Gene Summary

Gene:TFF1; trefoil factor 1
Aliases: pS2, BCEI, HPS2, HP1.A, pNR-2, D21S21
Summary:Members of the trefoil family are characterized by having at least one copy of the trefoil motif, a 40-amino acid domain that contains three conserved disulfides. They are stable secretory proteins expressed in gastrointestinal mucosa. Their functions are not defined, but they may protect the mucosa from insults, stabilize the mucus layer, and affect healing of the epithelium. This gene, which is expressed in the gastric mucosa, has also been studied because of its expression in human tumors. This gene and two other related trefoil family member genes are found in a cluster on chromosome 21. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:trefoil factor 1
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transfection
  • Molecular Sequence Data
  • Adenocarcinoma
  • Estrogen Receptors
  • Base Sequence
  • Transcription Factors
  • Estrogens
  • Chromosome 21
  • Thiamine
  • Gene Expression
  • Receptors, Progesterone
  • beta Catenin
  • Mucins
  • Sensitivity and Specificity
  • DNA Methylation
  • Cell Proliferation
  • Tamoxifen
  • Gene Expression Profiling
  • Cancer RNA
  • Messenger RNA
  • Transcription
  • Uteroglobin
  • Stomach Cancer
  • Wound Healing
  • Oligonucleotide Array Sequence Analysis
  • Immunohistochemistry
  • Estrogen Receptor alpha
  • Promoter Regions
  • Hormone-Dependent Cancers
  • Tunisia
  • Neoplasm Proteins
  • Peptides
  • Breast Cancer
  • Proteins
  • Gastric Mucosa
  • Estradiol
  • Biomarkers, Tumor
  • Cancer Gene Expression Regulation
  • TFF1
  • Trefoil Factor-1
  • Validation Studies as Topic
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TFF1 (cancer-related)

Zhang GH, Chen MM, Kai JY, et al.
Molecular profiling of mucinous epithelial ovarian cancer by weighted gene co-expression network analysis.
Gene. 2019; 709:56-64 [PubMed] Related Publications
PURPOSE: In order to identify the molecular characteristics and improve the efficacy of early diagnosis of mucinous epithelial ovarian cancer (mEOC), here, the transcriptome profiling by weighted gene co-expression network analysis (WGCNA) has been proposed as an effective method.
METHODS: The gene expression dataset GSE26193 was reanalyzed with a systematical approach, WGCNA. mEOC-related gene co-expression modules were detected and the functional enrichments of these modules were performed at GO and KEGG terms. Ten hub genes in the mEOC-related modules were validated using two independent datasets GSE44104 and GSE30274.
RESULTS: 11 co-expressed gene modules were identified by WGCNA based on 4917 genes and 99 epithelial ovarian cancer samples. The turquoise module was found to be significantly associated with the subtype of mEOC. KEGG pathway enrichment analysis showed genes in the turquoise module significantly enriched in metabolism of xenobiotics by cytochrome P450 and steroid hormone biosynthesis. Ten hub genes (LIPH, BCAS1, FUT3, ZG16B, PTPRH, SLC4A4, MUC13, TFF1, HNF4G and TFF2) in the turquoise module were validated to be highly expressed in mEOC using two independent gene expression datasets GSE44104 and GSE30274.
CONCLUSION: Our work proposed an applicable framework of molecular characteristics for patients with mEOC, which may help us to obtain a precise and comprehensive understanding on the molecular complexities of mEOC. The hub genes identified in our study, as potential specific biomarkers of mEOC, may be applied in the early diagnosis of mEOC in the future.

Jahan R, Ganguly K, Smith LM, et al.
Trefoil factor(s) and CA19.9: A promising panel for early detection of pancreatic cancer.
EBioMedicine. 2019; 42:375-385 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Trefoil factors (TFF1, TFF2, and TFF3) are small secretory molecules that recently have gained significant attention in multiple studies as an integral component of pancreatic cancer (PC) subtype-specific gene signature. Here, we comprehensively investigated the diagnostic potential of all the member of trefoil family, i.e., TFF1, TFF2, and TFF3 in combination with CA19.9 for detection of PC.
METHODS: Trefoil factors (TFFs) gene expression was analyzed in publicly available cancer genome datasets, followed by assessment of their expression in genetically engineered spontaneous mouse model (GEM) of PC (KrasG12D; Pdx1-Cre (KC)) and in human tissue microarray consisting of normal pancreas adjacent to tumor (NAT), precursor lesions (PanIN), and various pathological grades of PC by immunohistochemistry (IHC). Serum TFFs and CA19.9 levels were evaluated via ELISA in comprehensive sample set (n = 362) comprised of independent training and validation sets each containing benign controls (BC), chronic pancreatitis (CP), and various stages of PC. Univariate and multivariate logistic regression and receiver operating characteristic curves (ROC) were used to examine their diagnostic potential both alone and in combination with CA19.9.
FINDINGS: The publicly available datasets and expression analysis revealed significant increased expression of TFF1, TFF2, and TFF3 in human PanINs and PC tissues. Assessment of KC mouse model also suggested upregulated expression of TFFs in PanIN lesions and early stage of PC. In serum analyses studies, TFF1 and TFF2 were significantly elevated in early stages of PC in comparison to benign and CP control group while significant elevation in TFF3 levels were observed in CP group with no further elevation in its level in early stage PC group. In receiver operating curve (ROC) analyses, combination of TFFs with CA19.9 emerged as promising panel for discriminating early stage of PC (EPC) from BC (AUC
INTERPRETATION: In silico, tissue and serum analyses validated significantly increased level of all TFFs in precursor lesions and early stages of PC. The combination of TFFs enhanced sensitivity and specificity of CA19.9 to discriminate early stage of PC from benign control and chronic pancreatitis groups.

Shi Y, Huang X, Chen G, et al.
miR-632 promotes gastric cancer progression by accelerating angiogenesis in a TFF1-dependent manner.
BMC Cancer. 2019; 19(1):14 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer (GC) is a common malignant disease worldwide. Aberrant miRNAs expression contributes to malignant cells behaviour, and in preclinical research, miRNA targeting has shown potential for improving GC therapy. Our present study demonstrated that miR-632 promotes GC progression in a trefoil factor 1 (TFF1)-dependent manner.
METHODS: We collected GC tissues and serum samples to detect miR-632 expression using real-time PCR. A dual-luciferase reporter assay was used to identify whether miR-632 directly regulates TFF1 expression. Tube formation and endothelial cell recruitment assays were performed with or without miR-632 treatment. Western blot and in situ hybridization assays were performed to detect angiogenesis and endothelial recruitment markers that are affected by miR-632.
RESULTS: Our results showed that miR-632 is highly expressed in GC tissue and serum and negatively associated with TFF1 in GC. miR-632 improves tube formation and endothelial cell recruitment by negatively regulating TFF1 in GC cells. Recombinant TFF1 reversed miR-632-mediated angiogenesis. TFF1 is a target gene of miR-632.
CONCLUSIONS: Our study demonstrated that miR-632 promotes GC progression by accelerating angiogenesis in a TFF1-dependent manner. Targeting of miR-632 may be a potential therapeutic approach for GC patients.

Chen Z, Li Z, Soutto M, et al.
Integrated Analysis of Mouse and Human Gastric Neoplasms Identifies Conserved microRNA Networks in Gastric Carcinogenesis.
Gastroenterology. 2019; 156(4):1127-1139.e8 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND & AIMS: microRNAs (miRNAs) are small noncoding RNAs that bind to the 3' untranslated regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis.
METHODS: We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from patients without evidence of gastric neoplasm (n = 64) and from TFF1-knockout mice (n = 22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28, MKN45, STKM2, and AGS cells), gastric organoids, and mice with xenograft tumors.
RESULTS: We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues compared with nontumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time polymerase chain reaction analyses of neoplastic gastric tissues from mice (n = 39) and 3 independent patient cohorts (n = 332 patients total). We found levels of MIR135B-5p, MIR196B-5p, and MIR92A-5p to be increased in tumor tissues, whereas levels of MIR143-3p, MIR204-5p, and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p, but not control cells, was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors was associated with shorter survival times for patients.
CONCLUSIONS: In an analysis of miRNA profiles of gastric tumors from mice and human patients, we identified a conserved signature associated with the early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.

Huang B, Luo N, Wu X, et al.
The modulatory role of low concentrations of bisphenol A on tamoxifen-induced proliferation and apoptosis in breast cancer cells.
Environ Sci Pollut Res Int. 2019; 26(3):2353-2362 [PubMed] Related Publications
Selective estrogen receptor modulators such as tamoxifen (TAM) significantly reduce the risks of developing estrogen receptor-positive (ER+) breast cancer. Low concentrations (nanomolar range) of bisphenol A (BPA) shows estrogenic effects and further promotes the proliferation of hormone-dependent breast cancer cells. However, whether or not BPA can influence TAM-treatment resistance in breast cancer has not drawn much attention. In the current study, low concentrations of BPA reduced TAM-induced cytotoxicity of MCF-7 cells, which was proved by the suppression of cell apoptosis, transition of cell cycle from G1 to S phase, and upregulation of cyclin D1 and ERα. Simultaneously, the mRNA levels of estrogen-related receptor γ (ERRγ) and its coactivators, peroxisome proliferation-activated receptor γ coactivator-1α (PGC-1α), and PGC-1β, were increased. However, the similar effects were not observed in MDA-MB-231 cells. Our results indicated that low concentrations of BPA decreased the sensitivity of TAM in MCF-7 cells rather than in MDA-MB-231 cells. These different actions likely involved the interaction of relative receptors and coactivators. This study provided a possible support that the exposure of BPA in environmental media may potentially induce TAM resistance to breast cancer treatment.

Pezelj I, Tomašković I, Bolanča Čulo K, et al.
Cost-Benefit Analysis of the Introduction of Mp-Mri Guided Biopsies in Croatia.
Acta Clin Croat. 2018; 57(Suppl 1):46-49 [PubMed] Related Publications
The objective of this study was to determine differential expression of TFF1, TFF2 and TFF3 genes and proteins in breast tumor subtypes. In addition, we investigated the correlation between TFF genes within tumor subgroups, and TFF genes with clinical and pathologic characteristics of the tumor. Study group included 122 patients with surgically removed breast tumors. Samples were investigated using qRT-PCR and immunohistochemistry. TFF1 and TFF3 genes and proteins were expressed in breast tumors, while the levels of TFF2 gene and protein expression were very low or undetectable. TFF1 was significantly more expressed in benign tumors, while TFF3 was more expressed in malignant tumors. Gene and protein expression of both TFF1 and TFF3 was greater in lymph node-negative tumors, hormone positive tumors, tumors with moderate levels of Ki67 expression, and in grade II tumors. A strong positive correlation was found between TFF1 and TFF3 genes, and the expression of both negatively correlated with Ki67 and the level of tumor histologic differentiation. Our results suggest that TFF1 and TFF3, but not TFF2, may have a role in breast tumor pathogenesis and could be used in the assessment of tumor differentiation and malignancy.

Tolušić Levak M, Mihalj M, Koprivčić I, et al.
Differential Expression of TFF Genes and Proteins in Breast Tumors.
Acta Clin Croat. 2018; 57(2):264-277 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
The objective of this study was to determine differential expression of TFF1, TFF2 and TFF3 genes and proteins in breast tumor subtypes. In addition, we investigated the correlation between TFF genes within tumor subgroups, and TFF genes with clinical and pathologic characteristics of the tumor. Study group included 122 patients with surgically removed breast tumors. Samples were investigated using qRT-PCR and immunohistochemistry. TFF1 and TFF3 genes and proteins were expressed in breast tumors, while the levels of TFF2 gene and protein expression were very low or undetectable. TFF1 was significantly more expressed in benign tumors, while TFF3 was more expressed in malignant tumors. Gene and protein expression of both TFF1 and TFF3 was greater in lymph node-negative tumors, hormone positive tumors, tumors with moderate levels of Ki67 expression, and in grade II tumors. A strong positive correlation was found between TFF1 and TFF3 genes, and the expression of both negatively correlated with Ki67 and the level of tumor histologic differentiation. Our results suggest that TFF1 and TFF3, but not TFF2, may have a role in breast tumor pathogenesis and could be used in the assessment of tumor differentiation and malignancy.

Hayashi Y, Yamaguchi J, Kokuryo T, et al.
Loss of trefoil factor 1 inhibits biliary regeneration but accelerates the hepatic differentiation of progenitor cells in mice.
Biochem Biophys Res Commun. 2018; 506(1):12-19 [PubMed] Related Publications
Although the regeneration of the adult liver depends on hepatic progenitor cells (HPCs), many uncertainties regarding hepatic regeneration in the injured liver remain. Trefoil factor family 1 (TFF1), a secretory protein predominantly expressed in the gastrointestinal tract, is responsible for mucosal restitution. Here, we investigated the role of TFF1 in liver regeneration using a mouse model of hepatic injury (choline-deficient ethionine-supplemented diet and carbon tetrachloride administration) and genetically engineered mice (TFF1 knockout (TFF1-/-)). Immunohistochemistry analysis of human liver samples revealed TFF1 expression in the hepatocytes close to ductular reaction and the regenerating biliary epithelium in injured liver. The number of cytokeratin 19 (CK19)-positive bile ducts was significantly decreased in the TFF1-/- mice after liver injury. Notch pathway in the TFF1-/- mice was also downregulated. HPCs in the control mice differentiated into biliary cells (CK19

Kaewlert W, Sakonsinsiri C, Namwat N, et al.
The Importance of CYP19A1 in Estrogen Receptor-Positive Cholangiocarcinoma.
Horm Cancer. 2018; 9(6):408-419 [PubMed] Related Publications
CYP19A1, also called aromatase, is a key enzyme for converting androgens to estrogens of estrogen synthesis. Elevated serum estrogen and high expression levels of estrogen-related proteins are found in cholangiocarcinoma (CCA; bile duct cancer). However, the expression of CYP19A1 in relation to estrogen-related proteins, including estrogen receptors (ERα, ERβ, and GPR30) and an estrogen response protein (TFF1), has never been explored in CCA. In this study, we investigated the expressions of CYP19A1 and estrogen-related proteins in CCA tissues (n = 74; 51 males and 23 females) using immunohistochemistry. The results showed that CYP19A1 was overexpressed in CCA cells compared with that in normal bile duct cells in the adjacent tissues. High expression of CYP19A1 was correlated with the metastatic status of the patients. High CYP19A1 expression was also positively correlated with GPR30 expression. Correlation between high CYP19A1 expression in the tumor tissues and shorter survival time was more prominent in male than in female CCA patients. To elucidate further, the effect of CYP19A1 knockdown on a CCA cell line was examined using a specific siRNA. When CYP19A1 gene expression was suppressed, migration and proliferation activities of CCA cells were significantly reduced. Moreover, the cell proliferation of high CYP19A1-expressing KKU-213 cells was more profoundly suppressed by CYP19A1 inhibitors (exemestane and letrozole) than low CYP19A1-expressing KKU-100 cells. Thus, CYP19A1 promotes CCA progression with aggressive clinical outcomes via increased migration and proliferation activities of cancer cells. CYP19A1 can be a potential chemotherapeutic target for CCA, especially in male patients.

Liu K, Guo J, Liu K, et al.
Integrative analysis reveals distinct subtypes with therapeutic implications in KRAS-mutant lung adenocarcinoma.
EBioMedicine. 2018; 36:196-208 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND: KRAS-mutant lung adenocarcinomas (LUADs) are heterogeneous and frequently occur in smokers. The heterogeneity of KRAS-mutant LUAD has been an obstacle for the drug discovery.
METHODS: We integrated multiplatform datatypes and identified two corresponding subtypes in the patients and cell lines. We further characterized the features of these two subtypes and performed drug screening to identify subtype-specific drugs. Finally, we used the defining features of the KRAS subtypes for drug sensitivity prediction.
FINDINGS: Patient-Subtype 1 (PS1) was characterized by increased smoking-related mutational signature activity, a low tumor-infiltrating lymphocyte (TIL)-associating score and STK11/KEAP1 co-mutations. Patient-Subtype 2 (PS2) was characterized by an increased smoking-related methylation signature activity, a high TIL-associating score and increased KRAS dependency. The cell line subtypes faithfully recapitulated all the patients' features. Drug screening of the two cell line subtypes yielded several potential candidates, such as cytarabine and enzastaurin for Cell-line-Subtype 1 (CS1) and a BTK inhibitor QL-XII-61 for Cell-line-Subtype 2 (CS2). The defining features, such as smoking-related methylation signature, were significantly associated with the sensitivity to several drugs.
INTERPRETATION: The heterogeneity of KRAS-mutant LUAD is associated with smoking-related genomic and epigenomic aberration along with other features such as immunogenicity, KRAS dependency and STK11/KEAP1 co-mutations. These features might be used as biomarkers for drug sensitivity prediction. FUND: This research was funded by the Young Scientists Fund of the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province, China and the Education and Research Foundation for Young Scholars of Education Department of Fujian Province, China.

Alvarez MC, Fernandes J, Michel V, et al.
Effect of Helicobacter pylori Infection on GATA-5 and TFF1 Regulation, Comparison Between Pediatric and Adult Patients.
Dig Dis Sci. 2018; 63(11):2889-2897 [PubMed] Related Publications
BACKGROUND: GATA factors, which constitute a family of transcription regulatory proteins, participate in gastrointestinal development. Trefoil factor 1 (TFF1) plays a crucial role in mucosal defense and healing, and evidence suggests that GATA-5 mediated its regulation. Gastric cancer is a multiple-step process triggered by Helicobacter pylori and is characterized by accumulation of molecular and epigenetic alteration. The aim of this study was to evaluate the effect of H. pylori infection on the regulation of GATA-5 and TFF1 in vitro and in vivo.
RESULTS: Infected cells exhibited upregulation of GATA-5 and TFF1 after 48 h. An increase in GATA-5 and TFF1 mRNA levels was also found in mice samples after 6 and 12 months of infection, respectively. In human samples, we found an association between H. pylori infection and GATA-5 upregulation. In fact, among H. pylori-infected patients, hypermethylation was observed in 45.5% of pediatric samples, in 62.6% of chronic gastritis samples, and in 63% of gastric cancer samples. Regarding TFF1, the expression levels were similar in pediatrics and adults patients, and were independent of H. pylori infection, and the expression of these factors was downregulated in gastric cancer samples. GATA-5 promoter methylation was associated with a decrease in TFF1 mRNA levels.
CONCLUSIONS: Our results suggest that the upregulation of GATA-5 and TFF1 observed in vitro and in vivo may be correlated with a protective effect of the mucosa in response to infection. The epigenetic inactivation of GATA-5 observed in human biopsies from infected patients may suggest that this alteration is an early event occurring in association with H. pylori infection.

Omar OM, Soutto M, Bhat NS, et al.
TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer.
Mol Carcinog. 2018; 57(11):1577-1587 [PubMed] Related Publications
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR, we detected significant overexpression of TIMP1 in the human gastric cancer samples, as compared to normal stomach samples (P < 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice, as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P < 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-α and activation of NF-κB whereas inhibition of NF-κB using BAY11-7082 led to inhibition of NF-κB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence, we showed nuclear localization of NF-κB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-κB and TIMP1. Using EDU assay, as a measure of proliferating cells, we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P < 0.05). In summary, our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-κB and inhibits TIMP1-mediated proliferative potential in gastric cancer.

Liang L, Zeng JH, Qin XG, et al.
Distinguishable Prognostic Signatures of Left- and Right-Sided Colon Cancer: a Study Based on Sequencing Data.
Cell Physiol Biochem. 2018; 48(2):475-490 [PubMed] Related Publications
BACKGROUND/AIMS: Left- and right-sided colon cancers are considered to be two different diseases and have altered outcomes. However, specific molecules to predict the prognosis of left- and right-sided colon cancers are currently lacking.
METHODS: Expression profiling of colon cancer were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) of left- and right-sided colon cancers were compared by DESeq analysis. The prognostic values of DEGs were assessed by univariate and multivariate Cox regression. Prognostic index models of two side colon cancers were conducted with prognostic values genes, respectively. Interaction of DEGs was then analyzed by the protein-protein interaction (PPI). Different biology function of two sides of colon cancer was assessed by Gene Set Enrichment Analysis (GSEA).
RESULTS: A total of 167 DEGs were identified between left- and right-sided colon cancers based on TCGA data. Using univariate COX regression analysis, five genes (PHACTR3, CKMT2, CYP2W1, ERFE, HOXC4) were related to overall survival in left-sided, and eight distinguishable genes (EREG, ERFE, HOXC6, SLC22A31, TFF1, GFI1, ZG16, RASL10B) in right-sided. Further, left-sided prognostic model was established with PHACTR3 and CKMT2 (HR=2.040; 95%CI=1.004-4.145; P=0.049). Distinguishable prognostic signature for right-sided colon cancer was established based on EREG, ERFE, GFI1, and RASL10B (HR=3.530; 95%CI: 1.934-6.444; P< 0.001) in multivariate analysis. PPI analysis of 167 DEGs showed that CCL5, GNG4, GNLY, GZMH, DRD2, and FASLG genes were at the core of interaction network. In GSEA function analysis, four pathways, including antigen processing and presentation, natural killer cell mediated cytotoxicity, intestinal immune network for Iga production, and type I diabetes mellitus, were significantly enriched in the DEGs of the right-sided colon cancer.
CONCLUSIONS: This study constructs a panel of potential prognostic model of left- and right-sided colon cancers, respectively. We also provide molecular biological alterations between left- and right-sided colon cancers.

Romano E, Vllahu M, Bizzarro V, et al.
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism.
Int J Mol Sci. 2018; 19(7) [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between -583 and -212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.

Shao L, Chen Z, Soutto M, et al.
Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer.
FASEB J. 2019; 33(1):264-274 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
Helicobacter pylori infection is a major risk factor for the development of gastric cancer. Aberrant expression of microRNAs is strongly implicated in gastric tumorigenesis; however, their contribution in response to H. pylori infection has not been fully elucidated. In this study, we evaluated the expression of miR-135b-5p and its role in gastric cancer. We describe the overexpression of miR-135b-5p in human gastric cancer tissue samples compared with normal tissue samples. Furthermore, we found that miR-135b-5p is also up-regulated in gastric tumors from the trefoil factor 1-knockout mouse model. Infection with H. pylori induced the expression of miR-135b-5p in the in vitro and in vivo models. miR-135b-5p induction was mediated by NF-κB. Treatment of gastric cancer cells with TNF-α induced miR-135b-5p in a NF-κB-dependent manner. Mechanistically, we found that miR-135b-5p targets Krüppel-like factor 4 (KLF4) and binds to its 3' UTR, leading to reduced KLF4 expression. Functionally, high levels of miR-135b-5p suppress apoptosis and induce cisplatin resistance. Our results uncovered a mechanistic link between H. pylori infection and miR-135b-5p-KLF4, suggesting that targeting miR-135b-5p could be a potential therapeutic approach to circumvent resistance to cisplatin.-Shao, L., Chen, Z., Soutto, M., Zhu, S., Lu, H., Romero-Gallo, J., Peek, R., Zhang, S., El-Rifai, W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer.

Ribas R, Pancholi S, Rani A, et al.
Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer.
Breast Cancer Res. 2018; 20(1):44 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
BACKGROUND: Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER
METHODS: A panel of ER
RESULTS: Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001.
CONCLUSIONS: Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.

Li Z, Deng X, Wu G, et al.
The PI3K and AIB1 interaction is involved in estrogen treated breast cancer cells.
Cell Mol Biol (Noisy-le-grand). 2018; 64(6):65-70 [PubMed] Related Publications
AIB1 was involved in the development and progression of breast cancer. Although it was found that AIB1 could be phosphorylated by some kinases including PI3K, the function of AIB1 and AKT interaction in breast cancer is not well defined. MCF-7 cells were transfected with pERE-Luc AKT and/or AIB1 plasmids, and then ERE luciferase activity in presence or absence of estrogen (E2) were measured. Plasmids containing PTEN and an PI3K inhibitor LY294002 were transfected into or treated cells to identify the interaction of PI3K/AKT and activation of AIB1, and examine their roles in cell cycle regulation. The AKT phosphorylation activity was evaluated by kinase assay using H2B as a substrate. The association between A1B1 and pS2 promoter was detected by the Chromatin Immunoprecipitation (ChIP) assay. AIB1 and AKT in the same complex were detected by Pull-down assay. IGF-1 can increase AIB1 recruitment to PS2 and enhance the ER-dependent transcription activity through the PI3K/AKT pathway. AIB1 associate with AKT to regulate cell cycle. The special relations concerning the AIB1 and AKT may arouse some new viewpoints for potential therapeutic targets in breast cancer.

Zhao H, Wang J, Fang D, et al.
Adiposity Results in Metabolic and Inflammation Differences in Premenopausal and Postmenopausal Women Consistent with the Difference in Breast Cancer Risk.
Horm Cancer. 2018; 9(4):229-239 [PubMed] Related Publications
Obesity is associated with increased risk of breast cancer in postmenopausal but not in premenopausal women. Many factors may be responsible for this difference. The aim of this study was to determine the mechanisms by which the genes related to the AMPK pathway, inflammation, and estrogen actions are affected by adiposity in breast tissue with the objective of identifying differences that may explain the different breast cancer risk in premenopausal and postmenopausal women. Random fine needle aspirates (rFNAs) of breast tissue were collected from 57 premenopausal and 55 postmenopausal women and were classified as normal weight, overweight, or obese. Expression levels of 21 target genes were determined using a TaqMan Low Density Array procedure. Breast tissue estradiol levels were measured by a liquid chromatography-tandem mass spectrometry procedure, and serum estradiol and follicle-stimulating hormone (FSH) were measured by a radioimmunoassay and an enzyme-linked immunosorbent assay, respectively. We found that in postmenopausal women, serum and tissue estradiol levels were increased in those who were overweight, and serum FSH levels were decreased in obese status. Interestingly, RPS6KB1, an AMPK downstream-responsive gene for protein synthesis and cell growth, and estrogen receptor α (encoded by the ESR1 gene) and its target gene GATA3 were significantly decreased in rFNA of premenopausal, obese women. In postmenopausal women, RPS6KB1, ESR1, and GATA3 expression remained unchanged in relation to adiposity. However, prostaglandin-endoperoxide synthase 2 (PTGS2), cyclin D1 (CCND1), and another ESR1 target gene, TFF1, were elevated in rFNA of obese postmenopausal women. Thus, as bodyweight increases, gene expression is indicative of increased proliferation in postmenopausal women but decreased proliferation in premenopausal women. Overall, our data reveal a novel process by which obesity promotes the risk of breast cancer in postmenopausal but not premenopausal women.

Kresovich JK, Gann PH, Erdal S, et al.
Candidate gene DNA methylation associations with breast cancer characteristics and tumor progression.
Epigenomics. 2018; 10(4):367-378 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
AIM: We examined methylation patterns with aggressive tumor phenotypes and investigated demographic, socioeconomic and reproductive predictors of gene methylation.
MATERIALS & METHODS: Pyrosequencing quantified methylation of BRCA1, EGFR, GSTM2, RASSF1, TFF1 and Sat 2. We used quantile regression models to calculate adjusted median methylation values by estrogen and progesterone receptor (ER/PR) status. Bivariate associations between participant characteristics and methylation were examined.
RESULTS: Higher percent methylation of GSTM2 was observed in ER/PR-negative compared with ER/PR-positive tumors in ductal carcinoma in situ (14 vs 2%) and invasive (35 vs 3%) tissue components. Trends in aberrant GSTM2 methylation across tissue components were stronger among ER/PR-negative tumors (p-interaction <0.001). Black women were more likely to have ER/PR-negative tumors (p = 0.01) and show hypermethylation of GSTM2 compared with other women (p = 0.05).
CONCLUSION: GSTM2 promoter hypermethylation may serve as a potential biomarker of aggressive tumor development and a mechanism for ER/PR-negative tumor progression.

Shao L, Chen Z, Peng D, et al.
Methylation of the HOXA10 Promoter Directs miR-196b-5p-Dependent Cell Proliferation and Invasion of Gastric Cancer Cells.
Mol Cancer Res. 2018; 16(4):696-706 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
The cross-talk between epigenetics and miRNA expression plays an important role in human tumorigenesis. Herein, the regulation and role of miR-196b-5p in gastric cancer was investigated. qRT-PCR demonstrated that miR-196b-5p is significantly overexpressed in human gastric cancer tissues (

Gonzaga IM, Soares Lima SC, Nicolau MC, et al.
Clin Epigenetics. 2017; 9:130 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
Background: Esophageal squamous cell carcinoma (ESCC) is one of the 10 most incident cancer types in the world, and it is mainly associated with tobacco and alcohol consumption. ESCC mortality rates stand very close to its incidence, which is a direct consequence of a late diagnosis and an inefficient treatment. Although this scenery is quite alarming, the major molecular alterations that drive this carcinogenesis process remain unclear. We have previously shown through the first ESCC methylome analysis that
Results: Analysis of
Conclusions: This study shows that

Schulten HJ, Bangash M, Karim S, et al.
Comprehensive molecular biomarker identification in breast cancer brain metastases.
J Transl Med. 2017; 15(1):269 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
BACKGROUND: Breast cancer brain metastases (BCBM) develop in about 20-30% of breast cancer (BC) patients. BCBM are associated with dismal prognosis not at least due to lack of valuable molecular therapeutic targets. The aim of the study was to identify new molecular biomarkers and targets in BCBM by using complementary state-of-the-art techniques.
METHODS: We compared array expression profiles of three BCBM with 16 non-brain metastatic BC and 16 primary brain tumors (prBT) using a false discovery rate (FDR) p < 0.05 and fold change (FC) > 2. Biofunctional analysis was conducted on the differentially expressed probe sets. High-density arrays were employed to detect copy number variations (CNVs) and whole exome sequencing (WES) with paired-end reads of 150 bp was utilized to detect gene mutations in the three BCBM.
RESULTS: The top 370 probe sets that were differentially expressed between BCBM and both BC and prBT were in the majority comparably overexpressed in BCBM and included, e.g. the coding genes BCL3, BNIP3, BNIP3P1, BRIP1, CASP14, CDC25A, DMBT1, IDH2, E2F1, MYCN, RAD51, RAD54L, and VDR. A number of small nucleolar RNAs (snoRNAs) were comparably overexpressed in BCBM and included SNORA1, SNORA2A, SNORA9, SNORA10, SNORA22, SNORA24, SNORA30, SNORA37, SNORA38, SNORA52, SNORA71A, SNORA71B, SNORA71C, SNORD13P2, SNORD15A, SNORD34, SNORD35A, SNORD41, SNORD53, and SCARNA22. The top canonical pathway was entitled, role of BRCA1 in DNA damage response. Network analysis revealed key nodes as Akt, ERK1/2, NFkB, and Ras in a predicted activation stage. Downregulated genes in a data set that was shared between BCBM and prBT comprised, e.g. BC cell line invasion markers JUN, MMP3, TFF1, and HAS2. Important cancer genes affected by CNVs included TP53, BRCA1, BRCA2, ERBB2, IDH1, and IDH2. WES detected numerous mutations, some of which affecting BC associated genes as CDH1, HEPACAM, and LOXHD1.
CONCLUSIONS: Using complementary molecular genetic techniques, this study identified shared and unshared molecular events in three highly aberrant BCBM emphasizing the challenge to detect new molecular biomarkers and targets with translational implications. Among new findings with the capacity to gain clinical relevance is the detection of overexpressed snoRNAs known to regulate some critical cellular functions as ribosome biogenesis.

Wang W, Li Z, Wang J, et al.
A functional polymorphism in TFF1 promoter is associated with the risk and prognosis of gastric cancer.
Int J Cancer. 2018; 142(9):1805-1816 [PubMed] Related Publications
Trefoil Factor 1 (TFF1, also named pS2), which serves as the gastrointestinal mucosal protector, is known as gastric-specific tumor suppressor gene. However, the genetic variants of TFF1 are still not well studied. In our study, we aim to explore the effects of tagging single nucleotide polymorphisms (tagSNPs) of TFF1 on risk and prognosis of gastric cancer. Seven tagSNPs of TFF1 gene were first analyzed in the discovery set, which was consisted of 753 cases and 950 cancer-free controls. Then, the validation set (940 cases and 1,042 controls) was used for further evaluation. Moreover, we also tested the relation between these tagSNPs and prognosis of gastric cancer (GC). A series of experiments were performed to investigate the underlying mechanisms. We found that rs3761376 AA in the promoter region of TFF1, could reduce the expression of TFF1 by affecting the binding affinity of estrogen receptor 1 (ESR1, ERα), and thereby increased the risk of GC (1.29, 1.08-1.53). Moreover, the rs3761376 AA genotype was also found associated with worse prognosis among patients receiving 5-FU based chemotherapy after surgery (1.71, 1.18-2.48). Further functional assays demonstrated that TFF1 could increase the chemosensitivity of 5-FU by modulating NF-κB targeted genes. These results identified the effect of rs3761376 on TFF1 expression, which accounted for the correlation with susceptibility and prognosis of GC; and this genetic variant may be a potential biomarker to predict the risk and survival of GC.

Martín-Martín N, Zabala-Letona A, Fernández-Ruiz S, et al.
PPARδ Elicits Ligand-Independent Repression of Trefoil Factor Family to Limit Prostate Cancer Growth.
Cancer Res. 2018; 78(2):399-409 [PubMed] Related Publications
The nuclear receptor PPAR-β/δ (PPARD) has essential roles in fatty acid catabolism and energy homeostasis as well as cell differentiation, inflammation, and metabolism. However, its contributions to tumorigenesis are uncertain and have been disputed. Here, we provide evidence of tumor suppressive activity of PPARD in prostate cancer through a noncanonical and ligand-independent pathway. PPARD was downregulated in prostate cancer specimens. In murine prostate epithelium, PPARD gene deletion resulted in increased cellularity. Genetic modulation of PPARD in human prostate cancer cell lines validated the tumor suppressive activity of this gene

Armartmuntree N, Murata M, Techasen A, et al.
Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis.
Redox Biol. 2018; 14:637-644 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
Early B cell factor 1 (EBF1) is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA) is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156), cholangiocyte (MMNK1) and its oxidative stress-resistant (ox-MMNK1-L) cell lines. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions), tumorigenic properties (cell proliferation, wound healing and cell migration), estrogen responsive gene (TFF1), estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17β-estradiol treatment. Our findings suggest that EBF1 down-regulation via oxidative stress induces stem cell properties, tumorigenic properties and estrogen responses of cholangiocytes leading to CCA genesis with aggressive clinical outcomes.

Park MH, Yun HM, Hwang CJ, et al.
Presenilin Mutation Suppresses Lung Tumorigenesis via Inhibition of Peroxiredoxin 6 Activity and Expression.
Theranostics. 2017; 7(15):3624-3637 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
Some epidemiological studies suggest an inverse correlation between cancer incidence and Alzheimer's disease (AD). In this study, we demonstrated experimental evidences for this inverse relationship. In the co-expression network analysis using the microarray data and GEO profile of gene expression omnibus data analysis, we showed that the expression of peroxiredoxin 6 (PRDX6), a tumor promoting protein was significantly increased in human squamous lung cancer, but decreased in mutant presenilin 2 (PS2) containing AD patient. We also found in animal model that mutant PS2 transgenic mice displayed a reduced incidence of spontaneous and carcinogen-induced lung tumor development compared to wildtype transgenic mice. Agreed with network and GEO profile study, we also revealed that significantly reduced expression of PRDX6 and activity of iPLA2 in these animal models. PS2 mutations increased their interaction with PRDX6, thereby increasing iPLA2 cleavage via increased γ-secretase leading to loss of PRDX6 activity. However, knockdown or inhibition of γ-secretase abolished the inhibitory effect of mutant PSs. Moreover, PS2 mutant skin fibroblasts derived from patients with AD showed diminished iPLA2 activity by the elevated γ-secretase activity. Thus, the present data suggest that PS2 mutations suppress lung tumor development by inhibiting the iPLA2 activity of PRDX6 via a γ-secretase cleavage mechanism and may explain the inverse relationship between cancer and AD incidence.

Bonkhoff H
Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.
Prostate. 2018; 78(1):2-10 [PubMed] Related Publications
BACKGROUND: The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression.
METHODS: Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression.
RESULTS: The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression.
CONCLUSIONS: Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation.

Roszak J, Smok-Pieniążek A, Domeradzka-Gajda K, et al.
Inhibitory effect of silver nanoparticles on proliferation of estrogen-dependent MCF-7/BUS human breast cancer cells induced by butyl paraben or di-n-butyl phthalate.
Toxicol Appl Pharmacol. 2017; 337:12-21 [PubMed] Related Publications
In this study the effect of silver nanoparticles (AgNPs) on proliferation of estrogen receptor (ER)-positive human breast cancer MCF-7/BUS cells was assessed by means of in vitro assay. The cells were exposed in the absence of estrogens to AgNPs alone or in combination with aluminum chloride (AlCl

Busch M, Metz K, Beier M, et al.
Retina. 2018; 38(12):2422-2428 [PubMed] Related Publications
PURPOSE: Correlation of trefoil factor family 1 (TFF1) expression in retinoblastoma tumors with different clinical parameters to evaluate a potential involvement of TFF1 in tumor development and progression.
METHODS: A representative cohort of 59 enucleated eyes from individual patients with retinoblastoma was analyzed for its TFF1 expression profile by immuno staining and real-time PCR. Trefoil factor family 1 expression was correlated with demographics, laterality, tumor-node-metastasis stage, International Classification of Retinoblastoma, tumor differentiation level, and treatment.
RESULTS: According to our analysis, increased TFF1 expression significantly correlates with unilateral tumors diagnosed in older children and with poorly differentiated tumors and higher tumor-node-metastasis stages.
CONCLUSION: This retrospective study reveals that unilateral tumors at a higher clinical tumor-node-metastasis stage and poorly differentiated tumor cells express significantly higher levels of TFF1 than those of differentiated tumors at lower tumor-node-metastasis stages. Besides, TFF1 expression correlates with the age of the patients at the time of tumor diagnosis. Our data indicate that TFF1 expression levels are potentially useful additional markers in the classification of tumor staging and prognosis of patients with retinoblastoma.

Zheng L, Meng X, Li X, et al.
miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer.
FASEB J. 2018; 32(2):588-600 [PubMed] Related Publications
Tamoxifen (TAM) is a major adjuvant therapy for patients who are diagnosed with estrogen receptor-α (ER)-positive breast cancer; however, TAM resistance occurs often during treatment and the underlying mechanism is unclear. Here, we report that miR-125a-3p inhibits ERα transcriptional activity and, thus, ER

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TFF1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999