Cancer Overview
Research Indicators
Graph generated 01 September 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (5)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
TCF7
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
TCF7
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
TCF7
Cancer Genome Anatomy Project, NCI
Gene Summary
TCF7
COSMIC, Sanger Institute
Somatic mutation information and related details
TCF7
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: TCF7 (cancer-related)
BACKGROUND: The search for molecular biomarkers of early-onset colorectal cancer (CRC) is an important but still quite challenging and unsolved task. Detection of CpG methylation in human DNA obtained from blood or stool has been proposed as a promising approach to a noninvasive early diagnosis of CRC. Thousands of abnormally methylated CpG positions in CRC genomes are often located in non-coding parts of genes. Novel bioinformatic methods are thus urgently needed for multi-omics data analysis to reveal causative biomarkers with a potential driver role in early stages of cancer.
METHODS: We have developed a method for finding potential causal relationships between epigenetic changes (DNA methylations) in gene regulatory regions that affect transcription factor binding sites (TFBS) and gene expression changes. This method also considers the topology of the involved signal transduction pathways and searches for positive feedback loops that may cause the carcinogenic aberrations in gene expression. We call this method "Walking pathways", since it searches for potential rewiring mechanisms in cancer pathways due to dynamic changes in the DNA methylation status of important gene regulatory regions ("epigenomic walking").
RESULTS: In this paper, we analysed an extensive collection of full genome gene-expression data (RNA-seq) and DNA methylation data of genomic CpG islands (using Illumina methylation arrays) generated from a sample of tumor and normal gut epithelial tissues of 300 patients with colorectal cancer (at different stages of the disease) (data generated in the EU-supported SysCol project). Identification of potential epigenetic biomarkers of DNA methylation was performed using the fully automatic multi-omics analysis web service "My Genome Enhancer" (MGE) (my-genome-enhancer.com). MGE uses the database on gene regulation TRANSFAC®, the signal transduction pathways database TRANSPATH®, and software that employs AI (artificial intelligence) methods for the analysis of cancer-specific enhancers.
CONCLUSIONS: The identified biomarkers underwent experimental testing on an independent set of blood samples from patients with colorectal cancer. As a result, using advanced methods of statistics and machine learning, a minimum set of 6 biomarkers was selected, which together achieve the best cancer detection potential. The markers include hypermethylated positions in regulatory regions of the following genes: CALCA, ENO1, MYC, PDX1, TCF7, ZNF43.
Wu B, Chen M, Gao M, et al.
Down-regulation of lncTCF7 inhibits cell migration and invasion in colorectal cancer via inhibiting TCF7 expression.Hum Cell. 2019; 32(1):31-40 [
PubMed]
Related Publications
The prognosis of colorectal cancer (CRC) is still very poor, owing to the high incidence of metastasis. Long noncoding RNA TCF7 (lncTCF7) has been shown to play critical roles in human CRC development and progression, but the molecular mechanisms of lncTCF7 in CRC are still unknown. This study aimed to explore the functions and molecular mechanisms of lncTCF7 on the migration and invasion of CRC cells. Notably, lncTCF7 was highly expressed in CRC cell lines relative to normal colonic epithelial cells. LncTCF7 knockdown significantly inhibited migration and invasion of CRC cells. In addition, TCF7 was highly expressed in CRC cell lines relative to that in normal colonic epithelial cells and its expression was significantly decreased in CRC cells transfected with si-lncTCF7. RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays showed that LncTCF7 recruits BAF170 to activate the TCF7 promoter and regulate TCF7 expression. TCF7 overexpression could promote migration and invasion in CRC cells transfected with si-lncTCF7, which reversed the effect of lncTCF7 on the migration and invasion of CRC cells. In conclusion, our data indicate that the downregulation of lncTCF7 significantly inhibits migration and invasion of CRC cells by inhibiting TCF7 expression, suggesting that lncTCF7 may be a potential target for CRC therapy.
Wang O, Huang Y, Wu H, et al.
LncRNA LOC728196/miR-513c axis facilitates glioma carcinogenesis by targeting TCF7.Gene. 2018; 679:119-125 [
PubMed]
Related Publications
Numerous long noncoding RNAs (lncRNAs) are reported to be dysregulated in glioma. However, how lncRNA participates in the process of glioma development and progression still remains elusive. Here, we identified a novel lncRNA LOC728196 highly expressed in glioma tissues. LOC728196 high expression predicts low survival rate in patients. Our data proved that LOC728196 knockdown repressed cellular growth, migration and invasion in vitro. Silencing LOC728196 led to impaired growth of glioma in vivo. Mechanistic studies further demonstrated that LOC728196 acts as the sponge for miR-513c to upregulate TCF7 expression. We observed a reciprocal inhibition between LOC728196 and miR-513c. Rescue assay showed that either inhibition of miR-513c or TCF7 overexpression restored the abilities of proliferation, migration and invasion in LOC728196-silenced glioma cells. Taken together, our study provides a comprehensive investigation on the role of LOC728196 in glioma progression and contributes to understanding the vital role of competing endogenous RNA (ceRNA).
Raji RJ, Sasikumar R, Jacob E
Multiple roles of Adenomatous Polyposis Coli gene in Wnt Signalling - a Computational Model.Biosystems. 2018; 172:26-36 [
PubMed]
Related Publications
The Adenomatous Polyposis Coli (APC) gene is a multifunctional gene that plays a major role in regulating the Wnt signalling pathway. The Wnt pathway, when activated by Wnt signalling molecules, initiates cell division. Mutation of APC disrupts the regulation and causes continuous activation of the Wnt pathway even in the absence of Wnt signals, thus causing uncontrolled cell proliferation. APC regulates the Wnt pathway by controlling the formation of the nuclear complex β-catenin/TCF that initiates the transcription of the Wnt target genes. There are at least five mechanisms by which APC can regulate the formation of the β-catenin/TCF complex: This paper presents a computational model for the Wnt pathway that explicitly includes the above five roles of APC in regulating β-catenin/TCF formation. We use this computational model to perform in-silico experiments to study the effect of different functional losses of APC on the level of β-catenin/TCF complex. The simulations also demonstrate the different outcomes that could be expected when the system is governed by different hypotheses.
Park YL, Kim HP, Cho YW, et al.
Activation of WNT/β-catenin signaling results in resistance to a dual PI3K/mTOR inhibitor in colorectal cancer cells harboring PIK3CA mutations.Int J Cancer. 2019; 144(2):389-401 [
PubMed]
Free Access to Full Article Related Publications
PIK3CA is a frequently mutated gene in cancer, including about ~15 to 20% of colorectal cancers (CRC). PIK3CA mutations lead to activation of the PI3K/AKT/mTOR signaling pathway, which plays pivotal roles in tumorigenesis. Here, we investigated the mechanism of resistance of PIK3CA-mutant CRC cell lines to gedatolisib, a dual PI3K/mTOR inhibitor. Out of a panel of 29 CRC cell lines, we identified 7 harboring one or more PIK3CA mutations; of these, 5 and 2 were found to be sensitive and resistant to gedatolisib, respectively. Both of the gedatolisib-resistant cell lines expressed high levels of active glycogen synthase kinase 3-beta (GSK3β) and harbored the same frameshift mutation (c.465_466insC; H155fs*) in TCF7, which encodes a positive transcriptional regulator of the WNT/β-catenin signaling pathway. Inhibition of GSK3β activity in gedatolisib-resistant cells by siRNA-mediated knockdown or treatment with a GSK3β-specific inhibitor effectively reduced the activity of molecules downstream of mTOR and also decreased signaling through the WNT/β-catenin pathway. Notably, GSK3β inhibition rendered the resistant cell lines sensitive to gedatolisib cytotoxicity, both in vitro and in a mouse xenograft model. Taken together, these data demonstrate that aberrant regulation of WNT/β-catenin signaling and active GSK3β induced by the TCF7 frameshift mutation cause resistance to the dual PI3K/mTOR inhibitor gedatolisib. Cotreatment with GSK3β inhibitors may be a strategy to overcome the resistance of PIK3CA- and TCF7-mutant CRC to PI3K/mTOR-targeted therapies.
β‑catenin/CTNNB1 is an intracellular scaffold protein that interacts with adhesion molecules (E‑cadherin/CDH1, N‑cadherin/CDH2, VE‑cadherin/CDH5 and α‑catenins), transmembrane‑type mucins (MUC1/CD227 and MUC16/CA125), signaling regulators (APC, AXIN1, AXIN2 and NHERF1/EBP50) and epigenetic or transcriptional regulators (BCL9, BCL9L, CREBBP/CBP, EP300/p300, FOXM1, MED12, SMARCA4/BRG1 and TCF/LEF). Gain‑of‑function CTTNB1 mutations are detected in bladder cancer, colorectal cancer, gastric cancer, liver cancer, lung cancer, pancreatic cancer, prostate cancer and uterine cancer, whereas loss‑of‑function CTNNB1 mutations are also detected in human cancer. ABCB1, ALDH1A1, ASCL2, ATF3, AXIN2, BAMBI, CCND1, CD44, CLDN1, CTLA4, DKK1, EDN1, EOMES, FGF18, FGF20, FZD7, IL10, JAG1, LEF1, LGR5, MITF, MSX1, MYC, NEUROD1, NKD1, NODAL, NOTCH2, NOTUM, NRCAM, OPN, PAX3, PPARD, PTGS2, RNF43, SNAI1, SP5, TCF7, TERT, TNFRSF19, VEGFA and ZNRF3 are representative β‑catenin target genes. β‑catenin signaling is involved in myofibroblast activation and subsequent pulmonary fibrosis, in addition to other types of fibrosis. β‑catenin and NF‑κB signaling activation are involved in field cancerization in the stomach associated with Helicobacter pylori (H. pylori) infection and in the liver associated with hepatitis C virus (HCV) infection and other etiologies. β‑catenin‑targeted therapeutics are functionally classified into β‑catenin inhibitors targeting upstream regulators (AZ1366, ETC‑159, G007‑LK, GNF6231, ipafricept, NVP‑TNKS656, rosmantuzumab, vantictumab, WNT‑C59, WNT974 and XAV939), β‑catenin inhibitors targeting protein‑protein interactions (CGP049090, CWP232228, E7386, ICG‑001, LF3 and PRI‑724), β‑catenin inhibitors targeting epigenetic regulators (PKF118‑310), β‑catenin inhibitors targeting mediator complexes (CCT251545 and cortistatin A) and β‑catenin inhibitors targeting transmembrane‑type transcriptional outputs, including CD44v6, FZD7 and LGR5. Eradicating H. pylori and HCV is the optimal approach for the first‑line prevention of gastric cancer and hepatocellular carcinoma (HCC), respectively. However, β‑catenin inhibitors may be applicable for the prevention of organ fibrosis, second‑line HCC prevention and treating β‑catenin‑driven cancer. The multi‑layered prevention and treatment strategy of β‑catenin‑related human diseases is necessary for the practice of personalized medicine and implementation of precision medicine.
Su Y, Wang Y, Sun Y, Zhou X
Transcription factor 7 functions as an unfavorable prognostic marker of glioblastoma multiforme by promoting proliferation by upregulating c-Myc.Neuroreport. 2018; 29(9):745-752 [
PubMed]
Related Publications
Transcription factor 7 (TCF7) is an oncogenic transcription factor in several kinds of cancers. However, the clinical significance of TCF7 in glioblastoma multiforme (GBM) has not been well elucidated. A total of 107 patients with surgical resection of GBM were enrolled in our study. TCF7 expression in these cases was detected by immunohistochemistry and the difference in TCF7 mRNA levels between tumor tissues and adjacent tissues was compared with a real-time PCR. The correlation between TCF7 expression and the clinicopathologic factors was analyzed using the χ-test. Moreover, the prognostic value of TCF7 was evaluated by univariate and multivariate analyses. In addition, the influence of TCF7 on the proliferation of the GBM cell line U251 was detected using an MTT assay after regulating TCF7 and its target gene c-Myc. The high and low expressions of TCF7 accounted for 54.21 and 45.79%, respectively, in all cases. The mRNA level of TCF7 in GBM tissues was markedly higher than that in adjacent tissues, indicating the oncogenic role of TCF7 in GBM. High expression of TCF7 was associated significantly with high Ki67 percentage and the sex of the patients, and it was identified as an independent prognostic factor for patients with GBM. With experiments in vitro, TCF7 was shown to promote cell proliferation by increasing c-Myc expression in GBM. TCF7 could be considered an independent prognostic factor in GBM, and could enhance GBM cell proliferation by upregulating c-Myc, indicating that it may be a potential and promising molecular drug target for GBM.
Jucá CEB, Colli LM, Martins CS, et al.
Impact of the Canonical Wnt Pathway Activation on the Pathogenesis and Prognosis of Adamantinomatous Craniopharyngiomas.Horm Metab Res. 2018; 50(7):575-581 [
PubMed]
Related Publications
Jin FS, Wang HM, Song XY
Long non-coding RNA TCF7 predicts the progression and facilitates the growth and metastasis of colorectal cancer.Mol Med Rep. 2018; 17(5):6902-6908 [
PubMed]
Related Publications
Long non-coding RNA (lnc)TCF7 has been reported to promote the self‑renewal of human cancer stem cells, and enhance the aggressiveness of human non‑small cell lung cancer and hepatocellular carcinoma cells. However, the effect of lncTCF7 on colorectal cancer (CRC) tumorigenesis and progression is currently unclear. In the present study, reverse transcription‑quantitative polymerase chain reaction results demonstrated that lncTCF7 expression was higher in CRC tissues compared with adjacent normal tissues and was significantly associated with tumor size, differentiation degree, tumor‑node‑metastasis grade, lymph node metastasis and invasion depth. In addition, lncTCF7 demonstrated a high sensitivity and specificity for diagnosing CRC, as determined by receiver operating characteristic curve analysis. Furthermore, lncTCF7 silencing in SW‑620 and HT29 CRC cell lines inhibited the proliferation, cell cycle, migration and invasion of cells, as determined by Cell Counting Kit‑8 assays, propidium iodide (PI) staining and flow cytometry, wound healing assays and Transwell invasion assays, respectively; however, Annexin V/PI double staining and flow cytometry indicated that lncTCF7 silencing did not significantly affect the apoptosis of CRC cells. These results indicate that lncTCF7 may predict the progression, and promote the growth and metastasis, of CRC, and may therefore be a novel diagnostic marker and therapeutic target for CRC treatment.
Pereira TDSF, Diniz MG, França JA, et al.
The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas.Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125(2):172-178 [
PubMed]
Related Publications
OBJECTIVE: The molecular pathogenesis of cemento ossifying fibroma (COF) is unclear. The purpose of this study was to investigate mutations in 50 oncogenes and tumor suppressor genes, including APC and CTNNB1, in which mutations in COF have been previously reported. In addition, we assessed the transcriptional levels of the Wnt/β-catenin pathway genes in COF.
STUDY DESIGN: We used a quantitative polymerase chain reaction array to evaluate the transcriptional levels of 44 Wnt/β-catenin pathway genes in 6 COF samples, in comparison with 6 samples of healthy jaws. By using next-generation sequencing (NGS) in 7 COF samples, we investigated approximately 2800 mutations in 50 genes.
RESULTS: The expression assay revealed 12 differentially expressed Wnt/β-catenin pathway genes in COF, including the upregulation of CTNNB1, TCF7, NKD1, and WNT5 A, and downregulation of CTNNBIP1, FRZB, FZD6, RHOU, SFRP4, WNT10 A, WNT3 A, and WNT4, suggesting activation of the Wnt/β-catenin signaling pathway. NGS revealed 5 single nucleotide variants: TP53 (rs1042522), PIK3 CA (rs2230461), MET (rs33917957), KIT (rs3822214), and APC (rs33974176), but none of them was pathogenic.
CONCLUSIONS: Although NGS detected no oncogenic mutation, deregulation of key Wnt/β-catenin signaling pathway genes appears to be relevant to the molecular pathogenesis of COF.
Seki M, Kimura S, Isobe T, et al.
Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia.Nat Genet. 2017; 49(8):1274-1281 [
PubMed]
Related Publications
The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4
Siu MK, Chen WY, Tsai HY, et al.
TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer.Prostate Cancer Prostatic Dis. 2017; 20(2):172-178 [
PubMed]
Related Publications
BACKGROUND: Resistance to androgen deprivation therapy (ADT) represents a key step in the malignant progression of prostate cancer, and mutation to androgen receptor (AR) is one major driver to an androgen-independent phenotype. However, alternative oncogenic pathways that bypass AR signaling have emerged as an important mechanism promoting resistance to ADT. It is known that AR activation can prevent the interaction between β-catenin and T cell factor/lymphoid enhancer-binding factor (TCF/LEF) family, inhibiting the Wnt signaling pathway. The aim of this study was to determine the role of transcription factor 7 (TCF7), a transcription factor best known as a Wnt effector that forms a complex with β-catenin, in the development of advanced prostate cancer. We further investigated the molecular mechanisms by which TCF7 is induced when AR signaling is inactivated.
METHODS: A novel AR signaling pathway that induces microRNA-1 (miR-1) to suppress metastatic prostate cancer was recently demonstrated (AR-miR-1 signaling axis), and its regulation of Wnt signaling was explored in the current study. Clinical data sets were analyzed for potential targets of AR-miR-1 signaling in the TCF/LEF family, and tissue samples were utilized to validate the relationship. The molecular mechanism and biological functions were demonstrated in prostate cancer cell lines and a mouse xenograft model.
RESULTS: We demonstrated a molecular mechanism of AR signaling suppressing TCF7 partly through miR-1-mediated downregulation. TCF7 exhibited oncogenic properties and compromised the tumor-suppressive effects of miR-1. Our results also showed that overexpression of TCF7 or disruption of miR-1 function promoted androgen-independent proliferation.
CONCLUSIONS: We demonstrated that the AR-miR-1 axis negatively regulates the novel oncogenic factor, TCF7. Dysregulation of TCF7 promoted a survival advantage and resistance to androgen deprivation, suggesting its therapeutic potential for castration-resistant prostate cancer.
BACKGROUND: Although the unconjugated secondary bile acids, specifically deoxycholic acid (DCA) and lithocholic acid (LCA), are considered to be risk factors for colorectal cancer, the precise mechanism(s) by which they regulate carcinogenesis is poorly understood. We hypothesize that the cytotoxic bile acids may promote stemness in colonic epithelial cells leading to generation of cancer stem cells (CSCs) that play a role in the development and progression of colon cancer.
METHODS: Normal human colonic epithelial cells (HCoEpiC) were used to study bile acid DCA/LCA-mediated induction of CSCs. The expression of CSC markers was measured by real-time qPCR. Flow cytometry was used to isolate CSCs. T-cell factor/lymphoid-enhancing factor (TCF/LEF) luciferase assay was employed to examine the transcriptional activity of β-catenin. Downregulation of muscarinic 3 receptor (M3R) was achieved through transfection of corresponding siRNA.
RESULTS: We found DCA/LCA to induce CSCs in normal human colonic epithelial cells, as evidenced by the increased proportion of CSCs, elevated levels of several CSC markers, as well as a number of epithelial-mesenchymal transition markers together with increased colonosphere formation, drug exclusion, ABCB1 and ABCG2 expression, and induction of M3R, p-EGFR, matrix metallopeptidases, and c-Myc. Inhibition of M3R signaling greatly suppressed DCA/LCA induction of the CSC marker ALDHA1 and also c-Myc mRNA expression as well as transcriptional activation of TCF/LEF.
CONCLUSIONS: Our results suggest that bile acids, specifically DCA and LCA, induce cancer stemness in colonic epithelial cells by modulating M3R and Wnt/β-catenin signaling and thus could be considered promoters of colon cancer.
Wu J, Wang D
Long noncoding RNA TCF7 promotes invasiveness and self-renewal of human non-small cell lung cancer cells.Hum Cell. 2017; 30(1):23-29 [
PubMed]
Related Publications
Lung cancer is the most common solid tumor and the leading cause of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) represents the major histological subtype and accounts for about 80 % cases of lung cancer cases. Recently, lncRNA lncTCF7 was identified, which is highly expressed in hepatocellular carcinoma (HCC) tumors and liver cancer stem cells (CSCs). However, the role of lnTCF7 in NSCLC remains largely unknown. In this study, Gain- and loss-of-function studies demonstrated the critical role of lncTCF7 in promoting invasion and self-renewal in NSCLC cells. We showed that lncTCF7 increased slug expression to promote the invasive capability of NSCLC cells and upregulated EpCAM expression to promote the self-renewal. Collectively, these findings provide new insights into the potential role of lncTCF7 upregulation in NSCLC metastasis and suggest a promising potential to suppress lncTCF7 for NSCLC patients.
Wang Y, Zhang S, Xu Y, et al.
Upregulation of miR-192 inhibits cell growth and invasion and induces cell apoptosis by targeting TCF7 in human osteosarcoma.Tumour Biol. 2016; 37(11):15211-15220 [
PubMed]
Related Publications
MicroRNAs (miRNAs) can function as oncogenes or tumor suppressor genes and are involved in multiple processes in cancer development and progression. For example, miR-192 is dysregulated in multiple human cancers, including osteosarcoma (OS). However, the pathophysiological role of miR-192 and its relevance to OS cell growth and invasion has not yet been clarified. This study aimed to investigate the expression of miR-192 in OS and elucidate the molecular mechanisms by which miR-192 acts as a tumor suppressor in this disease. The qRT-PCR data identified significant down-regulation of miR-192 in 20 OS tissue samples and two OS cell lines when compared with adjacent normal tissues and a human osteoblast cell line, respectively. Furthermore, Western blot analysis revealed overexpression of T cell-specific transcription factor (TCF) 7 protein in tumor tissues compared with matched adjacent normal tissues. Further in vitro studies demonstrated that enforced expression of miR-192 inhibited U2OS and MG63 cell proliferation, invasion, and migration and induced apoptosis. Finally, Western blot and Luciferase assays identified TCF7 as a target of miR-192. Collectively, these findings suggest an important role for miR-192 in regulating the proliferation, migration, invasion, and apoptosis of OS cells through the regulation of TCF7.
The present study demonstrated that T cell factor 1 (TCF-1) protein, a component of the canonical Wnt/β-catenin signaling pathway, can regulate the expression of runt-related transcription factor 2 (runx2) gene and Sry-related HMG box 9 (sox9) gene, which may participate in the differentiation of chondrosarcoma. Dedifferentiated chondrosarcoma (DDCS) is a special variant of conventional chondrosarcoma (CCS), associated with poor survival and high metastasis rate. However, little is known about the mechanism of its occurrence; thus, no effective treatment is available except surgery. Earlier, high expression of runx2 and low expression of sox9 were found in DDCS compared with CCS. Using Western blot to detect clinical tissue samples (including 8 CCS samples and 8 DDCS samples) and immunohistochemistry to detect 85 different-grade chondrosarcoma specimens, a high expression of TCF-1 in DDCS tissues was found compared with CCS tissues. This difference in expression was related to patients' prognosis. Results of luciferase, chromatin immunoprecipitation, and gel electrophoresis mobility shift assays demonstrated that TCF-1 protein could bind to the promoter of runx2 gene directly and sox9 gene indirectly. Hence, it could regulate expression of runx2 gene positively and sox9 gene negatively. Furthermore, in vitro and in vivo experiments showed that TCF-1 protein was closely related to the phenotype and aggressiveness of chondrosarcoma. In conclusion, this study proved that TCF-1 participates in the dedifferentiation of DDCS, which may be mediated by runx2 gene and sox9 gene. Also, TCF-1 can be of important prognostic value and a promising therapeutic target for DDCS patients.
Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia.
MicroRNAs (miRNAs) are critical regulators of gene expression, and exert extensive impacts on development, physiology, and disease of eukaryotes. A high degree of parallelism is found in the molecular basis of miRNA biogenesis and action in plants and animals. Recent studies interestingly suggest a potential cross-kingdom action of plant-derived miRNAs, through dietary intake, in regulating mammalian gene expression. Although the source and scope of plant miRNAs detected in mammalian specimens remain controversial, these initial studies inspired us to determine whether plant miRNAs can be detected in Western human sera and whether these plant miRNAs are able to influence gene expression and cellular processes related to human diseases such as cancer. Here we found that Western donor sera contained the plant miRNA miR159, whose abundance in the serum was inversely correlated with breast cancer incidence and progression in patients. In human sera, miR159 was predominantly detected in the extracellular vesicles, and was resistant to sodium periodate oxidation suggesting the plant-originated 2'-O-methylation on the 3' terminal ribose. In breast cancer cells but not non-cancerous mammary epithelial cells, a synthetic mimic of miR159 was capable of inhibiting proliferation by targeting TCF7 that encodes a Wnt signaling transcription factor, leading to a decrease in MYC protein levels. Oral administration of miR159 mimic significantly suppressed the growth of xenograft breast tumors in mice. These results demonstrate for the first time that a plant miRNA can inhibit cancer growth in mammals.
BACKGROUND: The clinical course of chronic lymphocytic leukemia (CLL) is highly variable; some patients follow an indolent course, but others progress to a more advanced stage. The mutational status of rearranged immunoglobulin heavy chain variable (IGVH) genes in CLL is a feature that is widely recognized for dividing patients into groups that are related to their prognoses. However, the regulatory programs associated with the IGVH statuses are poorly understood, and markers that can precisely predict survival outcomes have yet to be identified.
METHODS: In this study, (i) we reconstructed gene regulatory networks in CLL by applying an information-theoretic approach to the expression profiles of 5 cohorts. (ii) We applied master regulator analysis (MRA) to these networks to identify transcription factors (TFs) that regulate an IGVH mutational status signature. The IGVH mutational status signature was developed by searching for differentially expressed genes between the IGVH mutational statuses in numerous CLL cohorts. (iii) To evaluate the biological implication of the inferred regulators, prognostic values were determined using time to treatment (TTT) and overall survival (OS) in two different cohorts.
RESULTS: A robust IGVH expression signature was obtained, and various TFs emerged as regulators of the signature in most of the reconstructed networks. The TF targets expression profiles exhibited significant differences with respect to survival, which allowed the definition of a reduced profile with a high value for OS. TCF7 and its targets stood out for their roles in progression.
CONCLUSION: TFs and their targets, which were obtained merely from inferred regulatory associations, have prognostic implications and reflect a regulatory context for prognosis.
BACKGROUND: Solid pseudopapillary neoplasms (SPN) are pancreatic tumors with low malignant potential and good prognosis. However, differential diagnosis between SPN and pancreatic malignancies including pancreatic neuroendocrine tumor (PanNET) and ductal adenocarcinoma (PDAC) is difficult. This study tried to identify candidate biomarkers for the distinction between SPN and the two malignant pancreatic tumors by examining the gene regulatory network of SPN.
METHODS: The gene regulatory network for SPN was constructed by a co-expression model. Genes that have been reported to be correlated with SPN were used as the clues to hunt more SPN-related genes in the network according to a shortest path approach. By means of the K-nearest neighbor algorithm (KNN) classifier evaluated by the jackknife test, sets of genes to distinguish SPN and malignant pancreatic tumors were determined.
RESULTS: We took a new strategy to identify candidate biomarkers for differentiating SPN from the two malignant pancreatic tumors PanNET and PDAC by analyzing shortest paths among SPN-related genes in the gene regulatory network. 43 new SPN-relevant genes were discovered, among which, we found hsa-miR-194 and hsa-miR-7 along with 7 transcription factors (TFs) such as SOX11, SMAD3 and SOX4 etc. could correctly differentiate SPN from PanNET, while hsa-miR-204 and 4 TFs such as SOX9, TCF7 and PPARD etc. were demonstrated as the potential markers for SPN versus PDAC. 14 genes were demonstrated to serve as the candidate biomarkers for distinguishing SPN from PanNET and PDAC when considering them as malignant pancreatic tumors together.
CONCLUSION: This study provides new candidate genes related to SPN and the potential biomarkers to differentiate SPN from PanNET and PDAC, which may help to diagnose patients with SPN in clinical setting. Furthermore, candidate biomarkers such as SOX11 and hsa-miR-204 which could cause cell proliferation but inhibit invasion or metastasis may be of importance in understanding the molecular mechanism of pancreatic oncogenesis and could be possible therapeutic targets for malignant pancreatic tumors.
Leal LF, Bueno AC, Gomes DC, et al.
Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis.Oncotarget. 2015; 6(40):43016-32 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target.
AIM: To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells.
METHODS: Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5-200 μM) for 24-96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot).
RESULTS: In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability.
CONCLUSIONS: Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC.
Wu J, Zhang J, Shen B, et al.
Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition.J Exp Clin Cancer Res. 2015; 34:116 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Accumulating evidence suggests the pro-inflammatory cytokine interleukin-6 (IL-6) in tumor microenvironment may promote the development of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown.
METHODS: The expression and promoter activity of lncTCF7 were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the STAT3 binding site in the lncTCF7 promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of STAT3 to the lncTCF7 promoter was confirmed by chromatin immunoprecipitation assay (CHIP) in vivo. The effects of decreasing STAT3 with small interference RNA and inhibiting STAT3 activation by small molecular inhibitor on lncTCF7 expression were also determined.
RESULTS: We demonstrate that IL-6 could induce lncTCF7 expression in a time- and dose-dependent manner, and we showed that IL-6 transcriptionally activated the expression of lncTCF7 in HCC cells by activating STAT3, a transcription activator which binds to promoter regions of lncTCF7. Furthermore, knocking-down STAT3 and inhibiting STAT3 activation reduced lncTCF7 expression. Importantly, RNA interference-based attenuation of lncTCF7 prevented IL-6-induced EMT and cell invasion.
CONCLUSION: Thus, these data provides evidence to the existence of an aberrant IL-6/STAT3/ lncTCF7 signaling axis that leads to HCC aggressiveness through EMT induction, which could be novel therapeutic targets in malignancies.
Lung disease is the major cause of death and hospitalization worldwide. Transcription factors such as transcription factor 7 (TCF7) are involved in the pathogenesis of lung diseases. TCF7 is important for T cell development and differentiation, embryonic development, or tumorogenesis. Multiple TCF7 isoforms can be characterized by the full-length isoform (FL-TCF7) as a transcription activator, or dominant negative isoform (dn-TCF7) as a transcription repressor. TCF7 interacts with multiple proteins or target genes and participates in several signal pathways critical for lung diseases. TCF7 is involved in pulmonary infection, allergy or asthma through promoting T cells differentiating to Th2 or memory T cells. TCF7 also works in tissue repair and remodeling after acute lung injury. The dual roles of TCF7 in lung cancers were discussed and it is associated with the cellular proliferation, invasion or metastasis. Thus, TCF7 plays critical roles in lung diseases and should be considered as a new therapeutic target.
BACKGROUND: Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages.
PRINCIPAL FINDINGS: The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines.
CONCLUSIONS: Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.
Wang Y, He L, Du Y, et al.
The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling.Cell Stem Cell. 2015; 16(4):413-25 [
PubMed]
Related Publications
Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer, and it is characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanisms underlying their self-renewal and maintenance are poorly understood. Here, using transcriptome microarray analysis, we identified a long noncoding RNA (lncRNA) termed lncTCF7 that is highly expressed in HCC tumors and liver CSCs. LncTCF7 is required for liver CSC self-renewal and tumor propagation. Mechanistically, lncTCF7 recruits the SWI/SNF complex to the promoter of TCF7 to regulate its expression, leading to activation of Wnt signaling. Our data suggest that lncTCF7-mediated Wnt signaling primes liver CSC self-renewal and tumor propagation. In sum, therefore, we have identified an lncRNA-based Wnt signaling regulatory circuit that promotes tumorigenic activity in liver cancer stem cells, highlighting the role that lncRNAs can play in tumor growth and propagation.
Li W, Jiang Z, Li T, et al.
Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes.Mol Cancer. 2015; 14:26 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Kruppel-like factor 4 (KLF4) induces tumorigenesis or suppresses tumor growth in a tissue-dependent manner. However, the roles of KLF4 in hematological malignancies and the mechanisms of action are not fully understood.
METHODS: Inducible KLF4-overexpression Jurkat cell line combined with mouse models bearing cell-derived xenografts and primary T-cell acute lymphoblastic leukemia (T-ALL) cells from four patients were used to assess the functional role of KLF4 in T-ALL cells in vitro and in vivo. A genome-wide RNA-seq analysis was conducted to identify genes regulated by KLF4 in T-ALL cells. Chromatin immunoprecipitation (ChIP) PCR was used to determine direct binding sites of KLF4 in T-ALL cells.
RESULTS: Here we reveal that KLF4 induced apoptosis through the BCL2/BCLXL pathway in human T-ALL cell lines and primary T-ALL specimens. In consistence, mice engrafted with KLF4-overexpressing T-ALL cells exhibited prolonged survival. Interestingly, the KLF4-induced apoptosis in T-ALL cells was compromised in xenografts but the invasion capacity of KLF4-expressing T-ALL cells to hosts was dramatically dampened. We found that KLF4 overexpression inhibited T cell-associated genes including NOTCH1, BCL11B, GATA3, and TCF7. Further mechanistic studies revealed that KLF4 directly bound to the promoters of NOTCH1, BCL2, and CXCR4 and suppressed their expression. Additionally, KLF4 induced SUMOylation and degradation of BCL11B.
CONCLUSIONS: These results suggest that KLF4 as a major transcription factor that suppresses the expression of T-cell associated genes, thus inhibiting T-ALL progression.
Aberrant activation of Ras and WNT signaling are key events that have been shown to be up-regulated in prostate cancer that has metastasized to the bone. However, the regulatory mechanism of combinatorial Ras and WNT signaling in advanced prostate cancer is still unclear. TCF7, a WNT signaling-related gene, has been implicated as a critical factor in bone metastasis, and here we show that TCF7 is a direct target of miR-34a. In samples of prostate cancer patients, miR-34a levels are inversely correlated with TCF7 expression and a WNT dependent gene signature. Ectopic miR-34a expression inhibited bone metastasis and reduced cancer cell proliferation in a Ras-dependent xenograft model. We demonstrate that miR-34a can directly interfere with the gene expression of the anti-proliferative BIRC5, by targeting BIRC5 3'UTR. Importantly, BIRC5 overexpression was sufficient to reconstitute anti-apoptotic signaling in cells expressing high levels of miR-34a. In prostate cancer patients, we found that BIRC5 levels were positively correlated with a Ras signaling signature expression. Our data show that the bone metastasis and anti-apoptotic effects found in Ras signaling-activated prostate cancer cells require miR-34a deficiency, which in turn aids in cell survival by activating the WNT and anti-apoptotic signaling pathways thereby inducing TCF7 and BIRC5 expressions.
We report that the odd-skipped related 1 (OSR1) gene encoding a zinc-finger transcription factor was preferentially methylated in gastric cancer by genome-wide methylation screening. OSR1 expression was frequently silenced or down-regulated in gastric cancer cell lines. OSR1 expression was also significantly down-regulated at both mRNA and protein levels in primary gastric cancer tissues compared with adjacent normal tissues. The silencing or down-regulation of OSR1 was closely associated with promoter hypermethylation. Overexpression of OSR1 significantly inhibited cell growth, arrested the cell cycle, and induced apoptosis in the gastric cancer cell lines AGS, MKN28, and MGC803. Conversely, knockdown of OSR1 by OSR1-short hairpin RNA significantly enhanced cell growth, promoted the cell cycle, and inhibited apoptosis in the normal gastric epithelial cell line GES1. The dual-luciferase reporter assay revealed that OSR1 activated p53 transcription and repressed the T-cell factor (TCF)/lymphoid enhancer factor (LEF). Complementary DNA expression array and western blotting showed that OSR1 increased the expression of nuclear p53, p21, Fas, and death receptor-5, and suppressed the expression of cyclin D1 and cyclin-dependent kinase 4 in the p53 signalling pathway. In addition, OSR1 suppressed the expression of cytoplasmic β-catenin, TCF-1, and LEF1 in the Wnt/β-catenin signalling pathway. OSR1 methylation was detected in 51.8% of primary gastric cancer patients (85 of 164) by bisulphite genomic sequencing. Multivariate Cox regression analysis showed that OSR1 methylation was an independent predictor of poor survival. Kaplan-Meier survival curves revealed that OSR1 methylation was associated with shortened survival in TNM stage I-III patients. In conclusion, OSR1 acts as a functional tumour suppressor through the transcriptional activation of p53 and repression of TCF/LEF in gastric cancer. Detection of OSR1 methylation may serve as a potential biomarker of the early stage of gastric cancer.
Despite the improvement in treatment options, chronic lymphocytic leukemia (CLL) remains an incurable disease and patients show a heterogeneous clinical course requiring therapy for many of them. In the current work, we have built a 20-gene expression (GE)-based risk score predictive for patients overall survival and improving risk classification using microarray gene expression data. GE-based risk score allowed identifying a high-risk group associated with a significant shorter overall survival (OS) and time to treatment (TTT) (P ≤ .01), comprising 19.6% and 13.6% of the patients in two independent cohorts. GE-based risk score, and NRIP1 and TCF7 gene expression remained independent prognostic factors using multivariate Cox analyses and combination of GE-based risk score together with NRIP1 and TCF7 gene expression enabled the identification of three clinically distinct groups of CLL patients. Therefore, this GE-based risk score represents a powerful tool for risk stratification and outcome prediction of CLL patients and could thus be used to guide clinical and therapeutic decisions prospectively.
The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.