Gene Summary

Gene:STAR; steroidogenic acute regulatory protein
Aliases: STARD1
Summary:The protein encoded by this gene plays a key role in the acute regulation of steroid hormone synthesis by enhancing the conversion of cholesterol into pregnenolone. This protein permits the cleavage of cholesterol into pregnenolone by mediating the transport of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane. Mutations in this gene are a cause of congenital lipoid adrenal hyperplasia (CLAH), also called lipoid CAH. A pseudogene of this gene is located on chromosome 13. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:steroidogenic acute regulatory protein, mitochondrial
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: STAR (cancer-related)

Wang Z, Yip LY, Lee JHJ, et al.
Methionine is a metabolic dependency of tumor-initiating cells.
Nat Med. 2019; 25(5):825-837 [PubMed] Related Publications
Understanding cellular metabolism holds immense potential for developing new classes of therapeutics that target metabolic pathways in cancer. Metabolic pathways are altered in bulk neoplastic cells in comparison to normal tissues. However, carcinoma cells within tumors are heterogeneous, and tumor-initiating cells (TICs) are important therapeutic targets that have remained metabolically uncharacterized. To understand their metabolic alterations, we performed metabolomics and metabolite tracing analyses, which revealed that TICs have highly elevated methionine cycle activity and transmethylation rates that are driven by MAT2A. High methionine cycle activity causes methionine consumption to far outstrip its regeneration, leading to addiction to exogenous methionine. Pharmacological inhibition of the methionine cycle, even transiently, is sufficient to cripple the tumor-initiating capability of these cells. Methionine cycle flux specifically influences the epigenetic state of cancer cells and drives tumor initiation. Methionine cycle enzymes are also enriched in other tumor types, and MAT2A expression impinges upon the sensitivity of certain cancer cells to therapeutic inhibition.

Sheng Y, Ji Z, Zhao H, et al.
Downregulation of the histone methyltransferase SETD2 promotes imatinib resistance in chronic myeloid leukaemia cells.
Cell Prolif. 2019; 52(4):e12611 [PubMed] Related Publications
OBJECTIVES: Epigenetic modifiers were important players in the development of haematological malignancies and sensitivity to therapy. Mutations of SET domain-containing 2 (SETD2), a methyltransferase that catalyses the trimethylation of histone 3 on lysine 36 (H3K36me3), were found in various myeloid malignancies. However, the detailed mechanisms through which SETD2 confers chronic myeloid leukaemia progression and resistance to therapy targeting on BCR-ABL remain unclear.
MATERIALS AND METHODS: The level of SETD2 in imatinib-sensitive and imatinib-resistant chronic myeloid leukaemia (CML) cells was examined by immunoblotting and quantitative real-time PCR. We analysed CD34
RESULTS: SETD2 was found to act as a tumour suppressor in CML. The novel oncogenic targets MYCN and ERG were shown to be the direct downstream targets of SETD2, where their overexpression induced by SETD2 knockdown caused imatinib insensitivity and leukaemic stem cell enrichment in CML cell lines. Treatment with JIB-04, an inhibitor that restores H3K36me3 levels through blockade of its demethylation, successfully improved the cell imatinib sensitivity and enhanced the chemotherapeutic effect.
CONCLUSIONS: Our study not only emphasizes the regulatory mechanism of SETD2 in CML, but also provides promising therapeutic strategies for overcoming the imatinib resistance in patients with CML.

Ma X, Ning S
Shikimic acid promotes estrogen receptor(ER)-positive breast cancer cells proliferation via activation of NF-κB signaling.
Toxicol Lett. 2019; 312:65-71 [PubMed] Related Publications
Shikimic acid (SA), a widely-known hydroaromatic compound enriched in Bracken fern and Illicium verum (also known as Chinese star anise), increases the risk of gastric and esophageal carcinoma, nevertheless, the influence of SA on breast cancer remains indistinct. Herein we found that, with models in vitro, SA significantly promoted estrogen receptor(ER) positive cells proliferation and NF-κB activation was involved in it. Moreover, our data showed that IκBα, a critically endogenous inhibitor of NF-κB, was repressed. Subsequently, we found increase of miR-300 by SA treatment sand miR-300 could target IκBα mRNA. Additionally, inhibition of miR-300 abrogated the repression of IκBα by SA. As a result, miR-300 was also involved in NF-κB activation and breast cancer cells proliferation promotion due to SA exposure. Taken together, with ER-positive breast cancer cell models in vitro, MCF-7 and T47D, our results implied that SA promoted breast cancer cells proliferation via a miR-300-induced NF-κB dependent pathway controlling cell cycle proteins.

Rodrigues-Junior DM, Tan SS, de Souza Viana L, et al.
A preliminary investigation of circulating extracellular vesicles and biomarker discovery associated with treatment response in head and neck squamous cell carcinoma.
BMC Cancer. 2019; 19(1):373 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is a paucity of plasma-based biomarkers that prospectively segregate the outcome of patients with head and neck squamous-cell carcinoma (HNSCC) treated with chemoradiation therapy (CRT). Plasma extracellular vesicles (EVs) might be an alternative source for discovery of new specific markers present in patients with HNSCC, which could help to re-direct patients to appropriate curative therapies without delay.
METHODS: In order to identify new markers in plasma compartments, Cholerae toxin B chain (CTB) and Annexin V (AV) were used to isolate EVs from pooled plasma samples from patients with locally advanced HNSCC who responded (CR, n = 6) or presented incomplete response (NR, n = 6) to CRT. The crude plasma and EVs cargo were screened by antibody array.
RESULTS: Of the 370 polypeptides detected, 119 proteins were specific to NR patients while 38 were exclusive of the CR subjects. The Gene Set Enrichment Analysis (GSEA) and Search Tool for the Retrieval of Interacting Genes (STRING) database analysis indicated that the content of circulating plasma EVs might have a relevant function for the tumor intercellular communication in the HNSCC patients.
CONCLUSION: This study provides a list of potential markers present in plasma compartments that might contribute to the development of tools for prediction and assessment of CRT response and potentially guide therapeutic decisions in this context.

Chen L, Hu W, Li G, et al.
Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13.
Cell Mol Biol Lett. 2019; 24:20 [PubMed] Free Access to Full Article Related Publications
Background: This study aims to investigate the effects of inhibiting microRNA-9-5p (miR-9-5p) on the expression of StAR-related lipid transfer domain containing 13 (StarD13) and the progress of prostate cancer.
Methods: The mRNA expression levels of miR-9-5p and StarD13 were determined in several prostate cancer cell lines. We chose DU145 and PC-3 cells for further research. The CCK8 assay was used to measure the cell viability. The cell invasion and wound-healing assays were respectively applied to evaluate invasion and migration. The expression of E-cadherin (E-cad), N-cadherin (N-cad) and vimentin were measured via western blot. DU145 and PC-3 cells overexpressing StarD13 were generated to investigate the variation in proliferation, invasion and migration. A luciferase reporter assay was used to identify the target of miR-9-5p.
Results: Our results show that miR-9-5p was highly expressed and StarD13 was suppressed in prostate cancer cells. MiR-9-5p inhibition repressed the cells' viability, invasion and migration. It also increased the expression of E-cad and decreased that of N-cad and vimentin. StarD13 overexpression gave the same results as silencing of miR-9-5p: suppression of cell proliferation, invasion and migration. The bioinformatics analysis predicted StarD13 as a target gene of miR-9-5p. Quantitative RT-PCR, western blot analysis and the dual-luciferase reporter assay were employed to confirm the prediction.
Conclusion: Our results show that miR-9-5p plays a powerful role in the growth, invasion, migration and epithelial-mesenchymal transition (EMT) of prostate cancer cells by regulating StarD13. A therapeutic agent inhibiting miR-9-5p could act as a tumor suppressor for prostate cancer.

Tan AT, Yang N, Lee Krishnamoorthy T, et al.
Use of Expression Profiles of HBV-DNA Integrated Into Genomes of Hepatocellular Carcinoma Cells to Select T Cells for Immunotherapy.
Gastroenterology. 2019; 156(6):1862-1876.e9 [PubMed] Related Publications
BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is often associated with hepatitis B virus (HBV) infection. Cells of most HBV-related HCCs contain HBV-DNA fragments that do not encode entire HBV antigens. We investigated whether these integrated HBV-DNA fragments encode epitopes that are recognized by T cells and whether their presence in HCCs can be used to select HBV-specific T-cell receptors (TCRs) for immunotherapy.
METHODS: HCC cells negative for HBV antigens, based on immunohistochemistry, were analyzed for the presence of HBV messenger RNAs (mRNAs) by real-time polymerase chain reaction, sequencing, and Nanostring approaches. We tested the ability of HBV mRNA-positive HCC cells to generate epitopes that are recognized by T cells using HBV-specific T cells and TCR-like antibodies. We then analyzed HBV gene expression profiles of primary HCCs and metastases from 2 patients with HCC recurrence after liver transplantation. Using the HBV-transcript profiles, we selected, from a library of TCRs previously characterized from patients with self-limited HBV infection, the TCR specific for the HBV epitope encoded by the detected HBV mRNA. Autologous T cells were engineered to express the selected TCRs, through electroporation of mRNA into cells, and these TCR T cells were adoptively transferred to the patients in increasing numbers (1 × 10
RESULTS: HCC cells that did not express whole HBV antigens contained short HBV mRNAs, which encode epitopes that are recognized by and activate HBV-specific T cells. Autologous T cells engineered to express TCRs specific for epitopes expressed from HBV-DNA in patients' metastases were given to 2 patients without notable adverse events. The cells did not affect liver function over a 1-year period. In 1 patient, 5 of 6 pulmonary metastases decreased in volume during the 1-year period of T-cell administration.
CONCLUSIONS: HCC cells contain short segments of integrated HBV-DNA that encodes epitopes that are recognized by and activate T cells. HBV transcriptomes of these cells could be used to engineer T cells for personalized immunotherapy. This approach might be used to treat a wider population of patients with HBV-associated HCC.

Ma Z, Wang YY, Xin HW, et al.
The expanding roles of long non-coding RNAs in the regulation of cancer stem cells.
Int J Biochem Cell Biol. 2019; 108:17-20 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) are a novel class of gene regulators playing multifaceted roles in physiological processes as well as pathological conditions such as cancer. Cancer stem cells (CSCs) are a small subset of tumor cells that constitute the origin and development of various malignant tumors. CSCs have been identified in a wide spectrum of human tumors and could act as a critical link underlying the processes of tumor metastasis and recurrence. Mounting evidence indicates that lncRNAs are aberrantly expressed in diverse CSCs and regulate CSC properties at different molecular levels. Here, we very briefly summarize the recent findings on the potential roles of lncRNAs in regulating various functions of CSCs, and elaborate on how can lncRNAs impact CSC properties via interacting with other macromolecules at the epigenetic, transcriptional, and post-transcriptional levels. This mini-review also highlights the understanding of the modular regulatory principles of lncRNA interactions in CSCs.

Yang R, Xing L, Zheng X, et al.
The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression.
Mol Cancer. 2019; 18(1):4 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In recent years, circular RNAs (circRNAs), a new star of non-coding RNA, have been emerged as vital regulators and gained much attention for involvement of initiation and progression of diverse kinds of human diseases, especially cancer. However, regulatory role, clinical significance and underlying mechanisms of circRNAs in triple-negative breast cancer (TNBC) still remain largely unknown.
METHODS: Here, the expression profile of circRNAs in 4 pairs of TNBC tissues and adjacent non-tumor tissues was analyzed by RNA-sequencing. Quantitative real-time PCR and in situ hybridization were used to determine the level and prognostic values of circAGFG1 in two TNBC cohorts. Then, functional experiments in vitro and in vivo were performed to investigate the effects of circAGFG1 on tumor growth and metastasis in TNBC. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between circAGFG1 and miR-195-5p in TNBC.
RESULTS: We found that circAGFG1 was evidently up-regulated in TNBC, and its level was correlated with clinical stage, pathological grade and poor prognosis of patients with TNBC. The results indicated that circAGFG1 could promote TNBC cell proliferation, mobility and invasion as well as tumorigenesis and metastasis in vivo. Mechanistic analysis showed that circAGFG1 may act as a ceRNA (competing endogenous RNA) of miR-195-5p to relieve the repressive effect of miR-195-5p on its target cyclin E1 (CCNE1).
CONCLUSIONS: Our findings suggest that circAGFG1 promotes TNBC progression through circAGFG1/miR-195-5p/CCNE1 axis and it may serve as a new diagnostic marker or target for treatment of TNBC patients.

Li YM, Liu ZY, Li ZC, et al.
Alterations of the Immunologic Co-Stimulator B7 and TNFR Families Correlate with Hepatocellular Carcinoma Prognosis and Metastasis by Inactivating STAT3.
Int J Mol Sci. 2019; 20(1) [PubMed] Free Access to Full Article Related Publications
Blockade of the immunosuppressive checkpoint receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed death 1 (PD-1) and its cognate ligand, programmed death 1 ligand (PD-L1), has altered the landscape of anti-tumor immunotherapy. B7 family and tumor necrosis factor receptor (TNFR) superfamily play a crucial role in T cell activation, tolerance, and anergy through co-stimulatory and inhibitory signal transduction. Investigating the immune molecular landscapes of the B7 and TNFR families is critical in defining the promising responsive candidates. Herein, we performed comprehensive alteration analysis of the B7 and TNFR family genes across six hepatocellular carcinoma (HCC) datasets with over 1000 patients using cBioPortal TCGA data. About 16% of patients had both B7 and TNFR gene alterations. TNFR gene amplifications were relatively more common (1.73⁻8.82%) than B7 gene amplifications (1.61⁻2.94%). Analysis of 371 sequenced samples revealed that all genes were upregulated: B7 and TNFR mRNA were upregulated in 23% of cases (86/371) and 28% of cases (105/371), respectively. Promoter methylation analysis indicated an epigenetic basis for B7 and TNFR gene regulation. The mRNA levels of B7 and TNFR genes were inversely correlated with promoter methylation status. B7-H6 expression was significantly associated with worse overall survival, and B7-H6 mRNA was increased gradually in cases with gene copy number alterations. B7-H6 overexpression was associated with aggressive clinicopathologic features and poor prognosis in HCC. Downregulation of B7-H6 in HCC cells significantly inhibited cell adhesion, proliferation, migration, and invasion. Knockdown of B7-H6 in HCC cells inhibited tumor growth and metastasis in vivo. B7-H6 promoted HCC metastasis via induction of MMP-9 expression and STAT3 activation. B7-H6 and STAT3 performed functional overlapping roles on enhancing the MMP-9 promoter activity in HCC cells. These results suggest that alterations of the immunologic co-stimulator B7 and TNFR families correlate with HCC metastasis and prognosis, and especially B7-H6 plays a critical role in promoting metastasis of HCC.

Fiscon G, Conte F, Paci P
SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines.
BMC Bioinformatics. 2018; 19(Suppl 15):436 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: It is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to sustain tumor growth. These cells - called cancer stem-like cells - share certain phenotypic characteristics with untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies.
METHODS: Recently, we developed SWIM, a software able to unveil a small pool of genes - called switch genes - critically associated with drastic changes in cell phenotype. Here, we applied SWIM to the expression profiling of glioblastoma stem-like cells and conventional glioma cell lines, in order to identify switch genes related to stem-like phenotype.
RESULTS: SWIM identifies 171 switch genes that are all down-regulated in glioblastoma stem-like cells. This list encompasses genes like CAV1, COL5A1, COL6A3, FLNB, HMMR, ITGA3, ITGA5, MET, SDC1, THBS1, and VEGFC, involved in "ECM-receptor interaction" and "focal adhesion" pathways. The inhibition of switch genes highly correlates with the activation of genes related to neural development and differentiation, such as the 4-core OLIG2, POU3F2, SALL2, SOX2, whose induction has been shown to be sufficient to reprogram differentiated glioblastoma into stem-like cells. Among switch genes, the transcription factor FOSL1 appears as the brightest star since: it is down-regulated in stem-like cells; it highly negatively correlates with the 4-core genes that are all up-regulated in stem-like cells; the promoter regions of the 4-core genes harbor a consensus binding motif for FOSL1.
CONCLUSIONS: We suggest that the inhibition of switch genes in stem-like cells could induce the deregulation of cell communication pathways, contributing to neoplastic progression and tumor invasiveness. Conversely, their activation could restore the physiological equilibrium between cell adhesion and migration, hampering the progression of cancer. Moreover, we posit FOSL1 as promising candidate to orchestrate the differentiation of cancer stem-like cells by repressing the 4-core genes' expression, which severely halts cancer growth and might affect the therapeutic outcome. We suggest FOSL1 as novel putative therapeutic and prognostic biomarker, worthy of further investigation.

Xie Z, Chooi JY, Toh SHM, et al.
MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells.
Leukemia. 2019; 33(3):739-748 [PubMed] Related Publications
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. T(4;14) MM overexpresses multiple myeloma SET domain-containing protein (MMSET). MMSET has three major isoforms: the full-length form MMSET II and the short isoforms REIIBP and MMSET I. Here we show that the short isoform MMSET I is an oncoprotein that promoted cell survival and tumorigenesis in vitro and in vivo. Gene expression array analysis indicated that MMSET I increased glyoxalase I (GLO1) expression. Chromatin immunoprecipitation (ChIP) coupled with qPCR indicated that MMSET I bound upstream of the GLO1 transcription start site. Ectopic overexpression of MMSET I or its mutants showed MMSET I depended on its C terminus to regulate GLO1 expression. GLO1 knockdown (KD) induced apoptosis and reduced colony formation. MMSET I or GLO1 KD reduced the levels of anti-apoptosis factors such as MCL1 and BCL2. Ectopic overexpression of GLO1 resulted in the significant rescue of KMS11 cells from MMSET I KD-induced apoptosis and glycolysis inhibition. This suggested that GLO1 may be of functional importance target downstream of MMSET I. Cumulatively, our study suggests that MMSET I is an oncoprotein and potential therapeutic target for t(4;14) MM.

Mochizuki D, Misawa Y, Kawasaki H, et al.
Aberrant Epigenetic Regulation in Head and Neck Cancer Due to Distinct EZH2 Overexpression and DNA Hypermethylation.
Int J Mol Sci. 2018; 19(12) [PubMed] Free Access to Full Article Related Publications
Enhancer of Zeste homologue 2 (EZH2) overexpression is associated with tumor proliferation, metastasis, and poor prognosis. Targeting and inhibition of EZH2 is a potentially effective therapeutic strategy for head and neck squamous cell carcinoma (HNSCC). We analyzed EZH2 mRNA expression in a well-characterized dataset of 230 (110 original and 120 validation cohorts) human head and neck cancer samples. This study aimed to investigate the effects of inhibiting EZH2, either via RNA interference or via pharmacotherapy, on HNSCC growth. EZH2 upregulation was significantly correlated with recurrence (

Sharma A, Cao EY, Kumar V, et al.
Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy.
Nat Commun. 2018; 9(1):4931 [PubMed] Free Access to Full Article Related Publications
Chemo-resistance is one of the major causes of cancer-related deaths. Here we used single-cell transcriptomics to investigate divergent modes of chemo-resistance in tumor cells. We observed that higher degree of phenotypic intra-tumor heterogeneity (ITH) favors selection of pre-existing drug-resistant cells, whereas phenotypically homogeneous cells engage covert epigenetic mechanisms to trans-differentiate under drug-selection. This adaptation was driven by selection-induced gain of H3K27ac marks on bivalently poised resistance-associated chromatin, and therefore not expressed in the treatment-naïve setting. Mechanistic interrogation of this phenomenon revealed that drug-induced adaptation was acquired upon the loss of stem factor SOX2, and a concomitant gain of SOX9. Strikingly we observed an enrichment of SOX9 at drug-induced H3K27ac sites, suggesting that tumor evolution could be driven by stem cell-switch-mediated epigenetic plasticity. Importantly, JQ1 mediated inhibition of BRD4 could reverse drug-induced adaptation. These results provide mechanistic insights into the modes of therapy-induced cellular plasticity and underscore the use of epigenetic inhibitors in targeting tumor evolution.

Gu Y, Lv F, Xue M, et al.
The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation.
J Exp Clin Cancer Res. 2018; 37(1):258 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neuroblastoma (NB) is the most common pediatric solid tumor that originates from neural crest-derived sympathoadrenal precursor cells that are committed to development of sympathetic nervous system. The well differentiated histological phenotype of NB tumor cells has been reportedly associated with favorable patient outcome. Retinoic acid (RA) can effectively induce NB cell differentiation, thereby being used in the clinic as a treatment agent for inducing the differentiation of high-risk NB. However, the underlying molecular mechanisms of regulating differentiation remain elusive.
METHODS: The correlation between clinical characteristics, survival and the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) expression were assessed using a neuroblastic tumor tissue microarray, and then validated in three independent patient datasets. The different expression of UCHL1 in ganglioneuroblastoma, ganglioneuroma and NB was detected by immunohistochemistry, mass spectra and immunoblotting analysis, and the correlation between UCHL1 expression and the differentiated histology was analyzed, which was also validated in three independent patient datasets. Furthermore, the roles of UCHL1 in NB cell differentiation and proliferation and the underlying mechanisms were studied by using short hairpin RNA and its inhibitor LDN57444 in vitro.
RESULTS: Based on our neuroblastic tumor tissue microarrays and three independent validation datasets (Oberthuer, Versteeg and Seeger), we identified that UCHL1 served as a prognostic marker for better clinical outcome in NB. We further demonstrated that high UCHL1 expression was associated with NB differentiation, indicated by higher UCHL1 expression in ganglioneuroblastomas/ganglioneuromas and well-differentiated NB than poorly differentiated NB, and the positive correlation between UCHL1 and differentiation markers. As expected, inhibiting UCHL1 by knockdown or LDN57444 could significantly inhibit RA-induced neural differentiation of NB tumor cells, characterized by decreased neurite outgrowth and neural differentiation markers. This effect of UCHL1 was associated with positively regulating RA-induced AKT and ERK1/2 signaling activation. What's more, knockdown of UCHL1 conferred resistance to RA-induced growth arrest.
CONCLUSION: Our findings identify a pivotal role of UCHL1 in NB cell differentiation and as a prognostic marker for survival in patients with NB, potentially providing a novel therapeutic target for NB.

Chong PSY, Zhou J, Chooi JY, et al.
Non-canonical activation of β-catenin by PRL-3 phosphatase in acute myeloid leukemia.
Oncogene. 2019; 38(9):1508-1519 [PubMed] Related Publications
Aberrant activation of Wnt/β-catenin signaling pathway is essential for the development of AML; however, the mechanistic basis for this dysregulation is unclear. PRL-3 is an oncogenic phosphatase implicated in the development of LSCs. Here, we identified Leo1 as a direct and specific substrate of PRL-3. Serine-dephosphorylated form of Leo1 binds directly to β-catenin, promoting the nuclear accumulation of β-catenin and transactivation of TCF/LEF downstream target genes such as cyclin D1 and c-myc. Importantly, overexpression of PRL-3 in AML cells displayed enhanced sensitivity towards β-catenin inhibition in vitro and in vivo, suggesting that these cells are addicted to β-catenin signaling. Altogether, our study revealed a novel regulatory role of PRL-3 in the sustenance of aberrant β-catenin signaling in AML. PRL-3 may serve as a biomarker to select for the subset of AML patients who are likely to benefit from treatment with β-catenin inhibitors. Our study presents a new avenue of cancer inhibition driven by PRL-3 overexpression or β-catenin hyperactivation.

Song M, Xia L, Sun M, et al.
Circular RNA in Liver: Health and Diseases.
Adv Exp Med Biol. 2018; 1087:245-257 [PubMed] Related Publications
Circular RNA (circRNA) is an important class of noncoding RNA characterized by covalently closed continuous loop structures. In recent years, the various functions of circRNAs have been continuously documented, including effects on cell proliferation and apoptosis and nutrient metabolism. The liver is the largest solid organ in mammals, and it also performs many functions in the body, which is considered to be the busiest organ in the body. At the same time, the liver is vulnerable to multiple pathogenic factors, causing various acute and chronic liver diseases. The pathogenesis of liver disease is still not fully understood. As a rising star for the past few years, circRNAs have been proven involved in the regulation of liver homeostasis and disease. This chapter will explain the role of circRNAs in liver health and diseases and sort out the confusion in the present study.

Prodduturi N, Bhagwate A, Kocher JA, Sun Z
Indel sensitive and comprehensive variant/mutation detection from RNA sequencing data for precision medicine.
BMC Med Genomics. 2018; 11(Suppl 3):67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RNA-seq is the most commonly used sequencing application. Not only does it measure gene expression but it is also an excellent media to detect important structural variants such as single nucleotide variants (SNVs), insertion/deletion (Indels) or fusion transcripts. However, detection of these variants is challenging and complex from RNA-seq. Here we describe a sensitive and accurate analytical pipeline which detects various mutations at once for translational precision medicine.
METHODS: The pipeline incorporates most sensitive aligners for Indels in RNA-Seq, the best practice for data preprocessing and variant calling, and STAR-fusion is for chimeric transcripts. Variants/mutations are annotated, and key genes can be extracted for further investigation and clinical actions. Three datasets were used to evaluate the performance of the pipeline for SNVs, indels and fusion transcripts.
RESULTS: For the well-defined variants from NA12878 by GIAB project, about 95% and 80% of sensitivities were obtained for SNVs and indels, respectively, in matching RNA-seq. Comparison with other variant specific tools showed good performance of the pipeline. For the lung cancer dataset with 41 known and oncogenic mutations, 39 were detected by the pipeline with STAR aligner and all by the GSNAP aligner. An actionable EML4 and ALK fusion was also detected in one of the tumors, which also demonstrated outlier ALK expression. For 9 fusions spiked-into RNA-seq libraries with different concentrations, the pipeline was able to detect all in unfiltered results although some at very low concentrations may be missed when filtering was applied.
CONCLUSIONS: The new RNA-seq workflow is an accurate and comprehensive mutation profiler from RNA-seq. Key or actionable mutations are reliably detected from RNA-seq, which makes it a practical alternative source for personalized medicine.

Jiang Y, Jiang YY, Xie JJ, et al.
Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression.
Nat Commun. 2018; 9(1):3619 [PubMed] Free Access to Full Article Related Publications
Squamous cell carcinomas (SCCs) are aggressive malignancies. Previous report demonstrated that master transcription factors (TFs) TP63 and SOX2 exhibited overlapping genomic occupancy in SCCs. However, functional consequence of their frequent co-localization at super-enhancers remains incompletely understood. Here, epigenomic profilings of different types of SCCs reveal that TP63 and SOX2 cooperatively and lineage-specifically regulate long non-coding RNA (lncRNA) CCAT1 expression, through activation of its super-enhancers and promoter. Silencing of CCAT1 substantially reduces cellular growth both in vitro and in vivo, phenotyping the effect of inhibiting either TP63 or SOX2. ChIRP analysis shows that CCAT1 forms a complex with TP63 and SOX2, which regulates EGFR expression by binding to the super-enhancers of EGFR, thereby activating both MEK/ERK1/2 and PI3K/AKT signaling pathways. These results together identify a SCC-specific DNA/RNA/protein complex which activates TP63/SOX2-CCAT1-EGFR cascade and promotes SCC tumorigenesis, advancing our understanding of transcription dysregulation in cancer biology mediated by master TFs and super-enhancers.

Zhang Z, Xie Q, He D, et al.
Circular RNA: new star, new hope in cancer.
BMC Cancer. 2018; 18(1):834 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Circular RNAs are a new class of endogenous non-coding RNA that can function as crucial regulators of diverse cellular processes. The diverse types of circular RNAs with varying cytogenetics in cancer have also been reported. Circular RNAs can act as a microRNA sponge or through other mechanisms to regulate gene expression as either tumor inhibitors or accelerators, suggesting that circular RNAs can serve as newly developed biomarkers with clinic implications. Here, we summerized recent advances on circular RNAs in cancer and described a circular RNA network associated with tumorigenesis. The clinical implications of circular RNAs in cancer were also discussed in this paper.
SHORT CONCLUSION: Growing evidence has revealed the crucial regulatory roles of circular RNAs in cancer and the elucidation of functional mechanisms involving circular RNAs would be helpful to construct a circRNA-miRNA-mRNA regulatory network. Moreover, circular RNAs can be easily detected due to their relative stability, widespread expression, and abundance in exosomes, blood and saliva; thus, circular RNAs have potential as new and ideal clinical biomarkers in cancer.

Lan L, Liu H, Smith AR, et al.
Natural product derivative Gossypolone inhibits Musashi family of RNA-binding proteins.
BMC Cancer. 2018; 18(1):809 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively.
METHODS: Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice.
RESULTS: In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10).
CONCLUSION: Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.

Hong JH, Ko YH, Kang K
RNA variant identification discrepancy among splice-aware alignment algorithms.
PLoS One. 2018; 13(8):e0201822 [PubMed] Free Access to Full Article Related Publications
Next-generation sequencing (NGS) techniques have been generating various molecular maps, including transcriptomes via RNA-seq. Although the primary purpose of RNA-seq is to quantify the expression level of known genes, RNA variants are also identifiable. However, care must be taken to account for RNA's dynamic nature. In this study, we evaluated the following popular splice-aware alignment algorithms in the context of RNA variant-calling analysis: HISAT2, STAR, STAR (two-pass mode), Subread, and Subjunc. For this, we performed RNA-seq with ten pieces of invasive ductal carcinoma from breast tissue and three pieces of adjacent normal tissue from a single patient. These RNA-seq data were used to evaluate the performance of splice-aware aligners. Surprisingly, the number of common potential RNA editing sites (pRESs) identified by all alignment algorithms was less than 2% of the total. The main cause of this difference was the mapped reads on the splice junctions. In addition, the RNA quality significantly affected the outcome. Therefore, researchers must consider these experimental and bioinformatic features during RNA variant analysis. Further investigations of common pRESs discovered that BDH1, CCDC137, and TBC1D10A transcripts contained a single non-synonymous RNA variant that was unique to breast cancer tissue compared to adjacent normal tissue; thus, further clinical validation is required.

Xu T, Lin CM, Cheng SQ, et al.
Pathological bases and clinical impact of long noncoding RNAs in prostate cancer: a new budding star.
Mol Cancer. 2018; 17(1):103 [PubMed] Free Access to Full Article Related Publications
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides. Recent advances in the non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack coding protein function, termed non-coding RNA (ncRNA). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNA world. Moreover, accumulating evidence has demonstrated that many lncRNAs are dysregulated in prostate cancer (PC) and closely related to tumorigenesis, metastasis, and prognosis or diagnosis. In this review, we will briefly outline the regulation and functional role of lncRNAs in PC. Finally, we discussed the potential of lncRNAs as prospective novel targets in PC treatment and biomarkers for PC diagnosis.

Zhang F, Li K, Pan M, et al.
miR-589 promotes gastric cancer aggressiveness by a LIFR-PI3K/AKT-c-Jun regulatory feedback loop.
J Exp Clin Cancer Res. 2018; 37(1):152 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: As novel biomarkers for various cancers, microRNAs negatively regulate genes expression via promoting mRNA degradation and suppressing mRNA translation. miR-589 has been reported to be deregulated in several human cancer types. However, its biological role has not been functionally characterized in gastric cancer. Here, we aim to investigate the biological effect of miR-589 on gastric cancer and to reveal the possible mechanism.
METHODS: Real-time PCR was performed to evaluate the expression of miR-589 in 34 paired normal and stomach tumor specimens, as well as gastric cell lines. Functional assays, such as wound healing, transwell assays and in vivo assays, were used to detect the biological effect of miR-589 and LIFR. We determined the role of miR-589 in gastric cancer tumorigenesis in vivo using xenograft nude models. Dual-luciferase report assays and Chromatin immunoprecipitation (ChIP) assay were performed for target evaluation, and the relationships were confirmed by western blot assay.
RESULT: MiR-589 expression was significantly higher in tumor tissues and gastric cancer cells than those in matched normal tissues and gastric epithelial cells, respectively. Clinically, overexpression of miR-589 is associated with tumor metastasis, invasion and poor prognosis of GC patients. Gain- and loss-of function experiments showed that miR-589 promoted cell migration, metastasis and invasion in vitro and lung metastasis in vivo. Mechanistically, we found that miR-589 directly targeted LIFR to activate PI3K/AKT/c-Jun signaling. Meanwhile, c-Jun bound to the promoter region of miR-589 and activated its transcription. Thus miR-589 regulated its expression in a feedback loop that promoted cell migration, metastasis and invasion.
CONCLUSION: Our study identified miR-589, as an oncogene, markedly induced cell metastasis and invasion via an atypical miR-589-LIFR-PI3K/AKT-c-Jun feedback loop, which suggested miR-589 as a potential biomarker and/or therapeutic target for the gastric cancer management.

Fernandes E Silva E, Figueira FS, Cañedo AD, et al.
C-phycocyanin to overcome the multidrug resistance phenotype in human erythroleukemias with or without interaction with ABC transporters.
Biomed Pharmacother. 2018; 106:532-542 [PubMed] Related Publications
The phenotype of multidrug resistance (MDR) is one of the main causes of chemotherapy failure. Our study investigated the effect of C-phycocyanin (C-PC) in three human erythroleukemia cell lines with or without the MDR phenotype: K562 (non-MDR; no overexpression of drug efflux proteins), K562-Lucena (MDR; overexpression of ATP-binding cassette, sub-family B/ABCB1), and FEPS (MDR; overexpression of ABCB1 and ATP-binding cassette, sub-family C/ABCC1). Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed that 20 and 200 μg/mL C-PC decreased K562 viable cells after 24 h and 200 μg/mL C-PC decreased K562-Lucena cell proliferation after 48 h. C-PC did not decrease viable cells of FEPS cells. On the other hand, the MTT assay showed that exposure of 2, 20, and 200 μg/mL C-PC for 24 or 48 h was not cytotoxic to peritoneal macrophages. At 72 h, the trypan blue exclusion assay showed that 20 μg/mL C-PC decreased K562 and K562-Lucena cell proliferation and in FEPS cells, only 200 μg/mL C-PC decreased proliferation. In addition, protein-protein docking showed differences in energy and binding sites of ABCB1 and ABCC1 for C-PC, and these results were confirmed by the efflux protein activity assay. Only ABCC1 activity was altered in the presence of C-PC and FEPS cells showed lower C-PC accumulation, suggesting C-PC extrusion by ABCC1, conferring C-PC resistance. In combination with chemotherapy (vincristine [VCR] and daunorubicin [DNR]), the sensitivity of K562-Lucena cells for C-PC + VCR did not increase, whereas FEPS cell sensitivity for C-PC + DNR was increased. In molecular docking experiments, the estimated free energies of binding for C-PC associated with chemotherapy were similar (VCR: -6.9 kcal/mol and DNR: -7.2 kcal/mol) and these drugs were located within the C-PC cavity. However, C-PC exhibited specificity for tumor cells and K562 cells were more sensitive than K562-Lucena cells, followed by FEPS cells. Thus, C-PC is a possible chemotherapeutic agent for cells with the MDR phenotype, both alone in K562-Lucena cells (resistance due to ABCB1), or in combination with other drugs for cells similar to FEPS (resistance due to ABCC1). Moreover, C-PC did not damage healthy cells (peritoneal macrophages of Mus musculus).

Georgilis A, Klotz S, Hanley CJ, et al.
PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells.
Cancer Cell. 2018; 34(1):85-102.e9 [PubMed] Free Access to Full Article Related Publications
Oncogene-induced senescence is a potent tumor-suppressive response. Paradoxically, senescence also induces an inflammatory secretome that promotes carcinogenesis and age-related pathologies. Consequently, the senescence-associated secretory phenotype (SASP) is a potential therapeutic target. Here, we describe an RNAi screen for SASP regulators. We identified 50 druggable targets whose knockdown suppresses the inflammatory secretome and differentially affects other SASP components. Among the screen candidates was PTBP1. PTBP1 regulates the alternative splicing of genes involved in intracellular trafficking, such as EXOC7, to control the SASP. Inhibition of PTBP1 prevents the pro-tumorigenic effects of the SASP and impairs immune surveillance without increasing the risk of tumorigenesis. In conclusion, our study identifies SASP inhibition as a powerful and safe therapy against inflammation-driven cancer.

Ferraiuolo M, Pulito C, Finch-Edmondson M, et al.
Agave negatively regulates YAP and TAZ transcriptionally and post-translationally in osteosarcoma cell lines.
Cancer Lett. 2018; 433:18-32 [PubMed] Related Publications
Osteosarcoma (OS) is the most aggressive type of primary solid tumor that develops in bone. Whilst conventional chemotherapy can improve survival rates, the outcome for patients with metastatic or recurrent OS remains poor, so novel treatment agents and strategies are required. Research into new anticancer therapies has paved the way for the utilisation of natural compounds as they are typically less expensive and less toxic compared to conventional chemotherapeutics. Previously published works indicate that Agave exhibits anticancer properties, however potential molecular mechanisms remain poorly understood. In the present study, we investigate the anticancer effects of Agave leaf extract in OS cells suggesting that Agave inhibits cell viability, colony formation, and cell migration, and can induce apoptosis in OS cell lines. Moreover, Agave sensitizes OS cells to cisplatin (CDDP) and radiation, to overcome chemo- and radio-resistance. We demonstrate that Agave extract induces a marked decrease of Yes Associated Protein (YAP) and Tafazzin (TAZ) mRNA and protein expression upon treatment. We propose an initial mechanism of action in which Agave induces YAP/TAZ protein degradation, followed by a secondary event whereby Agave inhibits YAP/TAZ transcription, effectively deregulating the Nuclear Factor kappa B (NF-κB) p65:p50 heterodimers responsible for transcriptional induction of YAP and TAZ.

Antony J, Zanini E, Kelly Z, et al.
The tumour suppressor OPCML promotes AXL inactivation by the phosphatase PTPRG in ovarian cancer.
EMBO Rep. 2018; 19(8) [PubMed] Free Access to Full Article Related Publications
In ovarian cancer, the prometastatic RTK AXL promotes motility, invasion and poor prognosis. Here, we show that reduced survival caused by AXL overexpression can be mitigated by the expression of the GPI-anchored tumour suppressor OPCML Further, we demonstrate that AXL directly interacts with OPCML, preferentially so when AXL is activated by its ligand Gas6. As a consequence, AXL accumulates in cholesterol-rich lipid domains, where OPCML resides. Here, phospho-AXL is brought in proximity to the lipid domain-restricted phosphatase PTPRG, which de-phosphorylates the RTK/ligand complex. This prevents AXL-mediated transactivation of other RTKs (cMET and EGFR), thereby inhibiting sustained phospho-ERK signalling, induction of the EMT transcription factor Slug, cell migration and invasion. From a translational perspective, we show that OPCML enhances the effect of the phase II AXL inhibitor R428

Tang YA, Chen YF, Bao Y, et al.
Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer.
Proc Natl Acad Sci U S A. 2018; 115(26):E5990-E5999 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer patients often relapse after chemotherapy, owing to the survival of stem or progenitor cells referred to as cancer stem cells (CSCs). Although tumor stromal factors are known to contribute to chemoresistance, it remains not fully understood how CSCs in the hypoxic tumor microenvironment escape the chemotherapy. Here, we report that hypoxia-inducible factor (HIF-1α) and cancer-associated fibroblasts (CAFs)-secreted TGF-β2 converge to activate the expression of hedgehog transcription factor GLI2 in CSCs, resulting in increased stemness/dedifferentiation and intrinsic resistance to chemotherapy. Genetic or small-molecule inhibitor-based ablation of HIF-1α/TGF-β2-mediated GLI2 signaling effectively reversed the chemoresistance caused by the tumor microenvironment. Importantly, high expression levels of HIF-1α/TGF-β2/GLI2 correlated robustly with the patient relapse following chemotherapy, highlighting a potential biomarker and therapeutic target for chemoresistance in colorectal cancer. Our study thus uncovers a molecular mechanism by which hypoxic colorectal tumor microenvironment promotes cancer cell stemness and resistance to chemotherapy and suggests a potentially targeted treatment approach to mitigating chemoresistance.

Mishra A, Sriram H, Chandarana P, et al.
Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.
Tumour Biol. 2018; 40(5):1010428318780859 [PubMed] Related Publications
The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44

Assah E, Goh W, Zheng XT, et al.
Rapid colorimetric detection of p53 protein function using DNA-gold nanoconjugates with applications for drug discovery and cancer diagnostics.
Colloids Surf B Biointerfaces. 2018; 169:214-221 [PubMed] Related Publications
The tumor suppressor protein p53 plays a central role in preventing cancer through interaction with DNA response elements (REs) to regulate target gene expression in cells. Due to its significance in cancer biology, relentless efforts have been directed toward understanding p53-DNA interactions for the development of cancer therapeutics and diagnostics. In this paper, we report a rapid, label-free and versatile colorimetric assay to detect wildtype p53 DNA-binding function in complex solutions. The assay design is based on a concept that alters interparticle-distances between RE-AuNPs from a crosslinking effect induced through tetramerization of wildtype p53 protein (p53-WT) upon binding to canonical DNA motifs modified on gold nanoparticles (RE-AuNPs). This leads to a visible solution color change from red to blue, which is quantifiable by the UV- visible absorption spectra with a detection limit of 5 nM. Contrastingly, no color change was observed for the binding-deficient p53 mutants and non-specific proteins due to their inability to crosslink RE-AuNPs. Based on this sensing principle, we further demonstrate its utility for fast detection of drug-induced DNA binding function to cancer-associated Y220C mutant p53 protein using well-established reactivating compounds. By exploiting the dominant-negative property of mutant p53 over p53-WT and interactions with RE-AuNPs, this assay is configurable to detect low numbers of mutant p53 expressing cells in miniscule sample fractions obtained from typical core needle biopsy-sized tissues without signal attrition, alluding to the potential for biopsy sampling in cancer diagnostics or for defining cancer margins. This nanogold enabled colorimetric assay provides a facile yet robust method for studying important parameters influencing p53-DNA interactions with great promises for clinically pertinent applications.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. STAR, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999