SPI1

Gene Summary

Gene:SPI1; Spi-1 proto-oncogene
Aliases: OF, PU.1, SFPI1, SPI-1, SPI-A
Location:11p11.2
Summary:This gene encodes an ETS-domain transcription factor that activates gene expression during myeloid and B-lymphoid cell development. The nuclear protein binds to a purine-rich sequence known as the PU-box found near the promoters of target genes, and regulates their expression in coordination with other transcription factors and cofactors. The protein can also regulate alternative splicing of target genes. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:transcription factor PU.1
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (30)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Acute Erythroblastic Leukemia
  • Gene Expression Profiling
  • Binding Sites
  • Signal Transduction
  • Myeloid Leukemia
  • Proto-Oncogene Proteins
  • Hematopoiesis
  • CREBBP
  • DNA Methylation
  • Transcriptional Activation
  • Down Syndrome
  • Lung Cancer
  • p53 Protein
  • Leukemia, Promyelocytic, Acute
  • Myeloproliferative Disorders
  • Trans-Activators
  • Transcription Factor AP-1
  • Transcription
  • Recurrence
  • Tumor Markers
  • Mutation
  • Chromosome Banding
  • Cancer Gene Expression Regulation
  • Core Binding Factor Alpha 2 Subunit
  • MicroRNAs
  • Leukemic Gene Expression Regulation
  • Oncogenes
  • Transcription Factors
  • Cell Lineage
  • Promoter Regions
  • Cell Differentiation
  • RTPCR
  • Translocation
  • Acute Myeloid Leukaemia
  • Chromosome 11
  • Up-Regulation
  • Oncogene Fusion Proteins
  • Messenger RNA
  • Epigenetics
  • Neural Cell Adhesion Molecules
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Latest Publications: SPI1 (cancer-related)

Inoue T, Swain A, Nakanishi Y, Sugiyama D
Multicolor analysis of cell surface marker of human leukemia cell lines using flow cytometry.
Anticancer Res. 2014; 34(8):4539-50 [PubMed] Related Publications
BACKGROUND: Leukemia cell lines are utilized as tools for molecular analysis. Their implementation in therapy will require standards for quality control, including appropriate selection criteria for functional analysis and efficacy determination.
MATERIALS AND METHODS: Characteristics of six human leukemia cell lines -Kasumi-1, NB-4, MOLM-13, MV-4-11, K562, and Jurkat cells-were investigated using multiple color analysis of surface antigen expression and comparative analysis of gene expression.
RESULTS: Differentiation states of Kasumi-1 and MOLM-13 cells are colony-forming units-granulocyte/macrophage equivalent cells to myeloblasts with comparatively high Growth factor independent-1(GFI1) and Transcription factor PU.1 (PU.1) expression, respectively. NB4 and MV-4-11 express high levels of CCAAT/enhancer-binding protein-alpha (CEBPα) and differentiate from myeloblasts to pro-monocytes and myeloblasts, respectively. K562 cells are colony-forming units-erythroid equivalent cells to erythroblasts, with the highest expression of GATA-binding factor 2 (GATA2), GATA1 and Friend of gata-1 (FOG1). Jurkat cells are pro-T to mature T-cells with the highest Neurogenic locus notch-1 homolog protein 1 (NOTCH1) expression.
CONCLUSION: Our study gives a useful guideline of standards for appropriate usage of leukemia cell lines for examining novel targets in vitro.

Haimovici A, Brigger D, Torbett BE, et al.
Induction of the autophagy-associated gene MAP1S via PU.1 supports APL differentiation.
Leuk Res. 2014; 38(9):1041-7 [PubMed] Related Publications
The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.

Nika E, Brugnoli F, Piazzi M, et al.
hnRNP K in PU.1-containing complexes recruited at the CD11b promoter: a distinct role in modulating granulocytic and monocytic differentiation of AML-derived cells.
Biochem J. 2014; 463(1):115-22 [PubMed] Related Publications
PU.1 is essential for the differentiation of haemopoietic precursors and is strongly implicated in leukaemogenesis, yet the protein interactions that regulate its activity in different myeloid lineages are still largely unknown. In the present study, by combining fluorescent EMSA (electrophoretic mobility-shift assay) with MS, we reveal the presence of hnRNP K (heterogeneous nuclear ribonucleoprotein K) in molecular complexes that PU.1 forms on the CD11b promoter during the agonist-induced maturation of AML (acute myeloid leukaemia)-derived cells along both the granulocytic and the monocytic lineages. Although hnRNP K and PU.1 act synergistically during granulocytic differentiation, hnRNP K seems to have a negative effect on PU.1 activity during monocytic maturation. Since hnRNP K acts as a docking platform, integrating signal transduction pathways to nucleic acid-directed processes, it may assist PU.1 in activating or repressing transcription by recruiting lineage-specific components of the transcription machinery. It is therefore possible that hnRNP K plays a key role in the mechanisms underlying the specific targeting of protein-protein interactions identified as mediators of transcriptional activation or repression and may be responsible for the block of haemopoietic differentiation.

Care MA, Cocco M, Laye JP, et al.
SPIB and BATF provide alternate determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity.
Nucleic Acids Res. 2014; 42(12):7591-610 [PubMed] Free Access to Full Article Related Publications
Interferon regulatory factor 4 (IRF4) is central to the transcriptional network of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL), an aggressive lymphoma subgroup defined by gene expression profiling. Since cofactor association modifies transcriptional regulatory input by IRF4, we assessed genome occupancy by IRF4 and endogenous cofactors in ABC-DLBCL cell lines. IRF4 partners with SPIB, PU.1 and BATF genome-wide, but SPIB provides the dominant IRF4 partner in this context. Upon SPIB knockdown IRF4 occupancy is depleted and neither PU.1 nor BATF acutely compensates. Integration with ENCODE data from lymphoblastoid cell line GM12878, demonstrates that IRF4 adopts either SPIB- or BATF-centric genome-wide distributions in related states of post-germinal centre B-cell transformation. In primary DLBCL high-SPIB and low-BATF or the reciprocal low-SPIB and high-BATF mRNA expression links to differential gene expression profiles across nine data sets, identifying distinct associations with SPIB occupancy, signatures of B-cell differentiation stage and potential pathogenetic mechanisms. In a population-based patient cohort, SPIBhigh/BATFlow-ABC-DLBCL is enriched for mutation of MYD88, and SPIBhigh/BATFlow-ABC-DLBCL with MYD88-L265P mutation identifies a small subgroup of patients among this otherwise aggressive disease subgroup with distinct favourable outcome. We conclude that differential expression of IRF4 cofactors SPIB and BATF identifies biologically and clinically significant heterogeneity among ABC-DLBCL.

Prange KH, Singh AA, Martens JH
The genome-wide molecular signature of transcription factors in leukemia.
Exp Hematol. 2014; 42(8):637-50 [PubMed] Related Publications
Transcription factors control expression of genes essential for the normal functioning of the hematopoietic system and regulate development of distinct blood cell types. During leukemogenesis, aberrant regulation of transcription factors such as RUNX1, CBFβ, MLL, C/EBPα, SPI1, GATA, and TAL1 is central to the disease. Here, we will discuss the mechanisms of transcription factor deregulation in leukemia and how in recent years next-generation sequencing approaches have helped to elucidate the molecular role of many of these aberrantly expressed transcription factors. We will focus on the complexes in which these factors reside, the role of posttranslational modification of these factors, their involvement in setting up higher order chromatin structures, and their influence on the local epigenetic environment. We suggest that only comprehensive knowledge on all these aspects will increase our understanding of aberrant gene expression in leukemia as well as open new entry points for therapeutic intervention.

Gu X, Hu Z, Ebrahem Q, et al.
Runx1 regulation of Pu.1 corepressor/coactivator exchange identifies specific molecular targets for leukemia differentiation therapy.
J Biol Chem. 2014; 289(21):14881-95 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
Gene activation requires cooperative assembly of multiprotein transcription factor-coregulator complexes. Disruption to cooperative assemblage could underlie repression of tumor suppressor genes in leukemia cells. Mechanisms of cooperation and its disruption were therefore examined for PU.1 and RUNX1, transcription factors that cooperate to activate hematopoietic differentiation genes. PU.1 is highly expressed in leukemia cells, whereas RUNX1 is frequently inactivated by mutation or translocation. Thus, coregulator interactions of Pu.1 were examined by immunoprecipitation coupled with tandem mass spectrometry/Western blot in wild-type and Runx1-deficient hematopoietic cells. In wild-type cells, the NuAT and Baf families of coactivators coimmunoprecipitated with Pu.1. Runx1 deficiency produced a striking switch to Pu.1 interaction with the Dnmt1, Sin3A, Nurd, CoRest, and B-Wich corepressor families. Corepressors of the Polycomb family, which are frequently inactivated by mutation or deletion in myeloid leukemia, did not interact with Pu.1. The most significant gene ontology association of Runx1-Pu.1 co-bound genes was with macrophages, therefore, functional consequences of altered corepressor/coactivator exchange were examined at Mcsfr, a key macrophage differentiation gene. In chromatin immunoprecipitation analyses, high level Pu.1 binding to the Mcsfr promoter was not decreased by Runx1 deficiency. However, the Pu.1-driven shift from histone repression to activation marks at this locus, and terminal macrophage differentiation, were substantially diminished. DNMT1 inhibition, but not Polycomb inhibition, in RUNX1-translocated leukemia cells induced terminal differentiation. Thus, RUNX1 and PU.1 cooperate to exchange corepressors for coactivators, and the specific corepressors recruited to PU.1 as a consequence of RUNX1 deficiency could be rational targets for leukemia differentiation therapy.

He BL, Shi X, Man CH, et al.
Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia.
Blood. 2014; 123(16):2518-29 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
FMS-like tyrosine kinase 3 (FLT3) is expressed in human hematopoietic stem and progenitor cells (HSPCs) but its role during embryogenesis is unclear. In acute myeloid leukemia (AML), internal tandem duplication (ITD) of FLT3 at the juxtamembrane (JMD) and tyrosine kinase (TKD) domains (FLT3-ITD(+)) occurs in 30% of patients and is associated with inferior clinical prognosis. TKD mutations (FLT3-TKD(+)) occur in 5% of cases. We made use of zebrafish to examine the role of flt3 in developmental hematopoiesis and model human FLT3-ITD(+) and FLT3-TKD(+) AML. Zebrafish flt3 JMD and TKD were remarkably similar to their mammalian orthologs. Morpholino knockdown significantly reduced the expression of l-plastin (pan-leukocyte), csf1r, and mpeg1 (macrophage) as well as that of c-myb (definitive HSPCs), lck, and rag1 (T-lymphocyte). Expressing human FLT3-ITD in zebrafish embryos resulted in expansion and clustering of myeloid cells (pu.1(+), mpo(+), and cebpα(+)) which were ameliorated by AC220 and associated with stat5, erk1/2, and akt phosphorylation. Human FLT3-TKD (D835Y) induced significant, albeit modest, myeloid expansion resistant to AC220. This study provides novel insight into the role of flt3 during hematopoiesis and establishes a zebrafish model of FLT3-ITD(+) and FLT3-TKD(+) AML that may facilitate high-throughput screening of novel and personalized agents.

Dluhosova M, Curik N, Vargova J, et al.
Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5.
PLoS One. 2014; 9(2):e87448 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
CCCTC-binding factor (CTCF) can both activate as well as inhibit transcription by forming chromatin loops between regulatory regions and promoters. In this regard, Ctcf binding on non-methylated DNA and its interaction with the Cohesin complex results in differential regulation of the H19/Igf2 locus. Similarly, a role for CTCF has been established in normal hematopoietic development; however its involvement in leukemia remains elusive. Here, we show that Ctcf binds to the imprinting control region of H19/Igf2 in AML blasts. We also demonstrate that Smarca5, which also associates with the Cohesin complex, facilitates Ctcf binding to its target sites on DNA. Furthermore, Smarca5 supports Ctcf functionally and is needed for enhancer-blocking effect at ICR. We next asked whether CTCF and SMARCA5 control the expression of key hematopoiesis regulators. In normally differentiating myeloid cells both CTCF and SMARCA5 together with members of the Cohesin complex are recruited to the SPI1 gene, a key hematopoiesis regulator and leukemia suppressor. Due to DNA methylation, CTCF binding to the SPI1 gene is blocked in AML blasts. Upon AZA-mediated DNA demethylation of human AML blasts, CTCF and SMARCA5 are recruited to the -14.4 Enhancer of SPI1 gene and block its expression. Our data provide new insight into complex SPI1 gene regulation now involving additional key epigenetic factors, CTCF and SMARCA5 that control PU.1 expression at the -14.4 Enhancer.

Zhou J, Wu J, Li B, et al.
PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway.
Leukemia. 2014; 28(7):1436-48 [PubMed] Related Publications
Mixed lineage leukemia (MLL) fusion proteins directly activate the expression of key downstream genes such as MEIS1, HOXA9 to drive an aggressive form of human leukemia. However, it is still poorly understood what additional transcriptional regulators, independent of the MLL fusion pathway, contribute to the development of MLL leukemia. Here we show that the transcription factor PU.1 is essential for MLL leukemia and is required for the growth of MLL leukemic cells via the promotion of cell-cycle progression and inhibition of apoptosis. Importantly, PU.1 expression is not under the control of MLL fusion proteins. We further identified a PU.1-governed 15-gene signature, which contains key regulators in the MEIS-HOX program (MEIS1, PBX3, FLT3, and c-KIT). PU.1 directly binds to the genomic loci of its target genes in vivo, and is required to maintain active expression of those genes in both normal hematopoietic stem and progenitor cells and in MLL leukemia. Finally, the clinical significance of the identified PU.1 signature was indicated by its ability to predict survival in acute myelogenous leukemia patients. Together, our findings demonstrate that PU.1 contributes to the development of MLL leukemia, partially via crosstalk with the MEIS/HOX pathway.

Iriyama N, Yuan B, Yoshino Y, et al.
Enhancement of differentiation induction and upregulation of CCAAT/enhancer-binding proteins and PU.1 in NB4 cells treated with combination of ATRA and valproic acid.
Int J Oncol. 2014; 44(3):865-73 [PubMed] Related Publications
The effects of all-trans retinoic acid (ATRA) and valproic acid (VPA), alone and in combination, on the human acute promyelocytic leukemia (APL) cell line NB4 were investigated in view of differentiation induction and growth inhibition. After 48 h of treatment, not only ATRA but also VPA induced differentiation in NB4 cells, and their combination further augmented the differentiation activity. Furthermore, the upregulation of transcription factors including CCAAT/enhancer-binding proteins (CEBPα, β, ε) and PU.1, which are known to be critical factors for normal myelopoiesis, granulocytic maturation and being repressed in APL, concurred with the differentiation induction. A significant cell growth inhibition was observed after the treatment with VPA, which was further strengthened by the addition of ATRA. Given the importance of C/EBPs and PU.1 in myeloid development, these results, thus, suggest that restoration of the normal function of the myeloid cell transcriptional machinery is a major molecular mechanism underlying the differentiation induction in NB4. Therefore, these results may provide novel insights into a possible combinational therapeutic approach for APL patients.

Jiang S, Willox B, Zhou H, et al.
Epstein-Barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A.
Proc Natl Acad Sci U S A. 2014; 111(1):421-6 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
Epstein-Barr virus nuclear antigen 3C (EBNA3C) repression of CDKN2A p14(ARF) and p16(INK4A) is essential for immortal human B-lymphoblastoid cell line (LCL) growth. EBNA3C ChIP-sequencing identified >13,000 EBNA3C sites in LCL DNA. Most EBNA3C sites were associated with active transcription; 64% were strong H3K4me1- and H3K27ac-marked enhancers and 16% were active promoters marked by H3K4me3 and H3K9ac. Using ENCODE LCL transcription factor ChIP-sequencing data, EBNA3C sites coincided (±250 bp) with RUNX3 (64%), BATF (55%), ATF2 (51%), IRF4 (41%), MEF2A (35%), PAX5 (34%), SPI1 (29%), BCL11a (28%), SP1 (26%), TCF12 (23%), NF-κB (23%), POU2F2 (23%), and RBPJ (16%). EBNA3C sites separated into five distinct clusters: (i) Sin3A, (ii) EBNA2/RBPJ, (iii) SPI1, and (iv) strong or (v) weak BATF/IRF4. EBNA3C signals were positively affected by RUNX3, BATF/IRF4 (AICE) and SPI1/IRF4 (EICE) cooccupancy. Gene set enrichment analyses correlated EBNA3C/Sin3A promoter sites with transcription down-regulation (P < 1.6 × 10(-4)). EBNA3C signals were strongest at BATF/IRF4 and SPI1/IRF4 composite sites. EBNA3C bound strongly to the p14(ARF) promoter through SPI1/IRF4/BATF/RUNX3, establishing RBPJ-, Sin3A-, and REST-mediated repression. EBNA3C immune precipitated with Sin3A and conditional EBNA3C inactivation significantly decreased Sin3A binding at the p14(ARF) promoter (P < 0.05). These data support a model in which EBNA3C binds strongly to BATF/IRF4/SPI1/RUNX3 sites to enhance transcription and recruits RBPJ/Sin3A- and REST/NRSF-repressive complexes to repress p14(ARF) and p16(INK4A) expression.

Ziliotto R, Gruca MR, Podder S, et al.
PU.1 promotes cell cycle exit in the murine myeloid lineage associated with downregulation of E2F1.
Exp Hematol. 2014; 42(3):204-217.e1 [PubMed] Related Publications
Acute myeloid leukemia (AML) is characterized by increased proliferation and reduced differentiation of myeloid lineage cells. AML is frequently associated with mutations or chromosomal rearrangements involving transcription factors. PU.1 (encoded by Sfpi1) is an E26 transformation-specific family transcription factor that is required for myeloid differentiation. Reduced PU.1 levels, caused by either mutation or repression, are associated with human AML and are sufficient to cause AML in mice. The objective of this study was to determine whether reduced PU.1 expression induces deregulation of the cell cycle in the myeloid lineage. Our results showed that immature myeloid cells expressing reduced PU.1 levels (Sfpi1(BN/BN) myeloid cells) proliferated indefinitely in cell culture and expanded in vivo. Transplantation of Sfpi1(BN/BN) cells induced AML in recipient mice. Cultured Sfpi1(BN/BN) cells expressed elevated messenger RNA transcript and protein levels of E2F1, an important regulator of cell cycle entry. Restoration of PU.1 expression in Sfpi1(BN/BN) myeloid cells blocked proliferation, induced differentiation, and reduced E2F1 expression. Taken together, these data show that PU.1 controls cell cycle exit in the myeloid lineage associated with downregulation of E2F1 expression.

Ogino T, Kobuchi H, Fujita H, et al.
Erythroid and megakaryocytic differentiation of K562 erythroleukemic cells by monochloramine.
Free Radic Res. 2014; 48(3):292-302 [PubMed] Related Publications
The induction of leukemic cell differentiation is a hopeful therapeutic modality. We studied the effects of monochloramine (NH2Cl) on erythroleukemic K562 cell differentiation, and compared the effects observed with those of U0126 and staurosporine, which are known inducers of erythroid and megakaryocytic differentiation, respectively. CD235 (glycophorin) expression, a marker of erythroid differentiation, was significantly increased by NH2Cl and U0126, along with an increase in cd235 mRNA levels. Other erythroid markers such as γ-globin and CD71 (transferrin receptor) were also increased by NH2Cl and U0126. In contrast, CD61 (integrin β3) and CD42b (GP1bα) expression, markers of megakaryocytic differentiation, was increased by staurosporine, but did not change significantly by NH2Cl and U0126. NH2Cl retarded cell proliferation without a marked loss of viability. When ERK phosphorylation (T202/Y204) and CD235 expression were compared using various chemicals, a strong negative correlation was observed (r = -0.76). Paradoxically, NH2Cl and staurosporine, but not U0126, induced large cells with multiple or lobulated nuclei, which was characteristic to megakaryocytes. NH2Cl increased the mRNA levels of gata1 and scl, decreased that of gata2, and did not change those of pu.1 and klf1. The changes observed in mRNA expression were different from those of U0126 or staurosporine. These results suggest that NH2Cl induces the bidirectional differentiation of K562. Oxidative stress may be effective in inducing leukemic cell differentiation.

Kornblau SM, Qutub A, Yao H, et al.
Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34+CD38- stem-like cells.
PLoS One. 2013; 8(10):e78453 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
Acute myeloid leukemia (AML) is believed to arise from leukemic stem-like cells (LSC) making understanding the biological differences between LSC and normal stem cells (HSC) or common myeloid progenitors (CMP) crucial to understanding AML biology. To determine if protein expression patterns were different in LSC compared to other AML and CD34+ populations, we measured the expression of 121 proteins by Reverse Phase Protein Arrays (RPPA) in 5 purified fractions from AML marrow and blood samples: Bulk (CD3/CD19 depleted), CD34-, CD34+(CMP), CD34+CD38+ and CD34+CD38-(LSC). LSC protein expression differed markedly from Bulk (n =31 cases, 93/121 proteins) and CD34+ cells (n = 30 cases, 88/121 proteins) with 54 proteins being significantly different (31 higher, 23 lower) in LSC than in either Bulk or CD34+ cells. Sixty-seven proteins differed significantly between CD34+ and Bulk blasts (n = 69 cases). Protein expression patterns in LSC and CD34+ differed markedly from normal CD34+ cells. LSC were distinct from CD34+ and Bulk cells by principal component and by protein signaling network analysis which confirmed individual protein analysis. Potential targetable submodules in LSC included the proteins PU.1(SP1), P27, Mcl1, HIF1α, cMET, P53, Yap, and phospho-Stats 1, 5 and 6. Protein expression and activation in LSC differs markedly from other blast populations suggesting that studies of AML biology should be performed in LSC.

Basova P, Pospisil V, Savvulidi F, et al.
Aggressive acute myeloid leukemia in PU.1/p53 double-mutant mice.
Oncogene. 2014; 33(39):4735-45 [PubMed] Related Publications
PU.1 downregulation within hematopoietic stem and progenitor cells (HSPCs) is the primary mechanism for the development of acute myeloid leukemia (AML) in mice with homozygous deletion of the upstream regulatory element (URE) of PU.1 gene. p53 is a well-known tumor suppressor that is often mutated in human hematologic malignancies including AML and adds to their aggressiveness; however, its genetic deletion does not cause AML in mouse. Deletion of p53 in the PU.1(ure/ure) mice (PU.1(ure/ure)p53(-/-)) results in more aggressive AML with shortened overall survival. PU.1(ure/ure)p53(-/-) progenitors express significantly lower PU.1 levels. In addition to URE deletion we searched for other mechanisms that in the absence of p53 contribute to decreased PU.1 levels in PU.1(ure/ure)p53(-/-) mice. We found involvement of Myb and miR-155 in downregulation of PU.1 in aggressive murine AML. Upon inhibition of either Myb or miR-155 in vitro the AML progenitors restore PU.1 levels and lose leukemic cell growth similarly to PU.1 rescue. The MYB/miR-155/PU.1 axis is a target of p53 and is activated early after p53 loss as indicated by transient p53 knockdown. Furthermore, deregulation of both MYB and miR-155 coupled with PU.1 downregulation was observed in human AML, suggesting that MYB/miR-155/PU.1 mechanism may be involved in the pathogenesis of AML and its aggressiveness characterized by p53 mutation.

Humbert M, Federzoni EA, Britschgi A, et al.
The tumor suppressor gene DAPK2 is induced by the myeloid transcription factors PU.1 and C/EBPα during granulocytic differentiation but repressed by PML-RARα in APL.
J Leukoc Biol. 2014; 95(1):83-93 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
DAPK2 is a proapoptotic protein that is mostly expressed in the hematopoietic tissue. A detailed DAPK2 expression analysis in two large AML patient cohorts revealed particularly low DAPK2 mRNA levels in APL. DAPK2 levels were restored in APL patients undergoing ATRA therapy. PML-RARA is the predominant lesion in APL causing transcriptional repression of genes important for neutrophil differentiation. We found binding of PML-RARA and PU.1, a myeloid master regulator, to RARA and PU.1 binding sites in the DAPK2 promoter. Ectopic expression of PML-RARA in non-APL, as well as knocking down PU.1 in APL cells, resulted in a significant reduction of DAPK2 expression. Restoring DAPK2 expression in PU.1 knockdown APL cells partially rescued neutrophil differentiation, thereby identifying DAPK2 as a relevant PU.1 downstream effector. Moreover, low DAPK2 expression is also associated with C/EBPα-mutated AML patients, and we found C/EBPα-dependent regulation of DAPK2 during APL differentiation. In conclusion, we identified first inhibitory mechanisms responsible for the low DAPK2 expression in particular AML subtypes, and the regulation of DAPK2 by two myeloid transcription factors underlines its importance in neutrophil development.

Mandoli A, Singh AA, Jansen PW, et al.
CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia.
Leukemia. 2014; 28(4):770-8 [PubMed] Related Publications
Different mechanisms for CBFβ-MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFβ-MYH11-binding site analysis and quantitative interaction proteomics, we found that CBFβ-MYH11 localizes to RUNX1 occupied promoters, where it interacts with TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1 and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset of the CBFβ-MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority of CBFβ-MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1, are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for CBFβ-MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype.

Tobiasz-Adamczyk B, Zawisza K, Florek M, Hodorowicz-Zaniewska D
[Preoperative quality of life in women with pathological alteration in breast].
Przegl Lek. 2013; 70(4):180-6 [PubMed] Related Publications
The aim of the study was to assess the similarities or differences in the psychosocial response to primary diagnosis of malicious or benign tumor in breast significantly influenced the quality of life in women in preoperative period. Health-related quality of life has been studied in the preoperative period in the group of 59 patients with malicious tumor and in the group of 130 women with benign tumor in comparison to 126 healthy women. Study was performed using self-administered questionnaire consists of The Rand Mental Health Inventory (three distress scores include depression, anxiety and loss of behavioral or emotional control; two well-being scores include general positive affect and emotional ties), COOP Charts (measuring nine dimensions of QOL), subscale focus on social support was used for the presented analysis; additionally questions concerning demographic and social characteristics of women as well as questions on illness behaviors have been involved. Statistical analysis was performed using multidimensional models of logistic regression. Results based on multidimensional logistic regression models showed higher risk of anxiety (OR=4,0; 95% CI=(1,8; 8,6)), depression(OR=3,0; 95% CI=(1,4; 6,2)) and distress (OR=2,5; 95% CI=(1,2; 5,3)) in women with malicious tumor in comparison to healthy women. Comparatively, higher risk of anxiety (OR=1,8; 95% CI=(1,0; 3,2)) and depression (OR=2,0; 95% CI=(1,2; 3,5)) among women with benign tumor in regard to healthy ones. Further examination of determinants of components of mental health among three analyzed group of women showed that among women with benign tumor higher risk of anxiety (OR=3,5; 95% CL=(1,2; 10,5)), depression (OR=3,2; 95% CI=(1,2;9,1)) and loss of behavioral or emotional control ((OR=4.3; 95% CI=(1,5;12,0)) as well as distress (OR=4,3; 95% CI=(1,5;13,0)) was related with considerable reduction of receiving support. Women with malicious tumor also indicated that slightly reduction of the received support was associated with higher risk of the loss of behavioral or emotional control (Isz=6,6; 95% PU=(1,4; 30,8)). Results confirmed that also diagnosis of benign tumor in breast is perceived as an event which significantly decreased quality of life in preoperative period. Interactions between medical staff - and patients with any change in breast should based on good verbal communication, giving information which help understanding by patients all aspects of diagnosis and expected treatment.

Sanchez PV, Glantz ST, Scotland S, et al.
Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors.
Leukemia. 2014; 28(4):749-60 [PubMed] Related Publications
Use of all-trans retinoic acid (ATRA) as a differentiation agent has been limited to acute promyelocytic leukemia (APL) as non-APL leukemias are insensitive to ATRA. We recently demonstrated that the rexinoid, bexarotene, induces differentiation and therapeutic responses in patients with refractory AML. Rexinoids bind and activate retinoid X receptors (RXRs); however, rexinoids alone are incapable of activating retinoic acid receptor (RAR)/RXR complexes, suggesting that myeloid differentiation can occur independent of RAR. In this study, we demonstrate that rexinoid differentiation of AML cells is RAR independent and requires the expression of PU.1. Because of the promiscuousness of RXR with other nuclear receptors, myeloid differentiation by bexarotene with other nuclear receptor ligands was explored. Bexarotene cooperated with ATRA to enhance differentiation in some AML cell lines; however, the combination of bexarotene with the PPARγ agonist rosiglitazone did not. In contrast, bexarotene combined with liver X receptor (LXR) agonists, T0901317 or GW3965, induced potent differentiation and cytotoxicity in AML cell lines and primary human AML cells, but not in normal progenitor cells. These results suggest that RXR/LXR-regulated gene expression in normal cells is deregulated in AML cells and identifies a potential role for these agonists in differentiation therapy of non-APLs.

Saki N, Abroun S, Soleimani M, et al.
The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts.
Hematology. 2014; 19(3):141-7 [PubMed] Related Publications
INTRODUCTION: T-cell acute lymphoblastic leukemia (T-ALL) is caused by a defect in T-cell maturation to the mature T cell. T-ALL is a poor prognostic hematopoietic malignancy. In order to establish a successful therapeutic treatment plan, it is essential to understand the biology of T-cell development and molecules that contribute to this process. This study uses Jurkat T cells, as a well-established model for in vitro study of T-ALL to investigate the role of the microRNA (miRNA), miR-146a, on gene expressions involved in T-cell differentiation.
MATERIALS AND METHODS: The permanent over-expression of miR-146a was established using a lentivector that expressed GFP hsa-mir-146a miRNA. We used quantitative real-time polymerase chain reaction and flow cytometry for T-cell differentiation to monitor induction of the differentiation process by assessing changes in expression of some distinct transcription factors and cell surface markers.
RESULTS: Ectopic expression of miR-146a resulted in significant up-regulation of PU.1, c-Fos, CCAAT/enhancer-binding protein alpha (C/EBPα) and GATA3, and slight up-regulation of Foxp3 and Runx1. There was a significant, moderate down-regulation in the expressions of Notch1, LIM-domain only (Lmo2), son of sevenless 1 (SOS1), Ikaros, and signal transducer and activator of transcription 3 (STAT3).
CONCLUSION: Our results indicated that ectopic expression of miR-146a could not independently induce differentiation in lymphoblastic cells. However, the expression of multiple genes involved in T-cell differentiation and T-cell CD markers were found to be affected. These results have suggested a potential tumor suppressive, immunomodulatory and cell activator role for miR146-a.

Yang XW, Wang P, Liu JQ, et al.
Coordinated regulation of the immunoproteasome subunits by PML/RARα and PU.1 in acute promyelocytic leukemia.
Oncogene. 2014; 33(21):2700-8 [PubMed] Related Publications
Recognition and elimination of malignant cells by cytotoxic T lymphocytes depends on antigenic peptides generated by proteasomes. It has been established that impairment of the immunoproteasome subunits, that is, PSMB8, PSMB9 and PSMB10 (PSMBs), is critical for malignant cells to escape immune recognition. We report here the regulatory mechanism of the repression of PU.1-dependent activation of PSMBs by PML/RARα in the pathogenesis of acute promyelocytic leukemia (APL) and the unidentified function of all-trans retinoic acid (ATRA) as an immunomodulator in the treatment of APL. Chromatin immunoprecipitation and luciferase reporter assays showed that PU.1 directly bound to and coordinately transactivated the promoters of PSMBs, indicating that PSMBs were transcriptional targets of PU.1 and PU.1 regulated their basal expression. Analysis of expression profiling data from a large population of acute myeloid leukemia (AML) patients revealed that the expression levels of PSMBs were significantly lower in APL patients than in non-APL AML patients. Further evidence demonstrated that the decrease in their expression was achieved through PML/RARα-mediated repression of both PU.1-dependent transactivation and PU.1 expression. Moreover, ATRA but not arsenic trioxide induced the expression of PSMBs in APL cells, indicating that ATRA treatment might activate the antigen-processing/presentation machinery. Finally, the above observations were confirmed in primary APL samples. Collectively, our data demonstrate that PML/RARα suppresses PU.1-dependent activation of the immunosubunits, which may facilitate the escape of APL cells from immune surveillance in leukemia development, and ATRA treatment is able to reactivate their expression, which would promote more efficient T-cell-mediated recognition in the treatment.

Takahashi S
Epigenetic aberrations in myeloid malignancies (Review).
Int J Mol Med. 2013; 32(3):532-8 [PubMed] Related Publications
The development of novel technologies, such as massively parallel DNA sequencing, has led to the identification of several novel recurrent gene mutations, such as DNA methyltransferase (Dnmt)3a, ten-eleven-translocation oncogene family member 2 (TET2), isocitrate dehydrogenase (IDH)1/2, additional sex comb-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and ubiquitously transcribed tetratricopeptide repeat X chromosome (UTX) mutations in acute myeloid leukemia (AML) and other myeloid malignancies. These findings strongly suggest a link between recurrent genetic alterations and aberrant epigenetic regulations, resulting from an abnormal DNA methylation and histone modification status. This review focuses on the current findings of aberrant epigenetic signatures by these newly described genetic alterations. Moreover, epigenetic aberrations resulting from transcription factor aberrations, such as mixed lineage leukemia (MLL) rearrangement, ecotropic viral integration site 1 (Evi1) overexpression, chromosomal translocations and the downregulation of PU.1 are also described.

Mead AJ, Kharazi S, Atkinson D, et al.
FLT3-ITDs instruct a myeloid differentiation and transformation bias in lymphomyeloid multipotent progenitors.
Cell Rep. 2013; 3(6):1766-76 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies.

Banerjee S, Lu J, Cai Q, et al.
The EBV Latent Antigen 3C Inhibits Apoptosis through Targeted Regulation of Interferon Regulatory Factors 4 and 8.
PLoS Pathog. 2013; 9(5):e1003314 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
Epstein-Barr virus (EBV) is linked to a broad spectrum of B-cell malignancies. EBV nuclear antigen 3C (EBNA3C) is an encoded latent antigen required for growth transformation of primary human B-lymphocytes. Interferon regulatory factor 4 (IRF4) and 8 (IRF8) are transcription factors of the IRF family that regulate diverse functions in B cell development. IRF4 is an oncoprotein with anti-apoptotic properties and IRF8 functions as a regulator of apoptosis and tumor suppressor in many hematopoietic malignancies. We now demonstrate that EBNA3C can contribute to B-cell transformation by modulating the molecular interplay between cellular IRF4 and IRF8. We show that EBNA3C physically interacts with IRF4 and IRF8 with its N-terminal domain in vitro and forms a molecular complex in cells. We identified the Spi-1/B motif of IRF4 as critical for EBNA3C interaction. We also demonstrated that EBNA3C can stabilize IRF4, which leads to downregulation of IRF8 by enhancing its proteasome-mediated degradation. Further, si-RNA mediated knock-down of endogenous IRF4 results in a substantial reduction in proliferation of EBV-transformed lymphoblastoid cell lines (LCLs), as well as augmentation of DNA damage-induced apoptosis. IRF4 knockdown also showed reduced expression of its targeted downstream signalling proteins which include CDK6, Cyclin B1 and c-Myc all critical for cell proliferation. These studies provide novel insights into the contribution of EBNA3C to EBV-mediated B-cell transformation through regulation of IRF4 and IRF8 and add another molecular link to the mechanisms by which EBV dysregulates cellular activities, increasing the potential for therapeutic intervention against EBV-associated cancers.

Shen LJ, Chen FY, Zhang Y, et al.
MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis.
PLoS One. 2013; 8(3):e59070 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
BACKGROUND: Amplification of MYCN (N-Myc) oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML). The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown.
METHODOLOGY/PRINCIPAL FINDINGS: We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP) zebrafish. N-Myc downstream regulated gene 1 (NDRG1), negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ) were downregulated in MYCN-overexpressing blood cells (p<0.01). All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells.
CONCLUSION/SIGNIFICANCE: The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the potential therapeutic targets.

Qian M, Jin W, Zhu X, et al.
Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia.
J Hematol Oncol. 2013; 6:25 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
BACKGROUND: Transcription factor PU.1, a member of the ETS family, is a master regulator of myeloid differentiation whose functional disruption is often associated with acute myeloid leukemia (AML). Although much has been learned about PU.1 over the past decades, relatively little is known about cis-elements that interact with this factor under physiological or pathological conditions, especially in the whole-genome scale. We aimed to define the cistrome of PU.1 in acute promyelocytic leukemia (APL) cells and characterize the cis-elements bound by PU.1.
METHODS: Chromatin immunoprecipitation with specific antibody coupled with deep sequencing (ChIP-seq) was used to investigate the in vivo PU.1 binding sites at the whole-genome scale in APL-derived NB4 cells. The ChIP-quantitative (q)-PCR and luciferase reporter assays were used to validate the binding events and trans-activity, respectively. Various computational analyses, including motif mining, evolutionary conservation analysis and functional enrichment analysis, were performed to characterize the cis-elements that interacted with PU.1.
RESULTS: A total of 26,907 significantly enriched binding regions of PU.1 were identified under the false discovery rate 0.1% in NB4 cells. PU.1 bound to various types of genomic regions and acted as a promoter-enhancer dual binding transcription factor. Based on the sequence length and composition, two types of representative motifs were identified in PU.1 binding sites: a long and a short motif. The long motif, characterized by high sequence specificity and binding affinity, predominantly resided in the promoter-distal regions. In contrast, the short one, with strong evolutionary constraint, represented the primary PU.1 cis-elements in the promoter-proximal regions. Interestingly, the short one showed more preference to be correlated with the binding of other factors, especially PML/RARα. Moreover, genes targeted by both PU.1 and PML/RARα were significantly involved in categories associated with oncogenesis, hematopoiesis and the pathogenesis of acute myeloid leukemia.
CONCLUSIONS: Our results demonstrate that structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in APL, suggesting that the sequence diversity of cis-elements might be a critical mechanism by which cells interpret the genome, and contribute to distinct physiological and/or pathological function.

Topić I, Ikić M, Ivčević S, et al.
Bone morphogenetic proteins regulate differentiation of human promyelocytic leukemia cells.
Leuk Res. 2013; 37(6):705-12 [PubMed] Related Publications
We investigated the role of bone morphogenetic proteins (BMPs) in suppression of all-trans retinoic acid (ATRA)-mediated differentiation of leukemic promyelocytes. In NB4 and HL60 cell lines, BMPs reduced the percentage of differentiated cells, and suppressed PU.1 and C/EBPε gene expression induced by ATRA. BMP and ATRA synergized in the induction of ID genes, causing suppression of differentiation. In primary acute promyelocytic leukemia bone-marrow samples, positive correlation of PML/RARα and negative of RARα with the expression of BMP-4, BMP-6 and ID genes were found. We concluded that BMPs may have oncogenic properties and mediate ATRA resistance by a mechanism that involves ID genes.

Okuno Y, Yuki H
PU.1 is a tumor suppressor for B cell malignancies.
Oncotarget. 2012; 3(12):1495-6 [PubMed] Article available free on PMC after 23/05/2015 Related Publications

Rokudai S, Laptenko O, Arnal SM, et al.
MOZ increases p53 acetylation and premature senescence through its complex formation with PML.
Proc Natl Acad Sci U S A. 2013; 110(10):3895-900 [PubMed] Article available free on PMC after 23/05/2015 Related Publications
Monocytic leukemia zinc finger (MOZ)/KAT6A is a MOZ, Ybf2/Sas3, Sas2, Tip60 (MYST)-type histone acetyltransferase that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and Ets family transcription factor PU.1-dependent transcription. We previously reported that MOZ directly interacts with p53 and is essential for p53-dependent selective regulation of p21 expression. We show here that MOZ is an acetyltransferase of p53 at K120 and K382 and colocalizes with p53 in promyelocytic leukemia (PML) nuclear bodies following cellular stress. The MOZ-PML-p53 interaction enhances MOZ-mediated acetylation of p53, and this ternary complex enhances p53-dependent p21 expression. Moreover, we identified an Akt/protein kinase B recognition sequence in the PML-binding domain of MOZ protein. Akt-mediated phosphorylation of MOZ at T369 has a negative effect on complex formation between PML and MOZ. As a result of PML-mediated suppression of Akt, the increased PML-MOZ interaction enhances p21 expression and induces p53-dependent premature senescence upon forced PML expression. Our research demonstrates that MOZ controls p53 acetylation and transcriptional activity via association with PML.

Nam MK, Shin HA, Han JH, et al.
Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.
Brain Res. 2013; 1505:75-85 [PubMed] Related Publications
As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SPI1, Cancer Genetics Web: http://www.cancer-genetics.org/SPI1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999