SSX2

Gene Summary

Gene:SSX2; synovial sarcoma, X breakpoint 2
Aliases: SSX, HD21, CT5.2, CT5.2A, HOM-MEL-40
Location:Xp11.22
Summary:The product of this gene belongs to the family of highly homologous synovial sarcoma X (SSX) breakpoint proteins. These proteins may function as transcriptional repressors. They are also capable of eliciting spontaneous humoral and cellular immune responses in cancer patients, and are potentially useful targets in cancer vaccine-based immunotherapy. This gene, and also the SSX1 and SSX4 family members, have been involved in t(X;18)(p11.2;q11.2) translocations that are characteristically found in all synovial sarcomas. This translocation results in the fusion of the synovial sarcoma translocation gene on chromosome 18 to one of the SSX genes on chromosome X. The encoded hybrid proteins are likely responsible for transforming activity. Alternative splicing of this gene results in multiple transcript variants. This gene also has an identical duplicate, GeneID: 727837, located about 45 kb downstream in the opposite orientation on chromosome X. [provided by RefSeq, Jul 2013]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:protein SSX2
HPRD
Source:NCBIAccessed: 17 March, 2015

Ontology:

What does this gene/protein do?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 March 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Differential Diagnosis
  • Childhood Cancer
  • Paraffin Embedding
  • Transcription Factors
  • Cancer Gene Expression Regulation
  • X Chromosome
  • Cell Nucleus
  • DNA Primers
  • Chromosome 18
  • Neoplasm Proteins
  • Base Sequence
  • Cancer DNA
  • bcl-2-Associated X Protein
  • Tumor Antigens
  • Polymerase Chain Reaction
  • Adolescents
  • FISH
  • Gene Expression Profiling
  • RTPCR
  • Proto-Oncogene Proteins
  • Chromosome X
  • Oncogene Fusion Proteins
  • Vimentin
  • BCL2 protein
  • Gene Expression
  • Cell Differentiation
  • Translocation
  • SS18
  • Kidney Cancer
  • Proteins
  • Serologic Tests
  • Testis
  • Synovial Sarcoma
  • Cancer RNA
  • Messenger RNA
  • Lung Cancer
  • Repressor Proteins
  • Karyotyping
  • Molecular Sequence Data
  • Immunohistochemistry
  • Amino Acid Sequence
Tag cloud generated 17 March, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Synovial Sarcomat(X;18)(p11.2;q11.2) SS18-SSX2 in Synovial Sarcoma
A SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is characteristic nearly all synovial sarcomas. This translocation fuses the SS18 (SYT) gene from chromosome 18 to one of three homologous genes at Xp11: SSX1, SSX2 or SSX4.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SSX2 (cancer-related)

Gjerstorff MF, Relster MM, Greve KB, et al.
SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.
Nucleic Acids Res. 2014; 42(18):11433-46 [PubMed] Related Publications
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.

Luetkens T, Kobold S, Cao Y, et al.
Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation.
Cancer Immunol Immunother. 2014; 63(11):1151-62 [PubMed] Related Publications
BACKGROUND: Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer-testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM.
METHODS: Frequency and characteristics of antibody responses against cancer-testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients.
RESULTS: We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-2(85-90).
CONCLUSIONS: We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.

Minami Y, Kohsaka S, Tsuda M, et al.
SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1.
Cancer Sci. 2014; 105(9):1152-9 [PubMed] Related Publications
MicroRNA (miRNA) can function as tumor suppressors or oncogenes, and also as potential specific cancer biomarkers; however, there are few published studies on miRNA in synovial sarcomas, and their function remains unclear. We transfected the OncomiR miRNA Precursor Virus Library into synovial sarcoma Fuji cells followed by a colony formation assay to identify miRNAs to confer an aggressive tumorigenicity, and identified miR-17-5p from the large colonies. MiR-17 was found to be induced by a chimeric oncoprotein SS18-SSX specific for synovial sarcoma, and all examined cases of human synovial sarcoma expressed miR-17, even at high levels in several cases. Overexpression of miR-17 in synovial sarcoma cells, Fuji and HS-SYII, increased colony forming ability in addition to cell growth, but not cell motility and invasion. Tumor volume formed in mice in vivo was significantly increased by miR-17 overexpression with a marked increase of MIB-1 index. According to PicTar and Miranda algorithms, which predicted CDKN1A (p21) as a putative target of miR-17, a luciferase assay was performed and revealed that miR-17 directly targets the 3'-UTR of p21 mRNA. Indeed, p21 protein level was remarkably decreased by miR-17 overexpression in a p53-independent manner. It is noteworthy that miR-17 succeeded in suppressing doxorubicin-evoked higher expression of p21 and conferred the drug resistance. Meanwhile, introduction of anti-miR-17 in Fuji and HS-SYII cells significantly decreased cell growth, consistent with rescued expression of p21. Taken together, miR-17 promotes the tumor growth of synovial sarcomas by post-transcriptional suppression of p21, which may be amenable to innovative therapeutic targeting in synovial sarcoma.

Wakamatsu T, Naka N, Sasagawa S, et al.
Deflection of vascular endothelial growth factor action by SS18-SSX and composite vascular endothelial growth factor- and chemokine (C-X-C motif) receptor 4-targeted therapy in synovial sarcoma.
Cancer Sci. 2014; 105(9):1124-34 [PubMed] Related Publications
Synovial sarcoma (SS) is a malignant soft-tissue tumor characterized by the recurrent chromosomal translocation SS18-SSX. Vascular endothelial growth factor (VEGF)-targeting anti-angiogenic therapy has been approved for soft-tissue sarcoma, including SS; however, the mechanism underlying the VEGF signal for sarcomagenesis in SS is unclear. Here, we show that SS18-SSX directs the VEGF signal outcome to cellular growth from differentiation. Synovial sarcoma cells secrete large amounts of VEGF under spheroid culture conditions in autocrine fashion. SS18-SSX knockdown altered the VEGF signaling outcome, from proliferation to tubular differentiation, without affecting VEGF secretion, suggesting that VEGF signaling promoted cell growth in the presence of SS18-SSX. Thus, VEGF inhibitors blocked both host angiogenesis and spheroid growth. Simultaneous treatment with VEGF and chemokine (C-X-C motif) (CXC) ligand 12 and CXC receptor 4 inhibitors and/or ifosfamide effectively suppressed tumor growth both in vitro and in vivo. SS18-SSX directs the VEGF signal outcome from endothelial differentiation to spheroid growth, and VEGF and CXC receptor 4 are critical therapeutic targets for SS.

D'Arcy P, Maruwge W, Wolahan B, et al.
Oncogenic functions of the cancer-testis antigen SSX on the proliferation, survival, and signaling pathways of cancer cells.
PLoS One. 2014; 9(4):e95136 [PubMed] Free Access to Full Article Related Publications
SSX is a transcription factor with elusive oncogenic functions expressed in a variety of human tumors of epithelial and mesenchymal origin. It has raised substantial interest as a target for cancer therapy since it elicits humoral responses and displays restricted expression to cancer, spermatogonia and mesenchymal stem cells. Here, we investigated the oncogenic properties of SSX by employing a RNA interference to knock-down the endogenous expression of SSX in melanoma and osteosarcoma cell lines. Depletion of SSX expression resulted in reduced proliferation with cells accumulating in the G1 phase of the cell cycle. We found that the growth promoting and survival properties of SSX are mediated in part though modulation of MAPK/Erk and Wnt signaling pathways, since SSX silencing inhibited Erk-mediated signaling and transcription of cMYC and Akt-1. We also found that SSX forms a transient complex with β-catenin at the G1-S phase boundary resulting in the altered expression of β-catenin target genes such as E-cadherin, snail-2 and vimentin, involved in epithelial-mesenchymal transitions. Importantly the silencing of SSX expression in in vivo significantly impaired the growth of melanoma tumor xenografts. Tumor biopsies from SSX silenced tumors displayed reduced cyclin A staining, indicative of low proliferation and predominantly cycloplasmic β-catenin compared to SSX expressing tumors. The present study demonstrates a previously unknown function of SSX, that as an oncogene and as a tumor target for the development of novel anti-cancer drugs.

He L, Ji JN, Liu SQ, et al.
Expression of cancer-testis antigen in multiple myeloma.
J Huazhong Univ Sci Technolog Med Sci. 2014; 34(2):181-5 [PubMed] Related Publications
Recently, the immunotherapy has been highlighted among cancer treatments. Cancer-testis antigen (CTA) has been studied in a variety of solid tumors because of its specific expression in tumors, and testis, ovary and placenta tissues, but not in other normal tissues. In order to provide a new approach for multiple myeloma (MM) immunotherapy, we examined the CTA expression in MM cell lines, and primary myeloma cells in patients with MM. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of MAGE-C1/CT7, SSX1, SSX2 and SSX4 in MM cell lines of RPMI-8226 and U266, and bone marrow (BM) cells of 25 MM patients and 18 healthy volunteers. The results showed that the 4 CTAs were expressed in RPMI-8226 and U266 cell lines. The positive expression rate of MAGE-C1/CT7, SSX1, SSX2 and SSX4 in the BM cells of 25 MM patients was 28% (7/25), 80% (20/25), 40% (10/25) and 68% (17/25), respectively. In contrast, the expression of any member of the CTAs was not detected in BM cells of 18 healthy volunteers. The expression of two or more CTAs was detected in 80% (20/25) MM patients, and that of at least one CTA in 88% (22/25). The mRNA expression levels of SSX1 and SSX4 were significantly higher in patients with MM at stage III than in those at stage I and II (P<0.05). No statistically significant differences were observed in the mRNA expression levels of MAGE-C1/CT7 and SSX2 in further stratified analyses by age, gender, MM types and percentage of MM cells in BM (P>0.05). In conclusion, our present study showed that MAGE-C1/CT7, SSX1, SSX2 and SSX4 were co-expressed in MM cell lines and the primary myeloma cells in MM patients, but not expressed in BM cells of healthy subjects. The mRNA levels of SSX1 and SSX4 are associated with MM clinical stage. This work may provide a new insight into MM immunotherapy in the future.

Greve KB, Pøhl M, Olsen KE, et al.
SSX2-4 expression in early-stage non-small cell lung cancer.
Tissue Antigens. 2014; 83(5):344-9 [PubMed] Related Publications
The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies and performed immunohistochemical staining of 25 different normal tissues and 143 NSCLCs. The antibodies differed in binding to two distinctive splice variants of SSX2 that exhibited different subcellular staining patterns, suggesting that the two splice variants display different functions. SSX2-4 expression was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC.

Silverstein D, Klein P
Large monophasic synovial sarcoma: a case report and review of the literature.
Cutis. 2014; 93(1):13-6 [PubMed] Related Publications
Synovial sarcomas account for approximately 8% of all soft tissue tumors. The hallmark tumor marker is the t(X;18) translocation, which results in fusion of the SYT gene of chromosome 18 to the SSX gene of the X chromosome, creating most frequently either an SYT-SSX1 or SYT-SSX2 transfusion transcript. Clinically, synovial sarcomas most often present on the extremities and average roughly 7 cm in diameter. Metastatic spread to regional lymph nodes and/or the lungs is common. Because the incidence of this tumor is low, most studies have been retrospective; therefore, management and prognostic interpretation has remained controversial. We report a case of a patient who presented with a slowly growing, unusually large mass on the left forearm of 10 years' duration. A diagnosis of monophasic synovial sarcoma was confirmed by biopsy. We also review the literature regarding management strategies for synovial sarcomas.

Zhang Y, Bao L, Lu J, et al.
The clinical value of the quantitative detection of four cancer-testis antigen genes in multiple myeloma.
Mol Cancer. 2014; 13:25 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer-testis (CT) antigen genes might promote the progression of multiple myeloma (MM). CT antigens may act as diagnostic and prognostic markers in MM, but their expression levels and clinical implications in this disease are not fully understood. This study measured the expression levels of four CT antigen genes in Chinese patients with MM and explored their clinical implications.
METHODS: Real-time quantitative polymerase chain reaction (qPCR) was used to quantify the expression of MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10 and SSX-2 mRNA in 256 bone marrow samples from 144 MM patients.
RESULTS: In the newly diagnosed patients, the positive expression rates were 88.5% for MAGE-C1/CT7, 82.1% for MAGE-C2/CT10, 76.9% for MAGE-A3 and 25.6% for SSX-2. The expression levels and the number of co-expressed CT antigens correlated significantly with several clinical indicators, including the percentage of plasma cells infiltrating the bone marrow, abnormal chromosome karyotypes and the clinical course.
CONCLUSION: MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10 and SSX-2 expression levels provide potentially effective clinical indicators for the auxiliary diagnosis and monitoring of treatment efficacy in MM.

Hemminger JA, Toland AE, Scharschmidt TJ, et al.
Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma.
Mod Pathol. 2014; 27(9):1238-45 [PubMed] Free Access to Full Article Related Publications
Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n=37) and frozen tissue (n=8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1-2+) and percent tumor positivity. The gene expression levels of CTAG2, PRAME, and MAGEA3 were measured by quantitative real-time PCR. In total, 37/37 (100%) of the samples showed predominantly strong, homogenous immunoreactivity for PRAME. There was a variable, focal expression of MAGEA1 (11%) and SSX2 (16%) and no expression of ACRBP. Quantitative real-time PCR demonstrated PRAME and CTAG2 transcripts in all eight samples: six tumors with high mRNA levels; two tumors with low mRNA levels. The gene expression of MAGEA3 was not detected in the majority of cases. In conclusion, myxoid and round-cell liposarcomas consistently express PRAME by immunohistochemistry as well as CTAG2 and PRAME by qualitative real-time PCR. This supports the use of cancer-testis antigen-targeted immunotherapy in the treatment of this malignancy.

Saito T
The SYT-SSX fusion protein and histological epithelial differentiation in synovial sarcoma: relationship with extracellular matrix remodeling.
Int J Clin Exp Pathol. 2013; 6(11):2272-9 [PubMed] Free Access to Full Article Related Publications
Synovial sarcoma (SS) tumor cells, which have the chromosomal translocation t(X;18)(p11.2;q11.2), have an inherently greater propensity for epithelial differentiation than other mesenchymal tumors, especially spindle cell sarcomas. This is caused by de-repression of the transcription of E-cadherin by SYT-SSX1 and SYT-SSX2, which dissociate Snail or Slug, respectively, from the E-cadherin promoter. However, a subset of SS with SYT-SSX1 loses E-cadherin expression despite adequate de-repression because of mutations in E-cadherin, resulting in monophasic histology. The ratio of the expression levels of SYT-SSX1 and Snail is also associated with E-cadherin expression: the lower the SYT-SSX1/Snail ratio, the lower the level of E-cadherin expression, and vice versa, thus affecting tumor histology. In addition, Wnt signal activation caused by mutation of β-catenin, APC, or Axin 1 and 2 is associated with monophasic histology. Remodeling of the extracellular matrix is also important. Only cells that survive all of these steps can finally exhibit biphasic histology. On the other hand, the SYT-SSX2 fusion has a weaker de-repression effect on the E-cadherin promoter than does SYT-SSX1, so it is difficult for SYT-SSX2-expressing tumors to achieve sufficient capacity for epithelial differentiation to form glandular structures. This review provides an interesting model for this epithelial differentiation that shows a possible mechanism for the aberrant mesenchymal to epithelial transition of SS and suggests that it might better be considered an epithelial to mesenchymal transition.

Trautmann M, Sievers E, Aretz S, et al.
SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma.
Oncogene. 2014; 33(42):5006-16 [PubMed] Related Publications
Synovial sarcoma is a high-grade soft tissue malignancy characterized by a specific reciprocal translocation t(X;18), which leads to the fusion of the SS18 (SYT) gene to one of three SSX genes (SSX1, SSX2 or SSX4). The resulting chimeric SS18-SSX protein is suggested to act as an oncogenic transcriptional regulator. Despite multimodal therapeutic approaches, metastatic disease is often lethal and the development of novel targeted therapeutic strategies is required. Several expression-profiling studies identified distinct gene expression signatures, implying a consistent role of Wnt/β-catenin signaling in synovial sarcoma tumorigenesis. Here we investigate the functional and therapeutic relevance of Wnt/β-catenin pathway activation in vitro and in vivo. Immunohistochemical analyses of nuclear β-catenin and Wnt downstream targets revealed activation of canonical Wnt signaling in a significant subset of 30 primary synovial sarcoma specimens. Functional aspects of Wnt signaling including dependence of Tcf/β-catenin complex activity on the SS18-SSX fusion proteins were analyzed. Efficient SS18-SSX-dependent activation of the Tcf/β-catenin transcriptional complex was confirmed by TOPflash reporter luciferase assays and immunoblotting. In five human synovial sarcoma cell lines, inhibition of the Tcf/β-catenin protein-protein interaction significantly blocked the canonical Wnt/β-catenin signaling cascade, accompanied by the effective downregulation of Wnt targets (AXIN2, CDC25A, c-MYC, DKK1, CyclinD1 and Survivin) and the specific suppression of cell viability associated with the induction of apoptosis. In SYO-1 synovial sarcoma xenografts, administration of small molecule Tcf/β-catenin complex inhibitors significantly reduced tumor growth, associated with diminished AXIN2 protein levels. In summary, SS18-SSX-induced Wnt/β-catenin signaling appears to be of crucial biological importance in synovial sarcoma tumorigenesis and progression, representing a potential molecular target for the development of novel therapeutic strategies.

Yoneda Y, Ito S, Kunisada T, et al.
Truncated SSX protein suppresses synovial sarcoma cell proliferation by inhibiting the localization of SS18-SSX fusion protein.
PLoS One. 2013; 8(10):e77564 [PubMed] Free Access to Full Article Related Publications
Synovial sarcoma is a relatively rare high-grade soft tissue sarcoma that often develops in the limbs of young people and induces the lung and the lymph node metastasis resulting in poor prognosis. In patients with synovial sarcoma, specific chromosomal translocation of t(X; 18) (p11.2;q11.2) is observed, and SS18-SSX fusion protein expressed by this translocation is reported to be associated with pathogenesis. However, role of the fusion protein in the pathogenesis of synovial sarcoma has not yet been completely clarified. In this study, we focused on the localization patterns of SS18-SSX fusion protein. We constructed expression plasmids coding for the full length SS18-SSX, the truncated SS18 moiety (tSS18) and the truncated SSX moiety (tSSX) of SS18-SSX, tagged with fluorescent proteins. These plasmids were transfected in synovial sarcoma SYO-1 cells and we observed the expression of these proteins using a fluorescence microscope. The SS18-SSX fusion protein showed a characteristic speckle pattern in the nucleus. However, when SS18-SSX was co-expressed with tSSX, localization of SS18-SSX changed from speckle patterns to the diffused pattern similar to the localization pattern of tSSX and SSX. Furthermore, cell proliferation and colony formation of synovial sarcoma SYO-1 and YaFuSS cells were suppressed by exogenous tSSX expression. Our results suggest that the characteristic speckle localization pattern of SS18-SSX is strongly involved in the tumorigenesis through the SSX moiety of the SS18-SSX fusion protein. These findings could be applied to further understand the pathogenic mechanisms, and towards the development of molecular targeting approach for synovial sarcoma.

Lee KW, Lee NK, Ham S, et al.
Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma.
Cancer Lett. 2014; 343(1):62-73 [PubMed] Related Publications
Synovial sarcoma is an aggressive mesenchymal tumor with dual differentiation; epithelial and mesenchymal differentiation. However, the molecular mechanisms behind tumorigenesis and dual differentiation have remained elusive. In this study, we investigated whether Twist1 is an essential transcription factor for maintaining tumor-initiating cell properties in synovial sarcoma. First, we identified that Twist1 is overexpressed in most cases of synovial sarcoma (SS) samples as well as in two synovial sarcoma cell lines (HSSYII, SW982). Additionally, Twist1 depletion led to down-regulation of mesenchymal markers and up-regulation of epithelial markers in SS cell lines. The migratory and invasive abilities of SS cell lines were also significantly reduced following the loss of Twist1. These results indicate that Twist1 plays an essential role in the maintenance of mesenchymal character in SS. Furthermore, knock-down of Twist1 induced G1 cycle arrest and apoptosis as well as remarkable reduction in the sphere-forming cell subpopulation and side population cells. Moreover, Twist1 knock-down profoundly inhibited the growth of synovial sarcoma xenograft in nude mice compared to controls indicating that Twist1 is essential for tumor initiating cell properties. To explore transcriptional regulation by Twist1 at the genomic level, Chromatin immunoprecipiation-solexa whole genome sequencing (ChIP-SEQ) and cDNA microarray analysis were performed. Mesenchymal differentiation/proliferation and PDGF related genes were found to be affected by Twist1. Finally, depletion of SS18-SSX fusion oncoprotein by RNA inference induced down-regulation of Twist1, implying that Twist1 is regulated by SS18-SSX. Hence, our results suggest that Twist1 is an essential transcription factor for the maintenance of mesenchymal characters and tumor initiating properties of synovial sarcoma.

Ren T, Lu Q, Guo W, et al.
The clinical implication of SS18-SSX fusion gene in synovial sarcoma.
Br J Cancer. 2013; 109(8):2279-85 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The aim of this study is to evaluate distribution and clinical impact of the SS18-SSX fusion gene in patients with synovial sarcoma in China.
METHODS: We collected and analysed the clinical data of 88 patients using univariate and multivariate survival analysis. HEK 293T and NIH 3T3 cell lines were transfected with the SS18-SSX1 or SS18-SSX2 gene to determine the respective involvement of these fusion genes in cell proliferation and invasion.
RESULTS: Overall survival was significantly better among SS18-SSX2 cases (P=0.001), FNCLCC grade 2 cases (P<0.001), and UICC stage 1 or 2 (P<0.001) by univariate and multivariate survival analysis. SS18-SSX1-positive cells were more proliferative and invasive than SS18-SSX2-positive cells.
CONCLUSION: SS18-SSX fusion type is a significant prognostic factor for patients with synovial sarcoma.

Barham W, Frump AL, Sherrill TP, et al.
Targeting the Wnt pathway in synovial sarcoma models.
Cancer Discov. 2013; 3(11):1286-301 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Synovial sarcoma is an aggressive soft-tissue malignancy of children and young adults, with no effective systemic therapies. Its specific oncogene, SYT-SSX (SS18-SSX), drives sarcoma initiation and development. The exact mechanism of SYT-SSX oncogenic function remains unknown. In an SYT-SSX2 transgenic model, we show that a constitutive Wnt/β-catenin signal is aberrantly activated by SYT-SSX2, and inhibition of Wnt signaling through the genetic loss of β-catenin blocks synovial sarcoma tumor formation. In a combination of cell-based and synovial sarcoma tumor xenograft models, we show that inhibition of the Wnt cascade through coreceptor blockade and the use of small-molecule CK1α activators arrests synovial sarcoma tumor growth. We find that upregulation of the Wnt/β-catenin cascade by SYT-SSX2 correlates with its nuclear reprogramming function. These studies reveal the central role of Wnt/β-catenin signaling in SYT-SSX2-induced sarcoma genesis, and open new venues for the development of effective synovial sarcoma curative agents.
SIGNIFICANCE: Synovial sarcoma is an aggressive soft-tissue cancer that afflicts children and young adults, and for which there is no effective treatment. The current studies provide critical insight into our understanding of the pathogenesis of SYT–SSX-dependent synovial sarcoma and pave the way for the development of effective therapeutic agents for the treatment of the disease in humans.

Sahara S, Otsuki Y, Egawa Y, et al.
Primary synovial sarcoma of the stomach--a case report and review of the literature.
Pathol Res Pract. 2013; 209(11):745-50 [PubMed] Related Publications
Synovial sarcoma (SS) is a mesenchymal spindle cell tumor which displays variable epithelial differentiation. It commonly arises around the major joints or tendon sheaths in young adults, but is not commonly seen in the stomach. We experienced a case of primary gastric SS. The patient is a 22-year-old male, who presented with epigastric pain. Upper endoscopy showed an ulcer of 25 mm in diameter with marginal elevation on the posterior mid-gastric body. Biopsy of the ulcer base showed monotonous proliferation of small spindle-shaped cells on HE-stain. On immunohistochemical staining, these cells were positively stained with vimentin, cytokeratin, epithelial membrane antigen, and CD99, but were negative for KIT, CD34, desmin, and S-100 protein. These findings were compatible with SS of monophasic type. Diagnosis of primary gastric SS was made because there were no other primary lesions, nor metastatic lesions. The wedge resection was performed. Reverse transcriptase polymerase chain reaction (RT-PCR), using the RNA from frozen neoplastic tissue of the resected specimen, detected a fusion gene called SYT-SSX1, specific for SS. Though SS arising in the stomach is rare, it should be considered in the differential diagnosis of KIT-negative gastric spindle cell tumor.

Xiong B, Chen M, Ye F, et al.
Primary monophasic synovial sarcoma of the liver in a 13-year-old boy.
Pediatr Dev Pathol. 2013 Sep-Oct; 16(5):353-6 [PubMed] Related Publications
Synovial sarcoma originating in the liver is extremely rare, and thus far only 3 cases have been reported in the English literature. Herein, we report a primary hepatic synovial sarcoma in a 13-year-old Chinese boy. This patient present with a 10-day right upper quadrant pain, and a heterogeneous mass was documented in the right hepatic lobe by computed tomography. Subsequently, the patient underwent right hepatectomy. Histologically, the tumor exhibited classic features of monophasic synovial sarcoma. The diagnosis was confirmed by the presence of SS18 gene rearrangement and identification of SS18-SSX1 fusion transcript. Unfortunately, a relapsing mass was detected 11 months after the surgery. To the best of our knowledge, the current case is the 1st published example in the pediatric population.

Carmody Soni EE, Schlottman S, Erkizan HV, et al.
Loss of SS18-SSX1 inhibits viability and induces apoptosis in synovial sarcoma.
Clin Orthop Relat Res. 2014; 472(3):874-82 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Most synovial sarcomas contain a chromosomal translocation t(X;18), which results in the formation of an oncoprotein SS18-SSX critical to the viability of synovial sarcoma.
QUESTIONS/PURPOSES: We (1) established and characterized three novel synovial sarcoma cell lines and asked (2) whether inhibition of SS18-SSX1 decreases cell viability in these cell lines; and (3) whether reduction in viability after SS18-SSX1 knockdown is caused by apoptosis. After identifying a specific posttranscriptional splice variant in our cell lines, we asked (4) whether this provides a survival benefit in synovial sarcoma.
METHODS: Cells lines were characterized. SS18-SSX1 knockdown was achieved using a shRNA system. Cell viability was assessed by WST-1 analysis and apoptosis examined by caspase-3 activity.
RESULTS: We confirmed the SS18-SSX1 translocation in all cell lines and identified a consistent splicing variant. We achieved successful knockdown of SS18-SSX1 and with this saw a significant reduction in cell viability. Decreased viability was a result of increased apoptosis. Reintroduction of the exon 8 sequence into cells reduced cell viability in all cell lines.
CONCLUSIONS: We confirmed the presence of the SS18-SSX1 translocation in our cell lines and its importance in the survival of synovial sarcoma. We have also demonstrated that reduction in cell viability is related to an increase in apoptosis. In addition, we have identified a potential mediator of SS18-SSX function in exon 8.
CLINICAL RELEVANCE: SS18-SSX represents a tumor-specific target in synovial sarcoma. Exploitation of SS18-SSX and its protein partners will allow us to develop potent tumor-specific therapeutic agents.

Caballero OL, Cohen T, Gurung S, et al.
Effects of CT-Xp gene knock down in melanoma cell lines.
Oncotarget. 2013; 4(4):531-41 [PubMed] Free Access to Full Article Related Publications
Cancer/testis (CT) genes are encoded by genes that are normally expressed only in the human germ line but which are activated in various malignancies. CT proteins are frequently immunogenic in cancer patients and their expression is highly restricted to tumors. They are thus important targets for anticancer immunotherapy. In several different tumor types, the expression of CT-X genes is associated with advanced disease and poor outcome, indicating that their expression might contribute to tumorigenesis. CT-X genes encoding members of the MAGE protein family on Xq28 have been shown to potentially influence the tumorigenic phenotype. We used small interfering RNA (siRNA) to investigate whether CT-X mapping to the short arm of the X-chromosome might also have tumorigenic properties and therefore be potentially targeted by functional inhibitors in a therapeutic setting. siRNAs specific to GAGE, SSX and XAGE1 were used in cell proliferation, migration and cell survival assays using cell lines derived from melanoma, a tumor type known to present high frequencies of expression of CT antigens. We found that of these, those specific to GAGE and XAGE1 most significantly impeded melanoma cell migration and invasion and those specific to SSX4 and XAGE1 decreased the clonogenic survival of melanoma cells. Our results suggest that GAGE, XAGE1 and SSX4 might each have a role in tumor progression and are possible therapeutic targets for the treatment of melanoma and other malignancies.

Neumann F, Kaddu-Mulindwa D, Widmann T, et al.
EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors.
Cancer Immunol Immunother. 2013; 62(7):1211-22 [PubMed] Related Publications
EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.

Kadoch C, Crabtree GR
Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma.
Cell. 2013; 153(1):71-85 [PubMed] Free Access to Full Article Related Publications
Recent exon sequencing studies have revealed that over 20% of human tumors have mutations in subunits of mSWI/SNF (BAF) complexes. To investigate the underlying mechanism, we studied human synovial sarcoma (SS), in which transformation results from the translocation of exactly 78 amino acids of SSX to the SS18 subunit of BAF complexes. We demonstrate that the SS18-SSX fusion protein competes for assembly with wild-type SS18, forming an altered complex lacking the tumor suppressor BAF47 (hSNF5). The altered complex binds the Sox2 locus and reverses polycomb-mediated repression, resulting in Sox2 activation. Sox2 is uniformly expressed in SS tumors and is essential for proliferation. Increasing the concentration of wild-type SS18 leads to reassembly of wild-type complexes retargeted away from the Sox2 locus, polycomb-mediated repression of Sox2, and cessation of proliferation. This mechanism of transformation depends on only two amino acids of SSX, providing a potential foundation for therapeutic intervention.

Hayakawa K, Ikeya M, Fukuta M, et al.
Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells.
Biochem Biophys Res Commun. 2013; 432(4):713-9 [PubMed] Related Publications
Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT-SSX. Although precise function of SYT-SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT-SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT-SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT-SSX2 gene. SYT-SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT-SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT-SSX, respectively. Association of these genes with SYT-SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly different in response to the induction of SYT-SSX, and more than half of SYT-SSX target genes in hPSCs were not induced in hMSCs. These results suggest the importance of cellular context for correct understanding of SYT-SSX function, and demonstrated how our new system will help to overcome this issue.

Salcedo-Hernández RA, Lino-Silva LS, Luna-Ortiz K
Synovial sarcomas of the head and neck: comparative analysis with synovial sarcoma of the extremities.
Auris Nasus Larynx. 2013; 40(5):476-80 [PubMed] Related Publications
OBJECTIVE: This study analyzed synovial sarcoma (SS) of the head and neck in order to identify features associated with survival improvement and compared them with the survival of SS of limbs.
METHODS: Clinical charts and histopathologic material with analysis for SYT/SSX gene rearrangement of 16 patients were reviewed. The clinicopathologic features and their association with survival were analyzed and compared with 174 SS of limbs.
RESULTS: The average age was 24.2 years (range 21-86). Eight cases occurred in each sex. The most frequent site was the parapharyngeal space (PPS). The mean tumor size was 5.38cm. Sixty-nine percent occurred in Stages II-III and 9% in Stage IV. Fifteen cases were excised: R0 resection in seven (46.7%) cases and R1 resection in eight (53.3%) cases. No patient with R0 resection has recurred, and three patients (37.5%) with R1 resection have recurred (p=0.035). Patients with R0 surgery had better survival rates compared to those who received other treatments (p=0.045). SS of head and neck showed a 5-year survival rate of 58% compared to 44.6% of the limbs (p=0.450).
CONCLUSION: The most prevalent location was the PPS. Surgical resection with clear margins correlated with low recurrence. Head and neck sarcomas had similar survival rates compared to sarcomas of limbs.

Valente AL, Tull J, Zhang S
Specificity of TLE1 expression in unclassified high-grade sarcomas for the diagnosis of synovial sarcoma.
Appl Immunohistochem Mol Morphol. 2013; 21(5):408-13 [PubMed] Related Publications
Expression of the transducin-like enhancer of split 1 (TLE1) by immunohistochemistry (IHC) has been widely used as a biomarker for the diagnosis of synovial sarcoma. Although TLE1 expression can be identified in more than 90% of synovial sarcomas, positive staining has been reported in up to one third of nonsynovial sarcomas, including peripheral nerve sheath tumors and neoplasms of fibrous and adipose tissues. The low specificity of this test in soft tissue tumors raises concern on its clinical application as a diagnostic biomarker. As synovial sarcoma is frequent among the differential diagnosis of unclassified high-grade sarcomas, and considering that the specificity of TLE1 antibody in this tumor group remains unclear, we evaluated TLE1 expression by IHC in 42 unclassified high-grade sarcomas. SS18 (SYT) gene break-apart analyses by fluorescence in situ hybridization were simultaneously performed as a gold standard biomarker for synovial sarcoma. Five cases that were positive for the SS18 break-apart by fluorescence in situ hybridization were also positive for TLE1 by IHC, whereas the remaining 37 cases negative for SS18 break-apart were all negative for TLE1. The results showed no evidence of nonspecific TLE1 expression in the nonsynovial high-grade sarcomas. We concluded that TLE1 is a highly specific biomarker for synovial sarcoma in the setting of differential diagnosis of unclassified high-grade sarcomas.

Przybyl J, Sciot R, Rutkowski P, et al.
Recurrent and novel SS18-SSX fusion transcripts in synovial sarcoma: description of three new cases.
Tumour Biol. 2012; 33(6):2245-53 [PubMed] Free Access to Full Article Related Publications
Synovial sarcoma (SS) is an aggressive type of tumor, comprising approximately 10 % of soft tissue sarcomas. Over 90 % of SS cases are characterized by the t(X;18)(p11.2;q11.2) translocation, which results mainly in the formation of oncogenic SS18-SSX1 or SS18-SSX2 fusions. In a typical SS18-SSX fusion transcript, exon 10 of SS18 is fused to exon 6 of SSX1/2. However, several variant fusion transcripts have been already described. In the present study, we examined the fusion transcript type in a series of 40 primary untreated SS tumor specimens using reverse transcription polymerase chain reaction and fluorescence in situ hybridization assay. We detected SS18-SSX1 transcript in 22 (55 %) patients and SS18-SSX2 transcript in 17 (42.5 %) patients, while in one patient, none of SS18-SSX1/2 fusion transcripts were identified. Among the cases under study, two tumors carried novel SS18-SSX1 and SS18-SSX2 variant translocations that were allegedly created by an alternative splicing, and in additional case, an unusual translocation variant previously described by other group was found. Our data suggest that alternative splicing may play an important role in novel fusion transcript formation, and additionally we show that it may be a recurrent event in SS. Furthermore, we describe the first case of a complex rearrangement possibly linking SS to REPS2 gene.

Kubouchi Y, Taniguchi Y, Matsuoka Y, et al.
Radiation-induced synovial sarcoma of the lung diagnosed by gene analysis after the surgical resection of chondrosarcoma arising from the scapula.
Ann Thorac Cardiovasc Surg. 2013; 19(2):144-7 [PubMed] Related Publications
The patient was a 62-year-old male who underwent wide resection and radiotherapy for right scapular chondrosarcoma 12 years ago. An abnormal shadow was detected in the right upper lung field included in the irradiated field on chest X-ray. Since the nodule tended to enlarge, a malignant lung tumor was suspected, and surgery was performed. On histological examination, spindle cells densely proliferated in a bundle pattern. Vimentin, bcl-2 protein, and CD99 were positive, and CD34, cytokeratin, AE1/AE3, and EMA were partially positive on immunohistochemical staining. The SYT-SSX (synaptotagmin- synovial sarcoma X) fusion gene was detected employing RT-PCR, based on which primary synovial sarcoma of the lung was diagnosed. The findings also matched the diagnostic criteria of radiation-induced sarcoma, suggesting radiation-induced primary synovial sarcoma of the lung. Primary synovial sarcoma of the lung is a rare tumor. It is difficult to diagnose based on cellular findings, and immunohistochemical and genetic investigations are essential. Radiation-induced sarcoma may develop through a long-term course, as seen in this patient, for which long-term follow-up after radiotherapy is important.

Zhu M, Li J, Wang KJ, Shang JB
Primary synovial sarcoma of the parapharyngeal space: a clinicopathologic study of five cases.
World J Surg Oncol. 2012; 10:158 [PubMed] Free Access to Full Article Related Publications
We report five cases of primary synovial sarcomas arising in the parapharyngeal space. The patients were all men with a median age of 35 years (range 22 to 41 years). The tumors were non-encapsulated solid masses ranging from 2.0 to 6.6 cm in size. Histologically, three cases were biphasic subtype, and the other two cases were monophasic subtype. Immunohistochemically, the tumor cells were strongly positive for bcl-2 and CD99, partly positive for CK and EMA, and negative for CD117, CD34, SMA and desmin in all five cases. S-100 protein was detected in one case. The presence of an SYT-SSX1 and/or SYT-SSX2 gene fusion resulting from t(X;18) was demonstrated from paraffin blocks by reverse transcriptase polymerase chain reaction in five cases. All five patients received tumor radical excision and postoperative radiotherapy, and two patients with pulmonary metastasis received additional chemotherapy. Follow-up data revealed that two patients with tumor size <5 cm were alive without disease for 54 and 57 months, one patient with tumor size <5 cm was alive with pulmonary metastasis for 78 months, and two patients with tumor size >5 cm died of disease 26 and 37 months after the diagnosis, respectively. Primary parapharyngeal synovial sarcoma is a rare variant that occurs more frequently in males than females. Accurate diagnosis depends on morphologic and immunohistochemical examination and proper molecular analysis. The prognosis is relatively good in those patients whose tumor size is less than 5 cm.

Jones KB, Su L, Jin H, et al.
SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas.
Oncogene. 2013; 32(18):2365-71, 2375.e1-5 [PubMed] Free Access to Full Article Related Publications
Synovial sarcoma is a deadly malignancy with limited sensitivity to traditional cytotoxic chemotherapy. SS18-SSX fusion oncogene expression characterizes human synovial sarcomas and drives oncogenesis in a mouse model. Elevated expression of BCL2 is considered a consistent feature of the synovial sarcoma expression profile. Our objective was to evaluate the expression of apoptotic pathway members in synovial sarcomas and interrogate the impact of modulating SS18-SSX expression on this pathway. We show in human and murine synovial sarcoma cells that SS18-SSX increases BCL2 expression, but represses other anti-apoptotic genes, including MCL1 and BCL2A1. This repression is achieved by directly suppressing expression via binding through activating transcription factor 2 (ATF2) to the cyclic adenosine monophosphate (AMP) response element (CRE) in the promoters of these genes and recruiting TLE1/Groucho. The suppression of these two anti-apoptotic pathways silences the typical routes by which other tumors evade BH3-domain peptidomimetic pharmacotherapy. We show that mouse and human synovial sarcoma cells are sensitive in vitro to ABT-263, a BH3-peptidomimetic, much more than the other tested cancer cell lines. ABT-263 also enhances the sensitivity of these cells to doxorubicin, a traditional cytotoxic chemotherapy used for synovial sarcoma. We also demonstrate the capacity of ABT-263 to stunt synovial sarcomagenesis in vivo in a genetic mouse model. These data recommend pursuit of BH3-peptidomimetic pharmacotherapy in human synovial sarcomas.

Ho AL, Vasudeva SD, Laé M, et al.
PDGF receptor alpha is an alternative mediator of rapamycin-induced Akt activation: implications for combination targeted therapy of synovial sarcoma.
Cancer Res. 2012; 72(17):4515-25 [PubMed] Free Access to Full Article Related Publications
Akt activation by the IGF-1 receptor (IGF-1R) has been posited to be a mechanism of intrinsic resistance to mTORC1 inhibitors (rapalogues) for sarcomas. Here we show that rapamycin-induced phosphorylation of Akt can occur in an IGF-1R-independent manner. Analysis of synovial sarcoma cell lines showed that either IGF-1R or the PDGF receptor alpha (PDGFRA) can mediate intrinsic resistance to rapamycin. Repressing expression of PDGFRA or inhibiting its kinase activity in synovial sarcoma cells blocked rapamycin-induced phosphorylation of Akt and decreased tumor cell viability. Expression profiling of clinical tumor samples revealed that PDGFRA was the most highly expressed kinase gene among several sarcoma disease subtypes, suggesting that PDGFRA may be uniquely significant for synovial sarcomas. Tumor biopsy analyses from a synovial sarcoma patient treated with the mTORC1 inhibitor everolimus and PDGFRA inhibitor imatinib mesylate confirmed that this drug combination can impact both mTORC1 and Akt signals in vivo. Together, our findings define mechanistic variations in the intrinsic resistance of synovial sarcomas to rapamycin and suggest therapeutic strategies to address them.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SSX2 gene, Cancer Genetics Web: http://www.cancer-genetics.org/SSX2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 March, 2015     Cancer Genetics Web, Established 1999