Gene Summary

Gene:MSI2; musashi RNA binding protein 2
Aliases: MSI2H
Summary:This gene encodes an RNA-binding protein that is a member of the Musashi protein family. The encoded protein is transcriptional regulator that targets genes involved in development and cell cycle regulation. Mutations in this gene are associated with poor prognosis in certain types of cancers. This gene has also been shown to be rearranged in certain cancer cells. [provided by RefSeq, Apr 2016]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:RNA-binding protein Musashi homolog 2
Source:NCBIAccessed: 30 August, 2019


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • RNA-Binding Proteins
  • Gene Expression Profiling
  • Bladder Cancer
  • Chromosome 17
  • Acute Myeloid Leukaemia
  • MSI2
  • Leukemic Gene Expression Regulation
  • Apoptosis
  • Cancer Stem Cells
  • Base Sequence
  • Case-Control Studies
  • Biomarkers, Tumor
  • Stomach Cancer
  • Leukaemia
  • Chronic Myelogenous Leukemia
  • Transfection
  • Neoplastic Cell Transformation
  • Neoplasm Invasiveness
  • Young Adult
  • Gene Expression Regulation
  • Fusion Proteins, bcr-abl
  • Cell Proliferation
  • fms-Like Tyrosine Kinase 3
  • Messenger RNA
  • Mutation
  • MicroRNAs
  • Survival Rate
  • Nerve Tissue Proteins
  • Signal Transduction
  • Biological Models
  • Up-Regulation
  • Cancer Gene Expression Regulation
  • Oncogene Fusion Proteins
  • Disease Progression
  • Transcriptome
  • Xenograft Models
  • Cell Movement
  • Staging
  • Adolescents
  • Sequence Analysis, RNA
  • Stem Cells
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MSI2 (cancer-related)

Minuesa G, Albanese SK, Xie W, et al.
Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia.
Nat Commun. 2019; 10(1):2691 [PubMed] Free Access to Full Article Related Publications
The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.

Tsujino T, Sugito N, Taniguchi K, et al.
MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer.
Cancer Sci. 2019; 110(7):2189-2199 [PubMed] Free Access to Full Article Related Publications
It has been well established that microRNA (miR)-143 is downregulated in human bladder cancer (BC). Recent precision medicine has shown that mutations in BC are frequently observed in FGFR3, RAS and PIK3CA genes, all of which correlate with RAS signaling networks. We have previously shown that miR-143 suppresses cell growth by inhibiting RAS signaling networks in several cancers including BC. In the present study, we showed that synthetic miR-143 negatively regulated the RNA-binding protein Musashi-2 (MSI2) in BC cell lines. MSI2 is an RNA-binding protein that regulates the stability of certain mRNAs and their translation by binding to the target sequences of the mRNAs. Of note, the present study clarified that MSI2 positively regulated KRAS expression through directly binding to the target sequence of KRAS mRNA and promoting its translation, thus contributing to the maintenance of KRAS expression. Thus, miR-143 silenced KRAS and MSI2, which further downregulated KRAS expression through perturbation of the MSI2/KRAS cascade.

Duggimpudi S, Kloetgen A, Maney SK, et al.
Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2's RNA-binding activity on IL-6 signaling.
J Biol Chem. 2018; 293(40):15359-15369 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
The RNA-binding protein Musashi 2 (MSI2) has emerged as an important regulator in cancer initiation, progression, and drug resistance. Translocations and deregulation of the

Lan L, Liu H, Smith AR, et al.
Natural product derivative Gossypolone inhibits Musashi family of RNA-binding proteins.
BMC Cancer. 2018; 18(1):809 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
BACKGROUND: The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively.
METHODS: Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice.
RESULTS: In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10).
CONCLUSION: Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.

Nair RM, Balla MM, Khan I, et al.
In vitro characterization of CD133
BMC Cancer. 2017; 17(1):779 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
BACKGROUND: Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC
METHODS: The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133
RESULTS: Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133
CONCLUSIONS: This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133

Abdalla M, Tran-Thanh D, Moreno J, et al.
Mapping genomic and transcriptomic alterations spatially in epithelial cells adjacent to human breast carcinoma.
Nat Commun. 2017; 8(1):1245 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development.

Dong P, Xiong Y, Hanley SJB, et al.
Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation.
J Exp Clin Cancer Res. 2017; 36(1):150 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
BACKGROUND: Although previous studies have shown promise for targeting Musashi RNA-binding protein 2 (MSI-2) in diverse tumors, the role and mechanism of MSI-2 for cervical cancer (CC) progression and the regulation of MSI-2 expression remains unclear.
METHODS: Using gene expression and bioinformatic analysis, together with gain- and loss-of-function assays, we identified MSI-2 as a novel oncogenic driver and a poor prognostic marker in CC. We explored the regulation of c-FOS by MSI-2 via RNA-immunoprecipitation and luciferase assay, and confirmed a direct inhibition of MSI-2 by miR-143/miR-107 using luciferase assay. We assessed the effect of a natural antibiotic Mithramycin A on p53, miR-143/miR-107 and MSI-2 expression in CC cells.
RESULTS: MSI-2 mRNA is highly expressed in CC tissues and its overexpression correlates with lower overall survival. MSI-2 promotes CC cell growth, invasiveness and sphere formation through directly binding to c-FOS mRNA and by increasing c-FOS protein expression. Furthermore, miR-143/miR-107 are two tumor suppressor miRNAs that directly bind and inhibit MSI-2 expression in CC cells, and downregulation of miR-143/miR-107 associates with poor patient prognosis. Importantly, we found that p53 decreases the expression of MSI-2 through elevating miR-143/miR-107 levels, and treatment with a natural antibiotic Mithramycin A increased p53 and miR-143/miR-107 expression and reduced MSI-2 expression, resulting in the inhibition of CC cell proliferation, invasion and sphere formation.
CONCLUSIONS: These results suggest that MSI-2 plays a crucial role in promoting the aggressive phenotypes of CC cells, and restoration of miR-143/miR-107 by Mithramycin A via activation of p53 may represent a novel therapeutic approach for CC.

Li Z, Jin H, Mao G, et al.
Msi2 plays a carcinogenic role in esophageal squamous cell carcinoma via regulation of the Wnt/β-catenin and Hedgehog signaling pathways.
Exp Cell Res. 2017; 361(1):170-177 [PubMed] Related Publications
Msi2 has been widely reported to be upregulated and strongly associated with fast progress and poor prognosis in many cancers. However, the expression and role of Msi2 in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we found that Msi2 was upregulated in ESCC clinical samples, and was significantly associated with tumor size, differentiation status, and lymph node metastasis in ESCC patients. Multivariate Cox regression analysis showed that Msi2 was an independent predictor for disease-free survival (DFS) and overall survival (OS). Moreover, knockdown of Msi2 impaired ESCC cell proliferation, epithelial-mesenchymal transition (EMT) and migration, while overexpression of Msi2 promoted ESCC cell proliferation, EMT and migration in vitro. Animal experiments also confirmed that Msi2 promoted ESCC cell proliferation in vivo. Mechanistically, Msi2 promoted ESCC cell proliferation, EMT and migration via regulation of the Wnt/β-catenin and Hedgehog (Hh) signaling pathways. Taken together, our study suggested that Msi2 could serve as a candidate for diagnosis and prognosis and as a potential therapeutic target in ESCC.

Kharas MG, Lengner CJ
Stem Cells, Cancer, and MUSASHI in Blood and Guts.
Trends Cancer. 2017; 3(5):347-356 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
The mammalian MSI family of RNA-binding proteins (RBPs) have important roles as oncoproteins in an array of tumor types, including leukemias, glioblastomas, and pancreatic, breast, lung, and colorectal cancers. The mammalian Msi genes, Msi1 and Msi2, have been most thoroughly investigated in two highly proliferative tissues prone to oncogenic transformation: the hematopoietic lineage and the intestinal epithelium. Despite their vast phenotypic differences, MSI proteins appear to have an analogous role in governing the stem cell compartment in both of these tissues, potentially providing a paradigm for a broader understanding of MSI function and oncogenic activities. In this review, we focus on the function of MSI in the blood and the intestine, and discuss therapeutic strategies for targeting this pathway.

Hattori A, Tsunoda M, Konuma T, et al.
Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.
Nature. 2017; 545(7655):500-504 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.

Vu LP, Prieto C, Amin EM, et al.
Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells.
Nat Genet. 2017; 49(6):866-875 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
The identity of the RNA-binding proteins (RBPs) that govern cancer stem cells remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomic analysis of the MSI2-interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia. Syncrip was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP-depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation, and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. Altogether, our data identify SYNCRIP as a new RBP that controls the myeloid leukemia stem cell program. We propose that targeting these RBP complexes might provide a novel therapeutic strategy in leukemia.

Sheng W, Dong M, Chen C, et al.
Cooperation of Musashi-2, Numb, MDM2, and P53 in drug resistance and malignant biology of pancreatic cancer.
FASEB J. 2017; 31(6):2429-2438 [PubMed] Related Publications
Our earlier work showed that Musashi (MSI)-2 promoted the development of pancreatic cancer (PC) by down-regulating Numb, which prevented murine double-minute (MDM)-2-mediated p53 ubiquitin degradation. Thus, we investigate the relationship among MSI2, Numb, MDM2, and p53 in PC

Kudinov AE, Karanicolas J, Golemis EA, Boumber Y
Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets.
Clin Cancer Res. 2017; 23(9):2143-2153 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in

Hattori A, McSkimming D, Kannan N, Ito T
RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia.
Leuk Res. 2017; 54:47-54 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
FLT3 is frequently mutated and overexpressed in acute myelogenous leukemia (AML) and other hematologic malignancies. Although signaling events downstream of FLT3 receptor tyrosine kinase have been studied in depth, molecular mechanisms of how FLT3 expression is regulated at the post-transcriptional level in particular remain elusive. In this study, we investigated the roles of an RNA binding protein MSI2 as a regulator of FLT3 expression. MSI2 and FLT3 are significantly co-regulated in human AML and chronic myelogenous leukemia in blast crisis (BC-CML). Genetic loss of MSI2 leads to down-regulation of the FLT3 receptor in both AML and BC-CML cells and concomitant impairment of clonogenic growth potential. Furthermore, we demonstrate that MSI2 protein is physically bound to FLT3 mRNA transcripts, suggesting post-transcriptional control of FLT3 expression. Collectively, these results reveal a novel mode of FLT3 regulation essential for leukemia growth, which may aid in designing a targeted therapy to treat human myeloid leukemia.

Choi YM, Kim KB, Lee JH, et al.
DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer.
Oncogene. 2017; 36(20):2802-2812 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
The gene encoding 'deleted in breast cancer 2' (DBC2), also referred to as RHOBTB2 (Rho-related BTB domain-containing protein 2), is classified as a tumor suppressor gene. DBC2 is a substrate-specific adaptor protein for a novel class of Cullin-3 (CUL3)-based E3 ubiquitin ligases; however, it is unclear if the substrate adaptor function of DBC2 is required for its tumor suppressor activity. Furthermore, the key substrates of DBC2-mediated ubiquitination have yet to be identified. In the present study, we established a genome-wide human cDNA library-based in vitro ubiquitination target screening assay and identified Musashi-2 (MSI2) as a novel ubiquitination target protein of DBC2. MSI2 directly interacted with DBC2, and this interaction promoted MSI2 polyubiquitination and proteasomal degradation in breast cancer cells. Overexpression and knockdown experiments demonstrated that DBC2 suppressed MSI2-associated oncogenic functions and induced apoptosis. Immunohistochemistry analysis of a breast cancer tissue microarray revealed that DBC2 and MSI2 protein levels are inversely correlated in both normal breast tissues and breast cancer tissues. Taken together, these findings provide evidence that DBC2 suppresses tumorigenesis in breast cancer by ubiquitinating MSI2.

Fernández-Martínez JL, deAndrés-Galiana EJ, Sonis ST
Genomic data integration in chronic lymphocytic leukemia.
J Gene Med. 2017; 19(1-2) [PubMed] Related Publications
BACKGROUND: B-cell chronic lymphocytic leukemia (CLL) is a heterogeneous disease and the most common adult leukemia in western countries. IgVH mutational status distinguishes two major types of CLL, each associated with a different prognosis and survival. Sequencing identified NOTCH1 and SF3B1 as the two main recurrent mutations. We described a novel method to clarify how these mutations affect gene expression by finding small-scale signatures that predict the IgVH, NOTCH1 and SF3B1 mutations. We subsequently defined the biological pathways and correlation networks involved in disease development, with the potential goal of identifying new drugable targets.
METHODS: We modeled a microarray dataset consisting of 48807 probes derived from 163 samples. The use of Fisher's ratio and fold change combined with feature elimination allowed us to identify the minimum number of genes with the highest predictive mutation power and, subsequently, we applied network and pathway analyses of these genes to identify their biological roles.
RESULTS: The mutational status of the patients was accurately predicted (94-99%) using small-scale gene signatures: 13 genes for IgVH, 60 for NOTCH1 and 22 for SF3B1. LPL plays an important role in the case of the IgVH mutation, whereas MSI2, LTK, TFEC and CNTAP2 are involved in the NOTCH1 mutation, and RPL32 and PLAGL1 are involved in the SF3B1 mutation. Four high discriminatory genes (IGHG1, MYBL1, NRIP1 and RGS1) are common to these three mutations. The IL-4-mediated signaling events pathway appears to be involved as a common mechanism and suggests an important role of the immune response mechanisms and antigen presentation.
CONCLUSIONS: This retrospective analysis served to provide a deeper understanding of the effects of the different mutations in CLL disease progression, with the expectation that these findings will be clinically applied in the near future to the development of new drugs.

Fang T, Lv H, Wu F, et al.
Musashi 2 contributes to the stemness and chemoresistance of liver cancer stem cells via LIN28A activation.
Cancer Lett. 2017; 384:50-59 [PubMed] Related Publications
Accumulating evidence suggests that cancer stem cells (CSCs), a small subset of cancer cells, are responsible for tumor initiation, progression, relapse and metastasis. Musashi 2 (MSI2), a RNA-binding protein, was proposed to be a potent oncogene playing key roles in myeloid leukemia and gastrointestinal malignancies. However, it remains elusive how MSI2 regulates stem cell features in HCC. Herein, we demonstrated that MSI2 was highly expressed in liver CSCs. Overexpression or knockdown of MSI2 altered CSC-related gene expression, self-renewal as well as resistance to chemotherapy in HCC cell lines. In mouse xenograft models, MSI2 could markedly enhance tumorigenicity. Mechanistically, overexpression of MSI2 resulted in the upregulation of Lin28A. Stemness and chemotherapeutic drug resistance induced by MSI2 overexpression were dramatically reduced by Lin28A knockdown. Moreover, MSI2 and LIN28A levels positively correlated with the clinical severity and prognosis in HCC patients. In conclusion, MSI2 might play a crucial role in sustaining stemness and chemoresistance of liver CSCs via LIN28A-dependent manner in HCC. Our findings revealed that MSI2 and Lin28A might be used as potential therapeutic targets for eradicating liver CSCs.

Lee J, An S, Choi YM, et al.
Musashi-2 is a novel regulator of paclitaxel sensitivity in ovarian cancer cells.
Int J Oncol. 2016; 49(5):1945-1952 [PubMed] Related Publications
As few prognostic markers and symptoms have been identified, ovarian cancer is typically diagnosed at an advanced stage, and a majority of patients will relapse and develop resistance to anticancer drugs such as paclitaxel. Musashi-2 (MSI2) is a regulator of gene translation and functions as an oncogenic protein and a marker of poor prognosis in various types of cancer. However, the biological and clinical significance of MSI2 in ovarian cancer remains unclear. Using a tissue microarray-based assay, we demonstrated that MSI2 was highly expressed in advanced, serous ovarian cancer tissues. In addition, MSI2-overexpressing ovarian cancer cells exhibited increased viability, proliferation and growth. We found that MSI2 was overexpressed in paclitaxel-resistant ovarian cancer SKOV3-TR cells but not in paclitaxel-sensitive cell lines. The loss of MSI2 expression in lentivirus-mediated stable MSI2 knockdown SKOV3-TR cells impaired paclitaxel resistance as determined using cell viability and apoptosis assays. In contrast, lentivirus-mediated MSI2 overexpression promoted the development of paclitaxel resistance in paclitaxel-sensitive ovarian cancer cells. The results of the present study are the first to demonstrate that MSI2 is a valuable marker of advanced, serous ovarian cancer and that MSI2 plays an important role in paclitaxel resistance.

Kang MH, Jeong KJ, Kim WY, et al.
Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer.
Oncogene. 2017; 36(12):1745-1752 [PubMed] Related Publications
Musashi RNA-binding protein 2 (MSI2) has important roles in human cancer. However, the regulatory mechanisms by which MSI2 alters breast cancer pathophysiology have not been clearly identified. Here we demonstrate that MSI2 directly regulates estrogen receptor 1 (ESR1), which is a well-known therapeutic target and has been shown to reflect clinical outcomes in breast cancer. Based on gene expression data analysis, we found that MSI2 expression was highly enriched in estrogen receptor (ER)-positive breast cancer and that MSI2 expression was significantly correlated with ESR1 expression, including expression of ESR1 downstream target genes. In addition, MSI2 levels were associated with clinical outcomes. MSI2 influenced breast cancer cell growth by altering ESR1 function. MSI2 alters ESR1 by binding specific sites in ESR1 RNA and by increasing ESR1 protein stability. Taken together, our findings identified a novel regulatory mechanism of MSI2 as an upstream regulator of ESR1 and revealed the clinical relevance of the RNA-binding protein MSI2 in breast cancer.

Guo K, Cui J, Quan M, et al.
The Novel KLF4/MSI2 Signaling Pathway Regulates Growth and Metastasis of Pancreatic Cancer.
Clin Cancer Res. 2017; 23(3):687-696 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
PURPOSE: Musashi 2 (MSI2) is reported to be a potential oncoprotein in cases of leukemia and several solid tumors. However, its expression, function, and regulation in pancreatic ductal adenocarcinoma (PDAC) cases have yet to be demonstrated. Therefore, in the current study, we investigated the clinical significance and biologic effects of MSI2 expression in PDAC cases and sought to delineate the clinical significance of the newly identified Krüppel-like factor 4 (KLF4)/MSI2 regulatory pathway.
EXPERIMENTAL DESIGN: MSI2 expression and its association with multiple clinicopathologic characteristics in human PDAC specimens were analyzed immunohistochemically. The biological functions of MSI2 regarding PDAC cell growth, migration, invasion, and metastasis were studied using gain- and loss-of-function assays both in vitro and in vivo Regulation of MSI2 expression by KLF4 was examined in several cancer cell lines, and the underlying mechanisms were studied using molecular biologic methods.
RESULTS: MSI2 expression was markedly increased in both PDAC cell lines and human PDAC specimens, and high MSI2 expression was associated with poor prognosis for PDAC. Forced MSI2 expression promoted PDAC proliferation, migration, and invasion in vitro and growth and metastasis in vivo, whereas knockdown of MSI2 expression did the opposite. Transcriptional inhibition of MSI2 expression by KLF4 occurred in multiple PDAC cell lines as well as mouse models of PDAC.
CONCLUSIONS: Lost expression of KLF4, a transcriptional repressor of MSI2 results in overexpression of MSI2 in PDACs, which may be a biomarker for accurate prognosis. A dysregulated KLF4/MSI2 signaling pathway promotes PDAC progression and metastasis. Clin Cancer Res; 23(3); 687-96. ©2016 AACR.

Yang C, Zhang W, Wang L, et al.
Musashi-2 promotes migration and invasion in bladder cancer via activation of the JAK2/STAT3 pathway.
Lab Invest. 2016; 96(9):950-8 [PubMed] Related Publications
Musashi-2 (Msi2) is considered to have a crucial role in regulating various key cellular functions. However, the clinical significance and biological role of Msi2 in bladder cancer remains unknown. We examined the expression of Msi2 in bladder cancer cell lines in 167 clinical samples and the biological role of Msi2 in bladder cancer cells. Western blotting was used to investigate the possible mechanism of Msi2-induced migration and invasion in bladder cancer. Msi2 was significantly upregulated in bladder cancer cells and tissues compared with normal bladder urothelial cells and tissues. Immunohistochemical analysis revealed high expression of Msi2 in 57 of 167 (34.1%) bladder cancer specimens. Statistical analysis showed a significant correlation of Msi2 expression with advanced clinical stage, lymph node metastasis, and poor prognosis. Overexpression and ablation of Msi2 promoted and inhibited, respectively, the migration and invasion of bladder cancer cells. Furthermore, we found that Msi2 activated the JAK2/STAT3 pathway and promoted expression of genes downstream of JAK2/STAT3 in bladder cancer. This study demonstrates that Msi2 can induce bladder cancer cell migration and invasion by activating the JAK2/STAT3 pathway, and that Msi2 may be a valuable prognostic biomarker for bladder cancer patients.

Fox RG, Lytle NK, Jaquish DV, et al.
Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma.
Nature. 2016; 534(7607):407-411 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.

Kudinov AE, Deneka A, Nikonova AS, et al.
Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis.
Proc Natl Acad Sci U S A. 2016; 113(25):6955-60 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.

Sheng W, Dong M, Chen C, et al.
Musashi2 promotes the development and progression of pancreatic cancer by down-regulating Numb protein.
Oncotarget. 2017; 8(9):14359-14373 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Musashi2-Numb interaction plays a vital role in the progression of myeloid leukemia. However, its potential role in solid cancers has rarely been reported. We investigated the coordinate function of Musashi2-Numb in the development of pancreatic cancer (PC) in vitro and vivo. Both Musashi2 protein and mRNA levels were higher in PC tissues than that in paired normal pancreas (P<0.05). Musashi2 overexpression and Numb positive expression were positively and negatively associated with tumor size and UICC stage, respectively (P<0.05). Multivariate analysis identified Musashi2 and Numb as adverse and favorable independent indicators for the survival of PC patients. Moreover, patients with high Musashi2 expression combining with negative Numb expression had a significantly worse overall survival (P=0.001). The negative relationship between Musashi2 and Numb was found at both PC tissue and cell levels. These two endogenous proteins can be co-immunoprecipitated from PC cell lines, and Musashi2 silence up-regulated Numb protein in vitro and vivo. Meanwhile, its silence decreased cell invasion and migration in vitro and inhibited the growth of subcutaneous tumors and the frequency of liver metastasis in vivo. However, Numb knockdown significantly reversed the decrease of cell invasion and migration induced by Musashi2 silence. Musashi2 promotes the development and progression of pancreatic cancer by down-regulating Numb protein. The interaction of Musashi2-Numb plays a significant role in the development and progression of PC.

García-Alegría E, Lafita-Navarro MC, Aguado R, et al.
NUMB inactivation confers resistance to imatinib in chronic myeloid leukemia cells.
Cancer Lett. 2016; 375(1):92-99 [PubMed] Related Publications
Chronic myeloid leukemia (CML) progresses from a chronic to a blastic phase, where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and its derivatives. NUMB is an evolutionary well-conserved protein initially described as a functional antagonist of NOTCH function. NUMB is an endocytic protein associated with receptor internalization, involved in multiple cellular functions. It has been reported that MSI2 protein, a NUMB inhibitor, is upregulated in CML blast crisis, whereas NUMB itself is downregulated. This suggest that NUMB plays a role in the malignant progression of CML. Here we have generated K562 cells (derived from CML in blast crisis) constitutively expressing a dominant negative form of NUMB (dnNUMB). We show that dnNUMB expression confers a high proliferative phenotype to the cells. Importantly, dnNUMB triggers a partial resistance to imatinib in these cells, antagonizing the apoptosis mediated by the drug. Interestingly, imatinib resistance is not linked to p53 status or NOTCH signaling, as K562 lack p53 and imatinib resistance is reproduced in the presence of NOTCH inhibitors. Taken together, our data support the hypothesis that NUMB activation could be a new therapeutic target in CML.

Taggart J, Ho TC, Amin E, et al.
MSI2 is required for maintaining activated myelodysplastic syndrome stem cells.
Nat Commun. 2016; 7:10739 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Myelodysplastic syndromes (MDS) are driven by complex genetic and epigenetic alterations. The MSI2 RNA-binding protein has been demonstrated to have a role in acute myeloid leukaemia and stem cell function, but its role in MDS is unknown. Here, we demonstrate that elevated MSI2 expression correlates with poor survival in MDS. Conditional deletion of Msi2 in a mouse model of MDS results in a rapid loss of MDS haematopoietic stem and progenitor cells (HSPCs) and reverses the clinical features of MDS. Inversely, inducible overexpression of MSI2 drives myeloid disease progression. The MDS HSPCs remain dependent on MSI2 expression after disease initiation. Furthermore, MSI2 expression expands and maintains a more activated (G1) MDS HSPC. Gene expression profiling of HSPCs from the MSI2 MDS mice identifies a signature that correlates with poor survival in MDS patients. Overall, we identify a role for MSI2 in MDS representing a therapeutic target in this disease.

Li N, Yousefi M, Nakauka-Ddamba A, et al.
The Msi Family of RNA-Binding Proteins Function Redundantly as Intestinal Oncoproteins.
Cell Rep. 2015; 13(11):2440-2455 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Members of the Msi family of RNA-binding proteins have recently emerged as potent oncoproteins in a range of malignancies. MSI2 is highly expressed in hematopoietic cancers, where it is required for disease maintenance. In contrast to the hematopoietic system, colorectal cancers can express both Msi family members, MSI1 and MSI2. Here, we demonstrate that, in the intestinal epithelium, Msi1 and Msi2 have analogous oncogenic effects. Further, comparison of Msi1/2-induced gene expression programs and transcriptome-wide analyses of Msi1/2-RNA-binding targets reveal significant functional overlap, including induction of the PDK-Akt-mTORC1 axis. Ultimately, we demonstrate that concomitant loss of function of both MSI family members is sufficient to abrogate the growth of human colorectal cancer cells, and Msi gene deletion inhibits tumorigenesis in several mouse models of intestinal cancer. Our findings demonstrate that MSI1 and MSI2 act as functionally redundant oncoproteins required for the ontogeny of intestinal cancers.

Zhao HZ, Jia M, Luo ZB, et al.
Prognostic significance of the Musashi-2 (MSI2) gene in childhood acute lymphoblastic leukemia.
Neoplasma. 2016; 63(1):150-7 [PubMed] Related Publications
The prognostic value of the Musashi-2 (MSI2) gene has not yet been studied in childhood acute lymphoblastic leukemia (ALL). In our study, MSI2 mRNA levels of 119 childhood patients with newly-diagnosed ALL were examined and analyzed with regard to clinical characteristics and outcomes. ALL patients demonstrated significantly higher MSI2 mRNA levels than healthy controls. In addition, MSI2 mRNA levels were correlated with the disease status and IK6 mutation status. Survival analyses showed that higher MSI2 mRNA levels predicted worse outcomes in patients with childhood ALL. Moreover, in multivariate analyses, MSI2 mRNA overexpression retained its value as an independent risk factor for overall survival (OS), but not for event free survival (EFS). We conclude that high MSI2 mRNA level predicts adverse prognosis and seems to be useful as a novel prognostic factor for patients with childhood ALL.

Han Y, Ye A, Zhang Y, et al.
Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin.
PLoS One. 2015; 10(8):e0136484 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
RNA-binding protein Musashi-2 (Msi2) is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML). However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.

Park SM, Gönen M, Vu L, et al.
Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program.
J Clin Invest. 2015; 125(3):1286-98 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MSI2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999