Gene Summary

Gene:LIN28B; lin-28 homolog B (C. elegans)
Aliases: CSDD2
Summary:The protein encoded by this gene belongs to the lin-28 family, which is characterized by the presence of a cold-shock domain and a pair of CCHC zinc finger domains. This gene is highly expressed in testis, fetal liver, placenta, and in primary human tumors and cancer cell lines. It is negatively regulated by microRNAs that target sites in the 3' UTR, and overexpression of this gene in primary tumors is linked to the repression of let-7 family of microRNAs and derepression of let-7 targets, which facilitates cellular transformation. [provided by RefSeq, Jun 2012]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:protein lin-28 homolog B
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Liver CancerLIN28B and Liver Cancer View Publications8
-LIN28B and Neuroectodermal Tumors, Primitive View Publications9
Ovarian CancerLIN28B and Ovarian Cancer View Publications7
Brain Tumours, ChildhoodLIN28B and Brain Tumours View Publications5
Lung CancerLIN28B and Lung Cancer View Publications4
NeuroblastomaLIN28B and NeuroblastomaPrognostic
In a genome-wide association study (GWAS) of 2,817 neuroblastoma cases and 7,473 controls (Diskin et al 2012) found a LIN28B polymorphism (rs17065417) was associated with neuroblastoma, and also low HACE1 expression was a significant prognostic factor. In a subsequent large GWAS study (Capasso et al, 2013) also found LIN28B polymorphisms associated with neuroblastoma.
View Publications4
Wilms TumourLIN28B and Wilms Tumour View Publications1

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LIN28B (cancer-related)

Li F, Li XJ, Qiao L, et al.
miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6.
Exp Mol Med. 2014; 46:e116 [PubMed] Free Access to Full Article Related Publications
Dysregulated microRNA (miRNA) expression has a critical role in tumor development and metastasis. However, the mechanism by which miRNAs control melanoma metastasis is unknown. Here, we report reduced miR-98 expression in melanoma tissues with increasing tumor stage as well as metastasis; its expression is also negatively associated with melanoma patient survival. Furthermore, we demonstrate that miR-98 inhibits melanoma cell migration in vitro as well as metastatic tumor size in vivo. We also found that IL-6 is a target gene of miR-98, and IL-6 represses miR-98 levels via the Stat3-NF-κB-lin28B pathway. In an in vivo melanoma model, we demonstrate that miR-98 reduces melanoma metastasis and increases survival in part by reducing IL-6 levels; it also decreases Stat3 and p65 phosphorylation as well as lin28B mRNA levels. These results suggest that miR-98 inhibits melanoma metastasis in part through a novel miR-98-IL-6-negative feedback loop.

Schleiermacher G, Janoueix-Lerosey I, Delattre O
Recent insights into the biology of neuroblastoma.
Int J Cancer. 2014; 135(10):2249-61 [PubMed] Related Publications
Neuroblastoma (NB) is an embryonal tumor of the sympathetic nervous system which accounts for 8-10% of pediatric cancers. It is characterized by a broad spectrum of clinical behaviors from spontaneous regression to fatal outcome despite aggressive therapies. Considerable progress has been made recently in the germline and somatic genetic characterization of patients and tumors. Indeed, predisposition genes that account for a significant proportion of familial and syndromic cases have been identified and genome-wide association studies have retrieved a number of susceptibility loci. In addition, genome-wide sequencing, copy-number and expression studies have been conducted on tumors and have detected important gene modifications, profiles and signatures that have strong implications for the therapeutic stratification of patients. The identification of major players in NB oncogenesis, including MYCN, ALK, PHOX2B and LIN28B, has enabled the development of new animal models. Our review focuses on these recent advances, on the insights they provide on the mechanisms involved in NB development and their applications for the clinical management of patients.

Nguyen LH, Robinton DA, Seligson MT, et al.
Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models.
Cancer Cell. 2014; 26(2):248-61 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Lin28a/b are RNA-binding proteins that influence stem cell maintenance, metabolism, and oncogenesis. Poorly differentiated, aggressive cancers often overexpress Lin28, but its role in tumor initiation or maintenance has not been definitively addressed. We report that LIN28B overexpression is sufficient to initiate hepatoblastoma and hepatocellular carcinoma in murine models. We also detected Lin28b overexpression in MYC-driven hepatoblastomas, and liver-specific deletion of Lin28a/b reduced tumor burden, extended latency, and prolonged survival. Both intravenous siRNA against Lin28b and conditional Lin28b deletion reduced tumor burden and prolonged survival. Igf2bp proteins are upregulated, and Igf2bp3 is required in the context of LIN28B overexpression to promote growth. Therefore, multiple murine models demonstrate that Lin28b is both sufficient to initiate liver cancer and necessary for its maintenance.

Hovestadt V, Jones DT, Picelli S, et al.
Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing.
Nature. 2014; 510(7506):537-41 [PubMed] Related Publications
Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.

Spence T, Sin-Chan P, Picard D, et al.
CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.
Acta Neuropathol. 2014; 128(2):291-303 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.

Wen J, Liu H, Wang Q, et al.
Genetic variants of the LIN28B gene predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy.
Eur J Cancer. 2014; 50(10):1706-16 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
BACKGROUND: LIN28 is an RNA-binding protein that not only plays key roles in multiple cellular developmental processes and tumourigenesis, but also is involved in tissue inflammatory response. However, no published study has investigated associations between genetic variants in LIN28 and radiation-induced pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC) treated with definitive radiation therapy.
METHODS: We genotyped eight potentially functional single nucleotide polymorphisms (SNPs) of LIN28A (rs11247946 T>C, rs3811464 C>T, rs11581746 T>C, and rs12728900 G>A) and LIN28B (rs314280 G>A, rs12194974 G>A, rs17065417 A>C and rs314276 C>A) in 362 patients with NSCLC, who received definitive radio(chemo)therapy. The associations between RP risk and genotypes were assessed by hazards ratio (HR) in Cox proportional hazards regression analysis with time to event considered with and without adjustment for potential confounders.
RESULTS: Multivariate analyses found that patients carrying LIN28B rs314280 AG and AA/AG or rs314276 AC and AA/AC genotypes had a higher risk of grade ⩾3 RP (for rs314280 AG and AA/AG versus GG, adjusted HR=2.97 and 2.23, 95% confidence interval (CI)=1.32-6.72 and 1.01-4.94, P=0.009 and 0.048, respectively; for rs314276 AC and AA/AC versus CC, adjusted HR=2.30 and 2.00, 95% CI=1.24-4.28 and 1.11-3.62, and P=0.008 and 0.022, respectively). Further stratified analyses showed a more consistent and profound risk in the subgroups of age <65years, males, stage III/IV, ever smokers, having radio-chemotherapy and mean lung dose (MLD) ⩾19.0Gy.
CONCLUSION: Genetic variants of LIN28B, but not LIN28A, may be biomarkers for susceptibility to severe RP in NSCLC patients. Large, prospective studies are needed to confirm our findings.

Urbach A, Yermalovich A, Zhang J, et al.
Lin28 sustains early renal progenitors and induces Wilms tumor.
Genes Dev. 2014; 28(9):971-82 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis.

Jønson L, Christiansen J, Hansen TV, et al.
IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development.
Cell Rep. 2014; 7(2):539-51 [PubMed] Related Publications
The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs) contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression.

Topp MD, Hartley L, Cook M, et al.
Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts.
Mol Oncol. 2014; 8(3):656-68 [PubMed] Related Publications
INTRODUCTION: Improvement in the ability to target underlying drivers and vulnerabilities of high-grade serous ovarian cancer (HG-SOC) requires the development of molecularly annotated pre-clinical models reflective of clinical responses.
METHODS: We generated patient-derived xenografts (PDXs) from consecutive, chemotherapy-naïve, human HG-SOC by transplanting fresh human HG-SOC fragments into subcutaneous and intra-ovarian bursal sites of NOD/SCID IL2Rγ(null) recipient mice, completed molecular annotation and assessed platinum sensitivity.
RESULTS: The success rate of xenografting was 83%. Of ten HG-SOC PDXs, all contained mutations in TP53, two were mutated for BRCA1, three for BRCA2, and in two, BRCA1 was methylated. In vivo cisplatin response, determined as platinum sensitive (progression-free interval ≥ 100 d, n = 4), resistant (progression-free interval <100 d, n = 3) or refractory (n = 3), was largely consistent with patient outcome. Three of four platinum sensitive HG-SOC PDXs contained DNA repair gene mutations, and the fourth was methylated for BRCA1. In contrast, all three platinum refractory PDXs overexpressed dominant oncogenes (CCNE1, LIN28B and/or BCL2).
CONCLUSIONS: Because PDX platinum response reflected clinical outcome, these annotated PDXs will provide a unique model system for preclinical testing of novel therapies for HG-SOC.

Wu T, Jia J, Xiong X, et al.
Increased expression of Lin28B associates with poor prognosis in patients with oral squamous cell carcinoma.
PLoS One. 2013; 8(12):e83869 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Recent studies showed that incomplete cell reprogramming can transform cells into tumour-like cells. Lin28A is associated with fibroblast and sarcoma cell reprogramming, whereas its homologue Lin28B is associated with hematopoietic cell reprogramming. This study aimed to investigate the expression and prognostic difference between Lin28A and Lin28B in oral squamous cell carcinoma (OSCC). Expression level was assessed by immunohistochemistry and staining location was confirmed by immunofluorescence. Prognostic values were analysed and compared by the Kaplan-Meier analysis and uni and multivariate Cox regression models. Besides, in vitro cell assays and in vivo nude mice xenograft were used to demonstrate the influence of increased Lin28B expression in OSCC. Lin28A and Lin28B expression increased in OSCC, and co-expression of Lin28A and Lin28B showed no significant association with patient prognosis. Kaplan-Meier analysis showed that patients with high Lin28B but not Lin28A expression had lower overall survival (OS) rates than those with low Lin28B expression. Further Univariate analysis showed that patients with increased Lin28B expression had shorter disease-free survival (DFS) and shorter OS, while multivariate analysis showed Lin28B overexpression with TNM stage predicted poor prognosis in patients with OSCC. Besides, stable expressing Lin28B in oral cancer cells promoted cell migration, invasion, colony formation, in vivo proliferation and increased the expression of cancer suppressor miRNA let-7 targeted genes IL-6, HMGA2, the EMT markers Snail and Twist, the angiogenesis inducer VEGF, and the apoptosis inhibitor Survivin. These combined results indicate that Lin28B is a novel marker for predicting prognosis in patients with OSCC and may be a therapeutic target.

Emmrich S, Katsman-Kuipers JE, Henke K, et al.
miR-9 is a tumor suppressor in pediatric AML with t(8;21).
Leukemia. 2014; 28(5):1022-32 [PubMed] Related Publications
MicroRNAs (miRNAs) play a pivotal role in the regulation of hematopoiesis and development of leukemia. Great interest emerged in modulating miRNA expression for therapeutic purposes. In order to identify miRNAs, which specifically suppress leukemic growth of acute myeloid leukemia (AML) with t(8;21), inv(16) or mixed lineage leukemia (MLL) rearrangement by inducing differentiation, we conducted a miRNA expression profiling in a cohort of 90 cytogenetically characterized, de novo pediatric AML cases. Four miRNAs, specifically downregulated in MLL-rearranged, t(8;21) or inv(16) AMLs, were characterized by their tumor-suppressive properties in cell lines representing those respective cytogenetic groups. Among those, forced expression of miR-9 reduced leukemic growth and induced monocytic differentiation of t(8;21) AML cell lines in vitro and in vivo. The tumor-suppressive functions of miR-9 were specifically restricted to AML cell lines and primary leukemic blasts with t(8;21). On the other hand, these functions were not evident in AML blasts from patients with MLL rearrangements. We showed that miR-9 exerts its effects through the cooperation with let-7 to repress the oncogenic LIN28B/HMGA2 axis. Thus, miR-9 is a tumor suppressor-miR which acts in a stringent cell context-dependent manner.

Cheng SW, Tsai HW, Lin YJ, et al.
Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma.
PLoS One. 2013; 8(11):e80053 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
By using an expressed sequence tag bioinformatic algorithm, we identified that Lin28 homolog B (Lin28B) may have an oncofetal expression pattern which may facilitate detecting cancer cells in adults. It is also reported to be a potential marker for cancer stem cells. Therefore, we sought to verify oncofetal-stemness characters of Lin28B and test its potential as a circulating cancer stem cell-like marker in adult HCC patients. Lin28B mRNA was examined in a panel of fetal tissue, adult tissue and tumors. Lin28B was over-expressed or knocked down in HepG2 cells to evaluate its potential as a stem cell-like marker. RT-qPCR for Lin28B was performed in the peripheral blood mononuclear cells from patients with HCC receiving surgery (n=96) and non-HCC controls (n=60) and analyzed its clinical significance. Lin28B showed an oncofetal expression pattern. Its overexpression could upregulate stemness markers (OCT4, Nanog and SOX2) and enhance tumorsphere formation in vitro. Lin28B knockdown had opposite effects. Circulating Lin28B was detected in peripheral blood mononuclear cells in 3 cases (5%) of non-HCC controls and 32 cases (33.3%) of HCC patients. In HCC patients, circulating Lin28B was associated with high tumor grade (P=0.046), large size (P=0.005), high AJCC stage (P=0.044) and BCLC stage (P=0.017). Circulating Lin28B was significantly associated with decreased recurrence-free survival (P<0.001). Circulating Lin28B separated early stage HCC into 2 recurrence-free survival curves (P=0.003). In multivariate analysis, circulating Lin28B was an independent variable associated with early recurrence (P=0.045) and recurrence in early stage HCC (P=0.006). In conclusion, the oncofetal gene Lin28B is a potential oncofetal cancer-stem-cell-like circulating tumor cell marker that correlates with HCC recurrence after hepatectomy. Circulating Lin28B could refine early AJCC stages. Our finding supports the possible use of a TNMC (C for circulating tumor cells) staging system in HCC.

Copley MR, Eaves CJ
Developmental changes in hematopoietic stem cell properties.
Exp Mol Med. 2013; 45:e55 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Hematopoietic stem cells (HSCs) comprise a rare population of cells that can regenerate and maintain lifelong blood cell production. This functionality is achieved through their ability to undergo many divisions without activating a poised, but latent, capacity for differentiation into multiple blood cell types. Throughout life, HSCs undergo sequential changes in several key properties. These affect mechanisms that regulate the self-renewal, turnover and differentiation of HSCs as well as the properties of the committed progenitors and terminally differentiated cells derived from them. Recent findings point to the Lin28b-let-7 pathway as a master regulator of many of these changes with important implications for the clinical use of HSCs for marrow rescue and gene therapy, as well as furthering our understanding of the different pathogenesis of childhood and adult-onset leukemia.

Haselmann V, Kurz A, Bertsch U, et al.
Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells.
Gastroenterology. 2014; 146(1):278-90 [PubMed] Related Publications
BACKGROUND & AIMS: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL-R1) (TNFRSF10A) and TRAIL-R2 (TNFRSF10B) on the plasma membrane bind ligands that activate apoptotic and other signaling pathways. Cancer cells also might have TRAIL-R2 in the cytoplasm or nucleus, although little is known about its activities in these locations. We investigated the functions of nuclear TRAIL-R2 in cancer cell lines.
METHODS: Proteins that interact with TRAIL-R2 initially were identified in pancreatic cancer cells by immunoprecipitation, mass spectrometry, and immunofluorescence analyses. Findings were validated in colon, renal, lung, and breast cancer cells. Functions of TRAIL-R2 were determined from small interfering RNA knockdown, real-time polymerase chain reaction, Drosha-activity, microRNA array, proliferation, differentiation, and immunoblot experiments. We assessed the effects of TRAIL-R2 overexpression or knockdown in human pancreatic ductal adenocarcinoma (PDAC) cells and their ability to form tumors in mice. We also analyzed levels of TRAIL-R2 in sections of PDACs and non-neoplastic peritumoral ducts from patients.
RESULTS: TRAIL-R2 was found to interact with the core microprocessor components Drosha and DGCR8 and the associated regulatory proteins p68, hnRNPA1, NF45, and NF90 in nuclei of PDAC and other tumor cells. Knockdown of TRAIL-R2 increased Drosha-mediated processing of the let-7 microRNA precursor primary let-7 (resulting in increased levels of mature let-7), reduced levels of the let-7 targets (LIN28B and HMGA2), and inhibited cell proliferation. PDAC tissues from patients had higher levels of nuclear TRAIL-R2 than non-neoplastic pancreatic tissue, which correlated with increased nuclear levels of HMGA2 and poor outcomes. Knockdown of TRAIL-R2 in PDAC cells slowed their growth as orthotopic tumors in mice. Reduced nuclear levels of TRAIL-R2 in cultured pancreatic epithelial cells promoted their differentiation.
CONCLUSIONS: Nuclear TRAIL-R2 inhibits maturation of the microRNA let-7 in pancreatic cancer cell lines and increases their proliferation. Pancreatic tumor samples have increased levels of nuclear TRAIL-R2, which correlate with poor outcome of patients. These findings indicate that in the nucleus, death receptors can function as tumor promoters and might be therapeutic targets.

Fu X, Meng Z, Liang W, et al.
miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis.
Oncogene. 2014; 33(34):4296-306 [PubMed] Related Publications
Human cancers often exhibit attenuated microRNA (miRNA) biogenesis and global underexpression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-26a enhances miRNA biogenesis, which acts as a common mechanism partially accounting for miR-26a function in diverse cancers including melanoma, prostate and liver cancer. miR-26a was broadly reduced in multiple cancers, and overexpression of miR-26a significantly suppressed tumor growth and metastasis both in vitro and in vivo, including melanoma, prostate and liver cancers. Notably, miR-26a overexpression was accompanied by global upregulation of miRNAs, especially let-7, and let-7 expression was concordant with miR-26a expression in cancer cell lines, xenograft tumors and normal human tissues, underscoring their biological relevance. We showed that miR-26a directly targeted Lin28B and Zcchc11-two critical repressors of let-7 maturation. Furthermore, we have demonstrated that Zcchc11 promoted tumor growth and metastasis, and it was prominently overexpressed in human cancers. Our findings thus provide a novel mechanism by which a miRNA acts as a modulator of miRNA biogenesis. These results also define a role of the miR-26a and Zcchc11 in tumorigenesis and metastasis and have implications to develop new strategies for cancer therapy.

Sureban SM, May R, Qu D, et al.
DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer.
PLoS One. 2013; 8(9):e73940 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Stem cell pluripotency, angiogenesis and epithelial-mesenchymal transition (EMT) have been shown to be significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) and many other aggressive cancers. The dysregulation of these processes is believed to play key roles in tumor initiation, progression, and metastasis, and is contributory to PDAC being the fourth leading cause of cancer-related deaths in the US. The tumor suppressor miRNA miR-145 downregulates critical pluripotency factors and oncogenes and results in repressed metastatic potential in PDAC. Additionally, the miR-200 family regulates several angiogenic factors which have been linked to metastasis in many solid tumors. We have previously demonstrated that downregulation of DCLK1 can upregulate critical miRNAs in both in vitro and in vivo cancer models and results in downregulation of c-MYC, KRAS, NOTCH1 and EMT-related transcription factors. A recent report has also shown that Dclk1 can distinguish between normal and tumor stem cells in Apc (min/+) mice and that ablation of Dclk1(+) cells resulted in regression of intestinal polyps without affecting homeostasis. Here we demonstrate that the knockdown of DCLK1 using poly(lactide-co-glycolide)-encapsulated-DCLK1-siRNA results in AsPC1 tumor growth arrest. Examination of xenograft tumors revealed, (a) increased miR-145 which results in decreased pluripotency maintenance factors OCT4, SOX2, NANOG, KLF4 as well as KRAS and RREB1; (b) increased let-7a which results in decreased pluripotency factor LIN28B; and (c) increased miR-200 which results in decreased VEGFR1, VEGFR2 and EMT-related transcription factors ZEB1, ZEB2, SNAIL and SLUG. Specificity of DCLK1 post-transcriptional regulation of the downstream targets of miR-145, miR-200 and let-7a was accomplished utilizing a luciferase-based reporter assay. We conclude that DCLK1 plays a significant master regulatory role in pancreatic tumorigenesis through the regulation of multiple tumor suppressor miRNAs and their downstream pro-tumorigenic pathways. This novel concept of targeting DCLK1 alone has several advantages over targeting single pathway or miRNA-based therapies for PDAC.

Ren J, Chu Y, Ma H, et al.
Epigenetic interventions increase the radiation sensitivity of cancer cells.
Curr Pharm Des. 2014; 20(11):1857-65 [PubMed] Related Publications
Epigenetic changes including DNA methylation, histone modifications, chromatin remodeling and microRNAs play critical roles in tumorigenesis and tumor development. Reversal of epigenetic changes sensitizes some tumor cells to radiation. DNMT-I enhances the response of tumor cells to radiotherapy. AZA demethylated promoters of genes related to ionizing radiation response, such as p16 and hMLH1. The genes expression of the p53, RASSF1, and DAPK gene families was increased by 5-aza-CdR, which induces G2-M phase arrest and increased apoptosis. HDAC-I has both anti-tumor activity and radiation sensitization activity. HDAC-I disrupts both DNA damage sensing and repair processes: HDAC-I disrupts the association between HDAC enzyme and DNA sensor proteins 53BP1 and ATM. HDAC-I changes the acetylation status of both proteins involved in homologous recombination (HR) repair pathway which include BRCA1, Rad51, and Rad50, and proteins involved in non-homologous end joining (NHEJ) repair pathway which include Ku70, and DNA-PK. HDACs are also implicated as essential components in the DNA repair process itself. Besides the radiosensitizing mechanism of intervention of DNA repair, other possible mechanisms including cell cycle redistribution, acetylation of Hsp90, increased apoptosis, and decreased survival signals are also suggested. Some miRNAs also regulate the radiosensitivity of tumor cells. Inhibition of miR-34 expression or function, downregulation of miR-155, upregulation of miR-18a, Overexpression let-7g or knocking down LIN28B, and ectopically overexpressed miR-10 in cells with low endogenous miR-101 level increase the response of cells to irradiation. For radiation-resistant cancer cells, miR-7 sensitizes the radiation for cells which activated EGFR-PI3K-AKT signaling pathway.

Ceccom J, Bourdeaut F, Loukh N, et al.
Embryonal tumor with multilayered rosettes: diagnostic tools update and review of the literature.
Clin Neuropathol. 2014 Jan-Feb; 33(1):15-22 [PubMed] Related Publications
Embryonal tumor with multilayered rosettes (ETMR), including embryonal tumor with abundant neuropil and true rosettes (ETANTR), and ependymoblastoma (EBL) constitute a distinct entity of the primitive neuroectodermal tumor (PNET) family. The presence of a focal amplification at chromosome region 19q13.42 associated with an up-regulation of the oncogenic miRNA cluster C19MC suggests that they may represent a histological spectrum of a single biological entity. Their histopathological spectrum is wide, including medulloepithelioma, their location may be supra- or infra-tentorial, their prognosis is poor. Recent data on molecular subgroups of PNETs have led to new insights on diagnosis and treatment of these tumors. Subsequently, LIN28A immunoexpression was identified as a highly specific marker for ETMR. In this study, we report 4 cases diagnosed initially as ETANTR with CGH-array data, including 19q13.42 gain with absence of other amplicons, particularly of the MYC gene family, and inconstant gain of whole chromosome 2. Immunohistochemical positive expression of LIN28A and absence of Olig2 expression were observed. We summarize the literature on ETMR, pointing out on the nosological evolution of this entity and the findings on genetic hallmarks of this particular tumor. Our results emphasize the usefulness of immunohistochemistry as a highly sensitive and fast diagnostic tool for ETMR and for genetic data, especially for 19q13.42 locus. Biological features may offer new therapeutic options for these embryonal tumors that do not usually respond to conventional treatments of PNETs.

Mao XG, Hütt-Cabezas M, Orr BA, et al.
LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program.
Oncotarget. 2013; 4(7):1050-64 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
The cellular reprogramming factor LIN28A promotes tumorigenicity in cancers arising outside the central nervous system, but its role in brain tumors is unknown. We detected LIN28A protein in a subset of human gliomas observed higher expression in glioblastoma (GBM) than in lower grade tumors. Knockdown of LIN28A using lentiviral shRNA in GBM cell lines inhibited their invasion, growth and clonogenicity. Expression of LIN28A in GBM cell lines increased the number and size of orthotopic xenograft tumors. LIN28A expression also enhanced the invasiveness of GBM cells in vitro and in vivo. Increasing LIN28A was associated with down-regulation of tumor suppressing microRNAs let-7b and let-7g and up-regulation of the chromatin modifying protein HMGA2. The increase in tumor cell aggressiveness in vivo and in vitro was accompanied by an upregulation of pro-invasive gene expression, including SNAI1. To further investigate the oncogenic potential of LIN28A, we infected hNSC with lentiviruses encoding LIN28A together with dominant negative R248W-TP53, constitutively active KRAS and hTERT. Resulting subclones proliferated at an increased rate and formed invasive GBM-like tumors in orthotopic xenografts in immunodeficient mice. Similar to LIN28A-transduced GBM neurosphere lines, hNSC-derived tumor cells showed increased expression of HMGA2. Taken together, these data suggest a role for LIN28A in high grade gliomas and illustrate an HMGA2-associated, pro-invasive program that can be activated in GBM by LIN28A-mediated suppression of let-7 microRNAs.

Hayashi S, Tanaka J, Okada S, et al.
Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma.
Exp Cell Res. 2013; 319(8):1220-8 [PubMed] Related Publications
Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment.

Liu Q, Bai X, Li H, et al.
The oncoprotein HBXIP upregulates Lin28B via activating TF II D to promote proliferation of breast cancer cells.
Int J Cancer. 2013; 133(6):1310-22 [PubMed] Related Publications
Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein and plays a key role in the development of breast cancer. However, its mechanisms of action are poorly understood. Lin28B functions as an oncogene in a variety of human cancers. In our study, we report that HBXIP acts with its partner Lin28B to contribute to carcinogenesis. Our data showed that the expression levels of HBXIP were significantly positively correlated with those of Lin28B in clinical breast cancer tissues. Then, we found that HBXIP was able to upregulate Lin28B in breast cancer MCF-7 cells. Chromatin immunoprecipitation assay (ChIP) and electrophoretic mobility shift assay (EMSA) revealed that HBXIP occupied the promoter region (-1199/-1073 nt) of Lin28B. Importantly, co-immunoprecipitation (Co-IP) and GST pull-down assay validated that HBXIP directly bound to the TATA-binding protein (TBP), a basal subunit of transcription factor TF II D complex. In addition, we discovered that Lin28B could block the downregulation of HBXIP via suppressing miR-520b which directly targeted HBXIP mRNA in the cells. In function, we demonstrated that HBXIP enhanced the proliferation of breast cancer cells through Lin28B in vitro and in vivo. Thus, we conclude that the oncoprotein HBXIP as a co-activator of TF II D transactivates Lin28B promoter via directly binding to TBP to upregulate the expression of Lin28B in promotion of proliferation of breast cancer cells, in which Lin28B maintains the high level of HBXIP through suppressing miR-520b in a feedback manner. Therapeutically, HBXIP may serve as a target of breast cancer.

Alajez NM, Shi W, Wong D, et al.
Lin28b promotes head and neck cancer progression via modulation of the insulin-like growth factor survival pathway.
Oncotarget. 2012; 3(12):1641-52 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Lin28 is a developmentally regulated RNA binding protein which has recently emerged as key regulator in the biogenesis of the let-7 micro-RNA family. While the expression of Lin28b has been linked to advanced tumor stage, the precise molecular mechanism(s) by which Lin28b drives disease progression is still being unraveled. Herein, we generated a let-7-resistant Lin28b ORF, stably expressed in the FaDu head and neck cancer (HNC) cell line. FaDu-Lin28b cells exhibited enhanced tumor growth in vitro and in vivo. Global gene and micro-RNA expression analyses revealed significant enrichment in several pathways involved in cell migration, chromatin remodeling, and cellular stress response. Direct regulation of selected genes (HMGA2, CCND2, IGF1R, and IGF2BP2) via a let-7-Lin28b mechanism was validated. Notably, up-regulation of several genes in the IGF pathway in Lin28b-expressing cells was observed. Functional studies revealed significant increase in the survival of Lin28b-expressing cells when cultured under stress conditions, which was dependent on the presence of IGF1. Therefore, our data identified several novel gene targets for Lin28b-let7, and revealed a novel mechanism by which Lin28b promote tumorigenesis. Concordantly, clinical examinations of Lin28b, IGF2BP2 and IGF2 revealed a significant association between the expression of these genes with disease relapse, thereby corroborating the potential relevance for the Lin28b/IGF axis in HNC progression.

Cousminer DL, Berry DJ, Timpson NJ, et al.
Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity.
Hum Mol Genet. 2013; 22(13):2735-47 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.

Zhou J, Ng SB, Chng WJ
LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells.
Int J Biochem Cell Biol. 2013; 45(5):973-8 [PubMed] Related Publications
LIN28 (LIN28A) is a reprogramming factor and conserved RNA-binding protein. LIN28B is the only homolog of LIN28 in humans, sharing structure and certain function. LIN28/LIN28B has been identified to be overexpressed in a wide range of solid tumors and hematological malignancies. Blockage of let-7 miRNA biogensis and subsequent derepression of let-7 miRNA target genes by LIN28/LIN28B play important roles in cancer progression and metastasis. We will first provide an overview of LIN28/LIN28B gene and protein structures, followed by summary of the studies that showed their aberrant expression in primary human cancers and relevant clinical significance with emphasis on their roles in formation of cancer stem cells. Next, we will highlight the current knowledge of LIN28/LIN28B regulators and molecular mechanisms of LIN28/LIN28B-mediated oncogenesis. The potential medical applications for targeting LIN28/LIN28B will also be discussed in this review.

You X, Liu F, Zhang T, et al.
Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells.
Oncogene. 2014; 33(4):449-60 [PubMed] Related Publications
Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.

Yang H, Cho ME, Li TW, et al.
MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma.
J Clin Invest. 2013; 123(1):285-98 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
MicroRNAs (miRNAs) and methionine adenosyltransferase 1A (MAT1A) are dysregulated in hepatocellular carcinoma (HCC), and reduced MAT1A expression correlates with worse HCC prognosis. Expression of miR-664, miR-485-3p, and miR-495, potential regulatory miRNAs of MAT1A, is increased in HCC. Knockdown of these miRNAs individually in Hep3B and HepG2 cells induced MAT1A expression, reduced growth, and increased apoptosis, while combined knockdown exerted additional effects on all parameters. Subcutaneous and intraparenchymal injection of Hep3B cells stably overexpressing each of this trio of miRNAs promoted tumorigenesis and metastasis in mice. Treatment with miRNA-664 (miR-664), miR-485-3p, and miR-495 siRNAs reduced tumor growth, invasion, and metastasis in an orthotopic liver cancer model. Blocking MAT1A induction significantly reduced the antitumorigenic effect of miR-495 siRNA, whereas maintaining MAT1A expression prevented miRNA-mediated enhancement of growth and metastasis. Knockdown of these miRNAs increased total and nuclear level of MAT1A protein, global CpG methylation, lin-28 homolog B (Caenorhabditis elegans) (LIN28B) promoter methylation, and reduced LIN28B expression. The opposite occurred with forced expression of these miRNAs. In conclusion, upregulation of miR-664, miR-485-3p, and miR-495 contributes to lower MAT1A expression in HCC, and enhanced tumorigenesis may provide potential targets for HCC therapy.

Capasso M, Diskin SJ, Totaro F, et al.
Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility.
Carcinogenesis. 2013; 34(3):605-11 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Several neuroblastoma (NB) susceptibility loci have been identified within LINC00340, BARD1, LMO1, DUSP12, HSD17B12, DDX4, IL31RA, HACE1 and LIN28B by genome-wide association (GWA) studies including European American individuals. To validate and comprehensively evaluate the impact of the identified NB variants on disease risk and phenotype, we analyzed 16 single nucleotide polymorphisms (SNPs) in an Italian population (370 cases and 809 controls). We assessed their regulatory activity on gene expression in lymphoblastoid (LCLs) and NB cell lines. We evaluated the cumulative effect of the independent loci on NB risk and high-risk phenotype development in Italian and European American (1627 cases and 2575 controls) populations. All NB susceptibility genes replicated in the Italian dataset except for DDX4 and IL31RA, and the most significant SNP was rs6435862 in BARD1 (P = 8.4 × 10(-15)). BARD1 showed an additional and independent SNP association (rs7585356). This variant influenced BARD1 mRNA expression in LCLs and NB cell lines. No evidence of epistasis among the NB-associated variants was detected, whereas a cumulative effect of risk variants on NB risk (European Americans: P (trend) = 6.9 × 10(-30), Italians: P (trend) = 8.55 × 10(13)) and development of high-risk phenotype (European Americans: P (trend) = 6.9 × 10(-13), Italians: P (trend) = 2.2 × 10(-1)) was observed in a dose-dependent manner. These results provide further evidence that the risk loci identified in GWA studies contribute to NB susceptibility in distinct populations and strengthen the role of BARD1 as major genetic contributor to NB risk. This study shows that even in the absence of interaction the combination of several low-penetrance alleles has potential to distinguish subgroups of patients at different risks of developing NB.

Korshunov A, Ryzhova M, Jones DT, et al.
LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR).
Acta Neuropathol. 2012; 124(6):875-81 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
Embryonal tumor with multilayered rosettes (ETMR, previously known as ETANTR) is a highly aggressive embryonal CNS tumor, which almost exclusively affects infants and is associated with a dismal prognosis. Accurate diagnosis is of critical clinical importance because of its poor response to current treatment protocols and its distinct biology. Amplification of the miRNA cluster at 19q13.42 has been identified previously as a genetic hallmark for ETMR, but an immunohistochemistry-based assay for clinical routine diagnostics [such as INI-1 for atypical teratoid rhabdoid tumor (AT/RT)] is still lacking. In this study, we screened for an ETMR-specific marker using a gene-expression profiling dataset of more than 1,400 brain tumors and identified LIN28A as a highly specific marker for ETMR. The encoded protein binds small RNA and has been implicated in stem cell pluripotency, metabolism and tumorigenesis. Using an LIN28A specific antibody, we carried out immunohistochemical analysis of LIN28A in more than 800 childhood brain-tumor samples and confirmed its high specificity for ETMR. Strong LIN28A immunoexpression was found in all 37 ETMR samples tested, whereas focal reactivity was only present in a small (6/50) proportion of AT/RT samples. All other pediatric brain tumors were completely LIN28A-negative. In summary, we established LIN28A immunohistochemistry as a highly sensitive and specific, rapid, inexpensive diagnostic tool for routine pathological verification of ETMR.

Di Fiore R, Fanale D, Drago-Ferrante R, et al.
Genetic and molecular characterization of the human osteosarcoma 3AB-OS cancer stem cell line: a possible model for studying osteosarcoma origin and stemness.
J Cell Physiol. 2013; 228(6):1189-201 [PubMed] Related Publications
Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype with 71-82 chromosomes. By comparing 3AB-OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan® Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let-7/98 and miR-29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets.

Ye Y, Madison B, Wu X, Rustgi AK
A LIN28B polymorphism predicts for colon cancer survival.
Cancer Biol Ther. 2012; 13(14):1390-5 [PubMed] Article available free on PMC after 11/08/2015 Related Publications
The pathogenesis of sporadic colorectal cancer involves distinct pathways, with characteristic genomic alterations. The first pathway, chromosome instability (CIN), is driven by APC mutations and is typified by Kras mutations, p53 mutation/loss of heterozygosity, and deletions at chromosome 18q. The second pathway is referred to as microsatellite instability (MSI), a genetic hallmark of the accumulated mutations that occur as a consequence of derangements in the mismatch repair genes. Finally, proximal colon cancers may involve methylation of a number of genes, which is frequently referred to as the CpG island methylator phenotype (CIMP), and are associated with B-raf mutations. The ability to stratify colorectal cancers by risk would be facilitated by the identification of polymorphisms that might be utilized as biomarkers. LIN28B is an RNA binding protein that is overexpressed in colon cancers. We find that LIN28B rs314277 is associated with significant recurrence of colorectal cancer in Stage II disease, which may have translational therapeutic implications.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LIN28B, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999