CTAG1B

Gene Summary

Gene:CTAG1B; cancer/testis antigen 1B
Aliases: CTAG, ESO1, CT6.1, CTAG1, LAGE-2, LAGE2B, NY-ESO-1
Location:Xq28
Summary:The protein encoded by this gene is an antigen that is overexpressed in many cancers but that is also expressed in normal testis. This gene is found in a duplicated region of the X-chromosome and therefore has a neighboring gene of identical sequence. [provided by RefSeq, Jan 2012]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:cancer/testis antigen 1
HPRD
Source:NCBIAccessed: 21 August, 2015

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Latest Publications: CTAG1B (cancer-related)

Shida A, Futawatari N, Fukuyama T, et al.
Frequent High Expression of Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1) in Gastric Cancer.
Anticancer Res. 2015; 35(6):3575-9 [PubMed] Related Publications
BACKGROUND: The tumor-associated antigen Kita-Kyushu lung cancer antigen-1 (KK-LC-1) has been reported as not being expressed in normal tissues, except for the testis, and in the setting of non-small cell lung cancer. The present study demonstrated that KK-LC-1 is expressed in gastric cancer.
MATERIALS AND METHODS: We analyzed the expression of KK-LC-1 and cancer/testis antigens (CTAs) in surgical specimens of 49 gastric carcinomas. The expression of KK-LC-1 and CTAs was assessed using reverse transcription-polymerase chain reaction.
RESULTS: KK-LC-1 expression was observed in gastric carcinomas. The number of lesions with expression of KK-LC-1, Melanoma antigen gene encoding-A1 (MAGE-A1), MAGE-A3 and New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) was 40 (81.6%), 17 (34.7%), 22 (44.9%) and 8 (16.3%) out of the 49 specimens, respectively.
CONCLUSION: KK-LC-1 should be categorized as a CTA. The frequency of KK-LC-1 expression was higher than that of the other CTAs. KK-LC-1 might be a useful target for immunotherapy and in diagnosis of gastric cancer.

Srivastava P, Paluch BE, Matsuzaki J, et al.
Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts.
Leuk Res. 2014; 38(11):1332-41 [PubMed] Related Publications
The mechanism of clinical action for the FDA approved hypomethylating drugs azacitidine and decitabine remains unresolved and in this context the potential immunomodulatory effect of these agents on leukemic cells is an area of active investigation. Induced expression of methylated Cancer Testis Antigen (CTA) genes has been demonstrated in leukemic cell lines following exposure to hypomethylating drugs in vitro. SGI-110 is a novel hypomethylating dinucleotide with prolonged in vivo exposure and clinical activity in patients with MDS and AML. We demonstrate that this agent, like decitabine, produces robust re-expression of the CTAs NY-ESO-1 and MAGE-A, both in vitro and in leukemia-bearing AML xenografts. Upregulation of these genes in vitro was sufficient to induce cytotoxicity by HLA-compatible CD8+ T-cells specific for NY-ESO-1, a well-recognized and immunogenic CTA. Additionally, exposure to SGI-110 enhances MHC class I and co-stimulatory molecule expression, potentially contributing to recognition of CTAs. SGI-110, like the parent compound decitabine, induces expression of CTAs and might modulate immune recognition of myeloid malignancy.

Yin B, Zeng Y, Wang X, et al.
Expression and clinical significance of cancer-testis genes in clear cell renal cell carcinoma.
Int J Clin Exp Pathol. 2014; 7(7):4112-9 [PubMed] Free Access to Full Article Related Publications
Cancer-testis (CT) antigens, which are encoded by CT genes, have been recognized as a group of highly attractive targets for cancer immunotherapy. However, the expression and clinical relevance of CT genes in clear cell renal cell carcinoma (ccRCC) remains largely unknown. The present study aims to analyze the expression profile of 6 individual CT genes including MAGE-A1, MAGE-A3, MAGE-A12, cTAGE-1, cTAGE-2, and NY-ESO-1 in ccRCC and further investigate their possible correlations with clinicopathologic characteristics. The mRNA expressions of these CT genes were detected using reverse transcriptase-polymerase chain reaction (RT-PCR) in 105 ccRCC tissue samples (T1-2 in 70 samples, T3-4 in 35 samples; G1-2 in 65 samples, G3-4 in 40 samples) as well as the paired adjacent normal tissues. The most frequently expressed CT gene was MAGE-A3 (27.6%), followed by MAGE-A12 (23.8%), NY-ESO-1 (21%), MAGE-A1 (20%), cTAGE-1 (17.1%), and cTAGE-2 (14.3%). In contrast, no expression of CT genes was detected in the paired adjacent normal tissues. Furthermore, the MAGE-A3 protein expression was determined by Western blot and immunohistochemistry. MAGE-A3 protein was expressed in 21.9% ccRCC samples with a cytoplasmic staining pattern. No MAGE-A3 protein expression was found in the paired adjacent normal tissues. There was a significant correlation between MAGE-A3 expression at both mRNA (P =0.045) and protein (P = 0.03) levels with advanced stages of the disease. Taken together, CT genes may serve as promising targets of specific immunotherapy for ccRCC and particularly, MAGE-A3 may serve as a potential prognostic marker for ccRCC patients.

Luetkens T, Kobold S, Cao Y, et al.
Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation.
Cancer Immunol Immunother. 2014; 63(11):1151-62 [PubMed] Related Publications
BACKGROUND: Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer-testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM.
METHODS: Frequency and characteristics of antibody responses against cancer-testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients.
RESULTS: We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-2(85-90).
CONCLUSIONS: We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.

Braga WM, da Silva BR, Alves VL, et al.
Is there any relationship between gene expression of tumor antigens and CD4+ T cells in multiple myeloma?
Immunotherapy. 2014; 6(5):569-75 [PubMed] Related Publications
AIM: The present study aimed at correlating the expression of cancer/testis antigens (CTAs) with the expression of genes related to tumor-infiltrating T cells.
MATERIALS & METHODS: MAGE-C1/CT-7, MAGEA3/6, NY-ESO-1, LAGE-1 and GAGE expression were evaluated in 46 bone marrow multiple myeloma (MM) aspirates by RT-PCR. Expression of FOXP3/CTLA4 and RORyt, as markers for Tregs and Th17 cells, respectively, was investigated by quantitative PCR.
RESULTS: MAGEC1/CT7 was expressed in 66% of MM samples. We did not find correlation between the presence of single CTA and expression of CTLA4 or RORyt neither expression of CD4(+) T-cell markers and the number of CTA simultaneously expressed in the tumor. However, we did observe a correlation between the percentage of plasma cells and the number of CTAs expressed in the patients' bone marrow.
CONCLUSION: Although CTAs and immunomodulatory CD4(+) T cells represent potential targets for immunotherapy in MM, we did not find association among expression of such genes in MM.

Gunda V, Frederick DT, Bernasconi MJ, et al.
A potential role for immunotherapy in thyroid cancer by enhancing NY-ESO-1 cancer antigen expression.
Thyroid. 2014; 24(8):1241-50 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: NY-ESO-1 is one of the most immunogenic members of the cancer/testis antigen family and its levels can be increased after exposure to demethylating and deacetylating agents. This cytoplasmic antigen can serve as a potent target for cancer immunotherapy and yet has not been well studied in differentiated thyroid cancer cells.
METHODS: We studied the baseline expression of NY-ESO-1 messenger RNA and protein before and after exposure to 5-aza-2'-deoxycytidine (DAC) (72 hours) in a panel of thyroid cancer cell lines using quantitative polymerase chain reaction and Western blot. HLA-A2+, NY-ESO-1+ thyroid cell lines were then co-cultured with peripheral blood lymphocytes transduced with NY-ESO-1 specific T-cell receptor (TCR) and assayed for interferon-gamma and Granzyme-B release in the medium. SCID mice injected orthotopically with BCPAP cells were treated with DAC to evaluate for NY-ESO-1 gene expression in vivo.
RESULTS: None of the thyroid cancer cell lines showed baseline expression of NY-ESO-1. Three cell lines, BCPAP, TPC-1, and 8505c, showed an increase in NY-ESO-1 gene expression with DAC treatment and were found to be HLA-A2 positive. DAC-treated target BCPAP and TPC-1 tumor cells with up-regulated NY-ESO-1 levels were able to mount an appropriate interferon-gamma and Granzyme-B response upon co-culture with the NY-ESO-1-TCR-transduced peripheral blood lymphocytes. In vivo DAC treatment was able to increase NY-ESO-1 expression in an orthotopic mouse model with BCPAP cells.
CONCLUSION: Our data suggest that many differentiated thyroid cancer cells can be pressed to express immune antigens, which can then be utilized in TCR-based immunotherapeutic interventions.

Chen YT, Panarelli NC, Piotti KC, Yantiss RK
Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions.
Cancer Immunol Res. 2014; 2(5):480-6 [PubMed] Related Publications
Cancer-testis (CT) antigens are attractive tumor antigens for cancer immunotherapy. They comprise a group of proteins normally expressed in germ cells and aberrantly activated in a variety of human cancers. The protein expression of eight cancer-testis antigens [MAGEA, NY-ESO-1, GAGE, MAGEC1 (CT7), MAGEC2 (CT10), CT45, SAGE1, and NXF2] was evaluated by immunohistochemistry in 61 esophageal carcinomas (40 adenocarcinoma and 21 squamous cell carcinoma), 50 gastric carcinomas (34 diffuse and 16 intestinal type), and 141 colorectal carcinomas. The highest frequency of expression was found in esophageal squamous cell carcinomas: Positive staining for MAGEA, CT45, CT7, SAGE1, GAGE, NXF2, NY-ESO-1, and CT10 was observed in 57%, 38%, 33%, 33%, 29%, 29%, 19%, and 14% of squamous cell carcinomas, respectively. Similar staining patterns were observed in squamous dysplasias. Expression frequencies of cancer-testis antigens were seen in 2% to 24% of gastroesophageal adenocarcinomas and were not significantly different between adenocarcinomas of the stomach versus the esophagus, or between diffuse and intestinal types of gastric adenocarcinomas. Colorectal cancers did not express NY-ESO-1, CT7, CT10, or GAGE, and only infrequently expressed SAGE1 (0.7%) MAGEA (1.4%), CT45 (3.5%), and NXF2 (8.5%). We conclude that cancer-testis antigens are frequently expressed in esophageal squamous neoplasms. Although cancer-testis antigens are generally considered to be expressed later in tumor progression, they are found in squamous dysplasias, suggesting a potential diagnostic role for cancer-testis antigens in the evaluation of premalignant squamous lesions.

Grupp K, Ospina-Klinck D, Tsourlakis MC, et al.
NY-ESO-1 expression is tightly linked to TMPRSS2-ERG fusion in prostate cancer.
Prostate. 2014; 74(10):1012-22 [PubMed] Related Publications
BACKGROUND: NY-ESO-1 has been suggested as therapeutic cancer vaccine in prostate cancer. This study was undertaken to explore the relationship of NY-ESO-1 with tumor phenotype, biochemical recurrence, and molecular subgroups in hormone-naive prostate cancers.
METHODS: NY-ESO-1 immunohistochemistry was analyzed on a tissue microarray containing 11,152 prostate cancer samples. Results were compared to clinically follow-up data, ERG status, and deletions on PTEN, 3p13, 5q21, and 6q15.
RESULTS: NY-ESO-1 expression was absent in benign prostate glands. In prostate cancer, NY-ESO-1 positivity was found 8.8% of our 8,761 interpretable tumors including 5.8% with weak, 2.5% with moderate, and 0.5% with strong expression. There was a threefold higher rate of NY-ESO-1 expression in ERG fusion positive tumors than in ERG negative cancers (P < 0.0001). There was a significant association with early PSA recurrence, which was largely limited to ERG positive cancers. Within the ERG positive subgroup, high NY-ESO-1 expression was associated with early biochemical recurrence (P = 0.0002) and high Gleason grade (P < 0.0001). In ERG negative cancers, NY-ESO-1 expression was also linked to PTEN (P = 0.0012) and 6q15 deletions (P = 0.0005).
CONCLUSIONS: Our observations indicate a tight link of NY-ESO-1 expression to ERG activation and (to a lesser extent) PTEN- and 6q15-deletions in prostate cancer. The impact of these interactions on the likelihood of response to immunotherapy is unclear. The prognostic impact of NY-ESO-1 expression is little and not independent of histologic variables.

Baia GS, Caballero OL, Ho JS, et al.
NY-ESO-1 expression in meningioma suggests a rationale for new immunotherapeutic approaches.
Cancer Immunol Res. 2013; 1(5):296-302 [PubMed] Related Publications
Meningiomas are the most common primary intracranial tumors. Surgical resection remains the treatment of choice for these tumors. However, a significant number of tumors are not surgically accessible, recur, or become malignant, necessitating the repetition of surgery and sometimes radiation. Chemotherapy is rarely used and is generally not recognized as an effective treatment. Cancer/testis (CT) genes represent a unique class of genes, which are expressed by germ cells, normally silenced in somatic cells, but activated in various cancers. CT proteins can elicit spontaneous immune responses in patients with cancer and this feature makes them attractive targets for immunotherapy-based approaches. We analyzed mRNA expression of 37 testis-restricted CT genes in a discovery set of 18 meningiomas by reverse transcription PCR. The overall frequency of expression of CT genes ranged from 5.6% to 27.8%. The most frequently expressed was NY-ESO-1, in 5 patients (27.8%). We subsequently analyzed NY-ESO-1 protein expression in a larger set of meningiomas by immunohistochemistry and found expression in 108 of 110 cases. In some cases, NY-ESO-1 expression was diffused and homogenous, but in most instances it was heterogeneous. Importantly, NY-ESO-1 expression was positively correlated with higher grade and patients presenting with higher levels of NY-ESO-1 staining had significantly worse disease-free and overall survival. We have also shown that NY-ESO-1 expression may lead to humoral immune response in patients with meningioma. Considering the limited treatment options for patients with meningioma, the potential of NY-ESO-1-based immunotherapy should be explored.

Hayes SJ, Hng KN, Clark P, et al.
Immunohistochemical assessment of NY-ESO-1 expression in esophageal adenocarcinoma resection specimens.
World J Gastroenterol. 2014; 20(14):4011-6 [PubMed] Free Access to Full Article Related Publications
AIM: To assess NY-ESO-1 expression in a cohort of esophageal adenocarcinomas.
METHODS: A retrospective search of our tissue archive for esophageal resection specimens containing esophageal adenocarcinoma was performed, for cases which had previously been reported for diagnostic purposes, using the systematised nomenclature of human and veterinary medicine coding system. Original haematoxylin and eosin stained sections were reviewed, using light microscopy, to confirm classification and tumour differentiation. A total of 27 adenocarcinoma resection specimens were then assessed using immunohistochemistry for NY-ESO-1 expression: 4 well differentiated, 14 moderately differentiated, 4 moderate-poorly differentiated, and 5 poorly differentiated.
RESULTS: Four out of a total of 27 cases of esophageal adenocarcinoma examined (15%) displayed diffuse cytoplasmic and nuclear expression for NY-ESO-1. They displayed a heterogeneous and mosaic-type pattern of diffuse staining. Diffuse cytoplasmic staining was not identified in any of these structures: stroma, normal squamous epithelium, normal submucosal gland and duct, Barrett's esophagus (goblet cell), Barrett's esophagus (non-goblet cell) and high grade glandular dysplasia. All adenocarcinomas showed an unexpected dot-type pattern of staining at nuclear, paranuclear and cytoplasmic locations. Similar dot-type staining, with varying frequency and size of dots, was observed on examination of Barrett's metaplasia, esophageal submucosal gland acini and the large bowel negative control, predominantly at the crypt base. Furthermore, a prominent pattern of apical (luminal) cytoplasmic dot-type staining was observed in some cases of Barrett's metaplasia and also adenocarcinoma. A further morphological finding of interest was noted on examination of haematoxylin and eosin stained sections, as aggregates of lymphocytes were consistently noted to surround submucosal glands.
CONCLUSION: We have demonstrated for the first time NY-ESO-1 expression by esophageal adenocarcinomas, Barrett's metaplasia and normal tissues other than germ cells.

Grah JJ, Katalinic D, Juretic A, et al.
Clinical significance of immunohistochemical expression of cancer/testis tumor-associated antigens (MAGE-A1, MAGE-A3/4, NY-ESO-1) in patients with non-small cell lung cancer.
Tumori. 2014 Jan-Feb; 100(1):60-8 [PubMed] Related Publications
AIMS AND BACKGROUND: This paper deals with the clinical significance of the immunohistochemical expression of MAGE-A1, MAGE-A3/4 and NY-ESO-1 antigens in patients with non-small cell lung cancer (NSCLC).
METHODS AND STUDY DESIGN: The study included 80 patients with NSCLC (40 with adenocarcinoma, 40 with squamous cell carcinoma) who had undergone surgery. MAGE-A1 and MAGE-A3/4 antigen expression was determined by an immunohistochemical method using the monoclonal antibody 57B, and NY-ESO-1 antigen expression was determined with the addition of the B9.8.1.1 antibody. The expression of these antigens was compared with the clinicopathological features of the tumors and the survival of the patients.
RESULTS: MAGE-A1, MAGE-A3/4 and NY-ESO-1 were expressed in 17.3%, 44.4% and 18.5% of NSCLC patients, respectively. A statistically higher immunohistological expression rate of MAGE-A3/4 was found in squamous cell carcinoma (P <0.001) and a significantly higher amount of tumor necrosis was observed in tumors with MAGE-3 expression (P = 0.001), but no correlation with positive lymph nodes was found. There was a statistically significant correlation between MAGE-A1 expression in adenocarcinoma and the presence of tumor necrosis (P = 0.05). Furthermore, there was a significant correlation between NY-ESO-1 expression and positive lymph nodes in adenocarcinoma, but not in squamous cell carcinoma. No statistically significant difference in patient survival was found with regard to tumor type and the observed histopathological characteristics except tumor size. Statistically significantly better survival was found in the group of patients with adenocarcinomas who had positive expression of MAGE-A3/4 (P = 0.012).
CONCLUSIONS: This study demonstrated that the expression of MAGE-A3/4 antigen might be a valuable prognostic factor regarding survival in patients with NSCLC.

Mrklić I, Spagnoli GC, Juretić A, et al.
Co-expression of cancer testis antigens and topoisomerase 2-alpha in triple negative breast carcinomas.
Acta Histochem. 2014; 116(5):740-6 [PubMed] Related Publications
Triple negative breast cancers (TNBC) are characterized by aggressive tumor biology, lack of targeted treatments and poor prognosis. Anthracyclins were shown to induce immunogenic death in target cells, potentially leading to "endogenous" vaccination. We comparatively assessed expression of cancer testis antigens (CTA) and topoisomerase 2-alpha (TOPO2A), a well defined molecular target of anthracyclins, in TNBC fully characterized for basal-like (BL) immunophenotype, BL morphology and conventional clinicopathological factors. The study included 83 patients undergoing surgery between January 2003 and December 2009. Tissue sections were stained with CK5/6, CK14, EGFR, Ki-67, TOPO2A, MAGE-A1, MAGE-A10, NY-ESO and multi-MAGE-A specific reagents. Of the 83 TNBC, >66.3% had BL immunophenotype and 48.2% had BL morphology. MAGE-A1 specific staining was most frequently detectable (69.2%), followed by multi-MAGE-A (58%), NY-ESO (27.1%) and MAGE-A10 (16%) specific staining. MAGE-A10 expression significantly correlated with tumor size (p=0.026). Furthermore, MAGE-A1, MAGE-A10 and multi-MAGE-A specific stainings significantly correlated with advanced clinical stage (p=0.024, p=0.041, p=0.031, respectively). We found no significant association between CTA expression and disease free (DFS) or overall survival (OS). Most interestingly, a significant correlation was observed between expression of MAGE-A10 and NY-ESO and expression of TOPO2A (p=0.005, p=0.013). Expression of defined CTA and TOPO2A are significantly correlated in TNBC. Considering the limited therapeutic options for TNBC, these findings might suggest novel forms of combination therapies that should be further explored.

Odunsi K, Matsuzaki J, James SR, et al.
Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer.
Cancer Immunol Res. 2014; 2(1):37-49 [PubMed] Free Access to Full Article Related Publications
The cancer-testis/cancer-germline antigen NY-ESO-1 is a vaccine target in epithelial ovarian cancer (EOC), but its limited expression is a barrier to vaccine efficacy. As NY-ESO-1 is regulated by DNA methylation, we hypothesized that DNA methyltransferase (DNMT) inhibitors may augment NY-ESO-1 vaccine therapy. In agreement, global DNA hypomethylation in EOC was associated with the presence of circulating antibodies to NY-ESO-1. Pre-clinical studies using EOC cell lines showed that decitabine treatment enhanced both NY-ESO-1 expression and NY-ESO-1-specific CTL-mediated responses. Based on these observations, we performed a phase I dose-escalation trial of decitabine, as an addition to NY-ESO-1 vaccine and doxorubicin liposome (doxorubicin) chemotherapy, in 12 patients with relapsed EOC. The regimen was safe, with limited and clinically manageable toxicities. Both global and promoter-specific DNA hypomethylation occurred in blood and circulating DNAs, the latter of which may reflect tumor cell responses. Increased NY-ESO-1 serum antibodies and T cell responses were observed in the majority of patients, and antibody spreading to additional tumor antigens was also observed. Finally, disease stabilization or partial clinical response occurred in 6/10 evaluable patients. Based on these encouraging results, evaluation of similar combinatorial chemo-immunotherapy regimens in EOC and other tumor types is warranted.

Hemminger JA, Toland AE, Scharschmidt TJ, et al.
Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma.
Mod Pathol. 2014; 27(9):1238-45 [PubMed] Free Access to Full Article Related Publications
Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n=37) and frozen tissue (n=8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1-2+) and percent tumor positivity. The gene expression levels of CTAG2, PRAME, and MAGEA3 were measured by quantitative real-time PCR. In total, 37/37 (100%) of the samples showed predominantly strong, homogenous immunoreactivity for PRAME. There was a variable, focal expression of MAGEA1 (11%) and SSX2 (16%) and no expression of ACRBP. Quantitative real-time PCR demonstrated PRAME and CTAG2 transcripts in all eight samples: six tumors with high mRNA levels; two tumors with low mRNA levels. The gene expression of MAGEA3 was not detected in the majority of cases. In conclusion, myxoid and round-cell liposarcomas consistently express PRAME by immunohistochemistry as well as CTAG2 and PRAME by qualitative real-time PCR. This supports the use of cancer-testis antigen-targeted immunotherapy in the treatment of this malignancy.

Klippel ZK, Chou J, Towlerton AM, et al.
Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC.
Gene Ther. 2014; 21(3):337-42 [PubMed] Free Access to Full Article Related Publications
Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1(+) multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8(+) T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T-cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity (LOH) in the major histocompatibility complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although LOH involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T-cell therapy.

Fujiwara H
Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.
Int J Hematol. 2014; 99(2):123-31 [PubMed] Related Publications
The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

Pagotto A, Caballero OL, Volkmar N, et al.
Centrosomal localisation of the cancer/testis (CT) antigens NY-ESO-1 and MAGE-C1 is regulated by proteasome activity in tumour cells.
PLoS One. 2013; 8(12):e83212 [PubMed] Free Access to Full Article Related Publications
The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-1(91-150) and MAGE-C1(900-1116) were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.

Hinrichs CS, Rosenberg SA
Exploiting the curative potential of adoptive T-cell therapy for cancer.
Immunol Rev. 2014; 257(1):56-71 [PubMed] Free Access to Full Article Related Publications
Adoptive T-cell therapy (ACT) is a potent and flexible cancer treatment modality that can induce complete, durable regression of certain human malignancies. Long-term follow-up of patients receiving tumor-infiltrating lymphocytes (TILs) for metastatic melanoma reveals a substantial subset that experienced complete, lasting tumor regression - and may be cured. Increasing evidence points to mutated gene products as the primary immunological targets of TILs from melanomas. Recent technological advances permit rapid identification of the neoepitopes resulting from these somatic gene mutations and of T cells with reactivity against these targets. Isolation and adoptive transfer of these T cells may improve TIL therapy for melanoma and permit its broader application to non-melanoma tumors. Extension of ACT to other malignancies may also be possible through antigen receptor gene engineering. Tumor regression has been observed following transfer of T cells engineered to express chimeric antigen receptors against CD19 in B-cell malignancies or a T-cell receptor against NY-ESO-1 in synovial cell sarcoma and melanoma. Herein, we review recent clinical trials of TILs and antigen receptor gene therapy for advanced cancers. We discuss lessons from this experience and consider how they might be applied to realize the full curative potential of ACT.

Bode PK, Thielken A, Brandt S, et al.
Cancer testis antigen expression in testicular germ cell tumorigenesis.
Mod Pathol. 2014; 27(6):899-905 [PubMed] Related Publications
Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.

Sugiyama D, Nishikawa H, Maeda Y, et al.
Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans.
Proc Natl Acad Sci U S A. 2013; 110(44):17945-50 [PubMed] Free Access to Full Article Related Publications
CD4(+) Treg cells expressing the transcription factor FOXP3 (forkhead box P3) are abundant in tumor tissues and appear to hinder the induction of effective antitumor immunity. A substantial number of T cells, including Treg cells, in tumor tissues and peripheral blood express C-C chemokine receptor 4 (CCR4). Here we show that CCR4 was specifically expressed by a subset of terminally differentiated and most suppressive CD45RA(-)FOXP3(hi)CD4(+) Treg cells [designated effector Treg (eTreg) cells], but not by CD45RA(+)FOXP3(lo)CD4(+) naive Treg cells, in peripheral blood of healthy individuals and cancer patients. In melanoma tissues, CCR4(+) eTreg cells were predominant among tumor-infiltrating FOXP3(+) T cells and much higher in frequency compared with those in peripheral blood. With peripheral blood lymphocytes from healthy individuals and melanoma patients, ex vivo depletion of CCR4(+) T cells and subsequent in vitro stimulation of the depleted cell population with the cancer/testis antigen NY-ESO-1 efficiently induced NY-ESO-1-specific CD4(+) T cells. Nondepletion failed in the induction. The magnitude of the responses was comparable with total removal of FOXP3(+) Treg cells by CD25(+) T-cell depletion. CCR4(+) T-cell depletion also augmented in vitro induction of NY-ESO-1-specific CD8(+) T cells in melanoma patients. Furthermore, in vivo administration of anti-CCR4 mAb markedly reduced the eTreg-cell fraction and augmented NY-ESO-1-specific CD8(+) T-cell responses in an adult T-cell leukemia-lymphoma patient whose leukemic cells expressed NY-ESO-1. Collectively, these findings indicate that anti-CCR4 mAb treatment is instrumental for evoking and augmenting antitumor immunity in cancer patients by selectively depleting eTreg cells.

Gjerstorff MF, Pøhl M, Olsen KE, Ditzel HJ
Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma.
BMC Cancer. 2013; 13:466 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC.
METHODS: Tumor biopsies from normal lung tissue and from a large cohort (n = 169) of NSCLC patients were examined for GAGE, NY-ESO-1 and SP17 protein expression by immunohistochemical analysis. The expression of these antigens was further matched to clinical and pathological features using univariate cox regression analysis.
RESULTS: GAGE and NY-ESO-1 cancer/testis antigens were not expressed in normal lung tissue, while SP17 was expressed in ciliated lung epithelia. The frequency of GAGE, NY-ESO-1 and SP17 expression in NSCLC tumors were 26.0% (44/169), 11.8% (20/169) and 4.7% (8/169), respectively, and 33.1% (56/169) of the tumors expressed at least one of these antigens. In general, the expression of GAGE, NY-ESO-1 and SP17 was not significantly associated with a specific histotype (adenocarcinoma vs. squamous cell carcinoma), but high-level GAGE expression (>50%) was more frequent in squamous cell carcinoma (p = 0.02). Furthermore, the frequency of GAGE expression was demonstrated to be significantly higher in stage II-IIIa than stage I NSCLC (17.0% vs. 35.8%; p = 0.02). Analysis of the relation between tumor expression of GAGE and NY-ESO-1 and survival endpoints revealed no significant associations.
CONCLUSION: Our study demonstrates that GAGE, NY-ESO-1 and SP17 cancer/testis antigens are candidate targets for immunotherapy of NSCLC and further suggest that multi-antigen vaccines may be beneficial.

Kageyama S, Wada H, Muro K, et al.
Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients.
J Transl Med. 2013; 11:246 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cholesteryl pullulan (CHP) is a novel antigen delivery system for cancer vaccines. This study evaluated the safety, immune responses and clinical outcomes of patients who received the CHP-NY-ESO-1 complex vaccine, Drug code: IMF-001.
METHODS: Patients with advanced/metastatic esophageal cancer were enrolled and subcutaneously vaccinated with either 100 μg or 200 μg of NY-ESO-1 protein complexed with CHP. The primary endpoints were safety and humoral immune responses, and the secondary endpoint was clinical efficacy.
RESULTS: A total of 25 patients were enrolled. Thirteen and twelve patients were repeatedly vaccinated with 100 μg or 200 μg of CHP-NY-ESO-1 with a median of 8 or 9.5 doses, respectively. No serious adverse events related to the vaccine were observed. Three out of 13 patients in the 100-μg cohort and 7 out of 12 patients in the 200-μg cohort were positive for anti-NY-ESO-1 antibodies at baseline. In the 100-μg cohort, an antibody response was observed in 5 out of 10 pre-antibody-negatives patients, and the antibody levels were augmented in 2 pre-antibody-positive patients after vaccination. In the 200-μg cohort, all 5 pre-antibody-negative patients became seropositive, and the antibody level was amplified in all 7 pre-antibody-positive patients. No tumor shrinkage was observed. The patients who received 200 μg of CHP-NY-ESO-1 survived longer than patients receiving 100 μg of CHP-NY-ESO-1, even those who exhibited unresponsiveness to previous therapies or had higher tumor burdens.
CONCLUSIONS: The safety and immunogenicity of CHP-NY-ESO-1 vaccine were confirmed. The 200 μg dose more efficiently induced immune responses and suggested better survival benefits. (Clinical trial registration number NCT01003808).

Chen Y, Huang A, Gao M, et al.
Potential therapeutic value of dendritic cells loaded with NY‑ESO‑1 protein for the immunotherapy of advanced hepatocellular carcinoma.
Int J Mol Med. 2013; 32(6):1366-72 [PubMed] Related Publications
NY‑ESO‑1 is one of the most immunogenic cancer-testis (CT) antigens. Cancer vaccine trials based on NY‑ESO‑1 are currently ongoing. Dendritic cells (DCs) are the most potent antigen-presenting cells. The immune functions of DCs in a number of tumors have been identified; however, the potential therapeutic value of DCs pulsed with NY‑ESO‑1 in hepatocellular carcinoma (HCC) has not been extensively investigated. The objectives of the present study were to evaluate T cell response following stimulation with DCs pulsed with the recombinant NY‑ESO‑1 protein (rESO) and to establish a correlation between NY‑ESO‑1 expression and clinicopathological features in HCC patients. DCs were generated with granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL‑4) from human peripheral blood mononuclear cells. A mixed T cell reaction with DCs loaded with recombinant NY‑ESO‑1 protein (rESO-DCs) was evaluated by MTT assay. T cell responses against HCC cell lines were analyzed by measuring lactate dehydrogenase (LDH) activity. The protein levels of NY‑ESO‑1 were detected by immunohistochemistry (IHC) in a tissue microarray (TMA) containing 190 HCC samples. NY‑ESO‑1 transcript abundance was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) in 54 out of the 190 HCC samples. The results revealed that mature DCs were induced and that rESO‑DCs significantly stimulated T cell proliferation. The specific lysis of T cells stimulated with rESO‑DCs was significantly higher in the NY‑ESO‑1-positive HCC cells compared with the NY‑ESO‑1-negative cells and the other controls (p<0.01). NY‑ESO‑1 was expressed in 15.8% (30/190)of the HCC samples, as shown by IHC and in 24.1% (13/54) of the samples, as shown by RT-PCR. The frequency of NY‑ESO‑1 expression was significantly higher in HCC patients with portal vein tumor thrombosis (24.6%) compared with those without thrombosis (11.2%, p=0.013). Our data suggest that DCs loaded with NY‑ESO‑1 protein stimulate antigen-specific T cell responses against HCC cells in vitro. NY‑ESO‑1 may thus be used as a potential target for immunotherapy in advanced HCC.

Flecken T, Schmidt N, Hild S, et al.
Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma.
Hepatology. 2014; 59(4):1415-26 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide with a poor prognosis and limited therapeutic options. To aid the development of novel immunological interventions, we studied the breadth, frequency, and tumor-infiltration of naturally occurring CD8(+) T-cell responses targeting several tumor-associated antigens (TAA). We used overlapping peptides spanning the entire alpha-fetoprotein (AFP), glypican-3 (GPC-3), melanoma-associated gene-A1 (MAGE-A1) and New York-esophageal squamous cell carcinoma-1 (NY-ESO-1) proteins and major-histocompatibility-complex-class-I-tetramers specific for epitopes of MAGE-A1 and NY-ESO-1 to analyze TAA-specific CD8(+) T-cell responses in a large cohort of HCC patients. After nonspecific expansion in vitro, we detected interferon-γ (IFN-γ)-producing CD8(+) T cells specific for all four TAA in the periphery as well as in liver and tumor tissue. These CD8(+) T-cell responses displayed clear immunodominance patterns within each TAA, but no consistent hierarchy was observed between different TAA. Importantly, the response breadth was highest in early-stage HCC and associated with patient survival. After antigen-specific expansion, TAA-specific CD8(+) T cells were detectable by tetramer staining but impaired in their ability to produce IFN-γ. Furthermore, regulatory T cells (Treg) were increased in HCC lesions. Depletion of Treg from cultures improved TAA-specific CD8(+) T-cell proliferation but did not restore IFN-γ-production.
CONCLUSION: Naturally occurring TAA-specific CD8(+) T-cell responses are present in patients with HCC and therefore constitute part of the normal T-cell repertoire. Moreover, the presence of these responses correlates with patient survival. However, the observation of impaired IFN-γ production suggests that the efficacy of such responses is functionally limited. These findings support the development of strategies that aim to enhance the total TAA-specific CD8(+) T-cell response by therapeutic boosting and/or specificity diversification. However, further research will be required to help unlock the full potential of TAA-specific CD8(+) T-cell responses.

Xu L, Zheng J, Nguyen DH, et al.
Enhancing whole-tumor cell vaccination by engaging innate immune system through NY-ESO-1/dendritic cell interactions.
J Immunother. 2013; 36(8):412-22 [PubMed] Related Publications
NY-ESO-1 is a cancer/germline antigen (Ag) with distinctively strong immunogenicity. We have previously demonstrated that NY-ESO-1 serves as an endogenous adjuvant by engaging dendritic cell (DC)-surface receptors of calreticulin (CRT) and toll-like receptor (TLR) 4. In the present study, NY-ESO-1 was investigated for its immunomodulatory roles as a molecular adjuvant in whole-tumor cell vaccines using the Renca kidney cancer model. Renca cells were genetically engineered to express NY-ESO-1 on the cell surface to enhance direct interactions with DC. The effect of ectopic cell-surface expression of NY-ESO-1 was investigated on tumor immunogenicity, DC activation, cytotoxic T lymphocytes against model tumor-associated Ags, and the effectiveness of the modified tumor cells as a therapeutic whole-cell vaccine. Cell-surface expression of NY-ESO-1 was able to reduce the tumor growth of Renca cells in BALB/c mice, although the modification did not alter cell proliferation rate in vitro. Directly engaging the innate immune system through NY-ESO-1 facilitated the interaction of tumor cells with DC, leading to enhanced DC activation and subsequent tumor-specific T-cell priming. When used as a therapeutic whole-cell vaccine, Renca cells with NY-ESO-1 on the surface mediated stronger inhibitory effects on tumor growth and metastasis compared with parental Renca or Renca cells expressing a control protein GFP on the surface. Augmented antitumor efficacy correlated with increased CD8 T-cell infiltration into tumors and decreased myeloid-derived suppressor cells and regulatory T cells in the spleen. As a cancer/germline Ag and as an immunomodulatory adjuvant through engaging innate immune receptors, NY-ESO-1 offers a unique opportunity for improved whole-tumor cell vaccinations upon the classic GM-CSF-engineered cell vaccines.

John T, Starmans MH, Chen YT, et al.
The role of Cancer-Testis antigens as predictive and prognostic markers in non-small cell lung cancer.
PLoS One. 2013; 8(7):e67876 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer-Testis Antigens (CTAs) are immunogenic proteins that are poor prognostic markers in non-small cell lung cancer (NSCLC). We investigated expression of CTAs in NSCLC and their association with response to chemotherapy, genetic mutations and survival.
METHODS: We studied 199 patients with pathological N2 NSCLC treated with neoadjuvant chemotherapy (NAC; n = 94), post-operative observation (n = 49), adjuvant chemotherapy (n = 47) or unknown (n = 9). Immunohistochemistry for NY-ESO-1, MAGE-A and MAGE-C1 was performed. Clinicopathological features, response to neoadjuvant treatment and overall survival were correlated. DNA mutations were characterized using the Sequenom Oncocarta panel v1.0. Affymetrix data from the JBR.10 adjuvant chemotherapy study were obtained from a public repository, normalised and mapped for CTAs.
RESULTS: NY-ESO-1 was expressed in 50/199 (25%) samples. Expression of NY-ESO-1 in the NAC cohort was associated with significantly increased response rates (P = 0.03), but not overall survival. In the post-operative cohort, multivariate analyses identified NY-ESO-1 as an independent poor prognostic marker for those not treated with chemotherapy (HR 2.61, 95% CI 1.28-5.33; P = 0.008), whereas treatment with chemotherapy and expression of NY-ESO-1 was an independent predictor of improved survival (HR 0.267, 95% CI 0.07-0.980; P = 0.046). Similar findings for MAGE-A were seen, but did not meet statistical significance. Independent gene expression data from the JBR.10 dataset support these findings but were underpowered to demonstrate significant differences. There was no association between oncogenic mutations and CTA expression.
CONCLUSIONS: NY-ESO-1 was predictive of increased response to neoadjuvant chemotherapy and benefit from adjuvant chemotherapy. Further studies investigating the relationship between these findings and immune mechanisms are warranted.

Chen YT, Cao D, Chiu R, Lee P
Chromosome X-encoded Cancer/Testis antigens are less frequently expressed in non-seminomatous germ cell tumors than in seminomas.
Cancer Immun. 2013; 13:10 [PubMed] Free Access to Full Article Related Publications
Cancer/Testis (CT) antigens are normally only expressed in germ cells and yet are aberrantly activated in a wide variety of human cancers. Most chromosome X-encoded CT antigens (CT-X) show restricted expression in pre-meiotic germ cells in adult testis, except for the expression of SPANX in post-meiotic germ cells. In the present study, the expression of eight CT-X antigens (MAGE-A, NY-ESO-1, GAGE, MAGE-C1/CT7, MAGE-C2/CT10, CT45, SAGE1, and SPANX) in non-seminomatous germ cell tumors was evaluated immunohistochemically, including 24 embryonal carcinomas, 20 yolk sac tumors, 9 teratomas, and 3 choriocarcinomas, and the results were compared to our previous study of 77 classic seminomas and 2 spermatocytic seminomas. SPANX was not detected in any germ cell tumors tested. Spermatocytic seminoma showed strong expression of all CT-X antigens tested (except SPANX), reflecting their origin from adult CT-Xpositive pre-meiotic germ cells. Classic seminomas, originating from prenatal gonocytes, showed widely variable frequency of CT-X antigen expression, ranging from > 80% (CT7, CT10, CT45, and GAGE), 63% (MAGE-A), 18% (NY-ESO-1) to only 4% (SAGE1). In comparison, non-seminomatous germ cell tumors expressed CT-X antigens much less frequently and usually only in small subsets of tumor cells. Intratubular germ cell neoplasia (ITGCN) were mostly CT-X-negative, even in CT-X positive classic seminomas. These findings indicate that CT-X antigens are not expressed in the fetal precursor cells for germ cell tumors, and their expression likely reflects germ cell differentiation of the neoplastic cells (in seminomas) or aberrant gene activation as cancer antigens (in non-seminomatous tumors).

Stauss HJ, Morris EC
Immunotherapy with gene-modified T cells: limiting side effects provides new challenges.
Gene Ther. 2013; 20(11):1029-32 [PubMed] Related Publications
Genetic tools have been developed to efficiently engineer T-cell specificity and enhance T-cell function. Chimeric antigen receptors (CAR) use the antibody variable segments to direct specificity against cell surface molecules. T-cell receptors (TCR) can redirect T cells to intracellular target proteins, fragments of which are presented in the peptide-binding groove of HLA molecules. A recent clinical trial with CAR-modified T cells redirected against the B-cell lineage antigen CD19 showed dramatic clinical benefit in chronic lymphocytic leukaemia patients. Similarly, impressive clinical responses were seen in melanoma and synovial cell carcinoma with TCR-modified T cells redirected against the melanocyte lineage antigen MART-1 and the testis-cancer antigen NY-ESO-1. However, on and off-target toxicity was associated with most of these clinical responses, and fatal complications have been observed in some patients treated with gene modified T cells. This review will discuss factors that might contribute to toxic side effects of therapy with gene modified T cells, and outline potential strategies to retain anticancer activity while reducing unwanted side effects.

Hudolin T, Kastelan Z, Ilic I, et al.
Immunohistochemical analysis of the expression of MAGE-A and NY-ESO-1 cancer/testis antigens in diffuse large B-cell testicular lymphoma.
J Transl Med. 2013; 11:123 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Primary testicular lymphoma (PTL) is a rare and lethal disease. The most common histological subtype is diffuse large B-cell lymphoma (DLBCL). Standard treatments are frequently ineffective. Thus, the development of novel forms of therapy is urgently required. Specific immunotherapy generating immune responses directed against antigen predominantly expressed by cancer cells such as cancer-testis antigens (CTA) may provide a valid alternative treatment for patients bearing PTL, alone or in combination with current therapies.
METHODS: Three monoclonal antibodies (mAbs), 77B recognizing MAGE-A1, 57B recognizing an epitope shared by multiple MAGE-A CTA (multi-MAGE-A specific) and D8.38 recognizing NY-ESO-1/LAGE-1 were used for immunohistochemical staining of 27 PTL, including 24 DLBCL.
RESULTS: Expression of MAGE-A1 was infrequently detectable in DLBCL specimens (12.50%), whereas multi-MAGE-A and NY-ESO-1/LAGE-1 specific reagents stained the cytoplasms of tumor cells in DLBCL specimens with higher frequencies (54.17% and 37.50%, respectively) with different expression levels.
CONCLUSIONS: These results suggest that MAGE-A and NY-ESO-1/LAGE-1, possibly in combination with other CTA, might be used as targets for specific immunotherapy in DLBCL.

Neumann F, Kaddu-Mulindwa D, Widmann T, et al.
EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors.
Cancer Immunol Immunother. 2013; 62(7):1211-22 [PubMed] Related Publications
EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTAG1B (CTAG, NY-ESO-1), Cancer Genetics Web: http://www.cancer-genetics.org/CTAG.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999