGC823) using the Sequenom MassARRAY quantitative analysis system. The gastric cancer cell line BGC823 was treated with 5-aza-2'-deoxycytidine (5-aza-dC) for demethylation and the changes in the level of WTX promoter methylation were investigated.
RESULTS: WTX promoter methylation levels were very low and showed no significant differences among normal gastric tissues, gastric cancer tissues and the 3 gastric cancer cell lines. In BGC823 cells, treatment with 5-aza-dC did not obviously affect the promoter methylation levels of WTX.
CONCLUSION: High methylation levels of WTX promoters are rare in gastric cancer.

Segers H, van den Heuvel-Eibrink MM, de Krijger RR, et al.
Defects in the DNA mismatch repair system do not contribute to the development of childhood wilms tumors.
Pediatr Dev Pathol. 2013 Jan-Feb; 16(1):14-9 [PubMed] Related Publications
Wilms tumor is the most common childhood renal malignancy. Most Wilms tumors occur sporadically, whereas a genetic predisposition is described in 9-19% of the Wilms tumor patients. In addition to constitutional aberrations, somatic aberrations in multiple genetic loci such as WT1, WT2 or locus 11p15.5, CTNNB1, WTX, TP53, FBXW7, and MYCN have also been linked to Wilms tumorigenesis. In sporadic Wilms tumors, however, the driving somatic genetic aberrations need to be further unraveled. Therefore, it is necessary to obtain more insight into other underlying mechanisms. Little is known about the role of defects in the DNA mismatch repair system in the etiology of Wilms tumors. To detect mismatch repair deficiency in a full cohort of Wilms tumor patients, we combined immunohistochemistry for the expression of mismatch repair proteins and microsatellite instability (MSI) analysis by a fluorescent multiplex polymerase chain reaction-based assay. Of the 121 Wilms tumor patients treated between 1987 and 2010 in our institution, 100 samples from 97 patients were available for analysis. Nuclear staining for MLH1, MSH2, MSH6, and PMS2 proteins was present in all 100 Wilms tumor samples. No pattern of MSI was found in any of the 100 investigated Wilms tumor samples. The matching results of normal expression of the mismatch repair proteins detected by immunohistochemistry and the absence of MSI by DNA analysis in 100 Wilms tumor samples lead us to conclude that defects in the DNA mismatch repair system do not play a significant role in the development of Wilms tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. WTX, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999