Gene Summary

Gene:S100A10; S100 calcium binding protein A10
Aliases: 42C, P11, p10, GP11, ANX2L, CAL1L, CLP11, Ca[1], ANX2LG
Summary:The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in exocytosis and endocytosis. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein S100-A10
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: S100A10 (cancer-related)

Christensen MV, Høgdall C, Jensen SG, et al.
Annexin A2 and S100A10 as Candidate Prognostic Markers in Epithelial Ovarian Cancer.
Anticancer Res. 2019; 39(5):2475-2482 [PubMed] Related Publications
BACKGROUND/AIM: Ovarian cancer (OC) is the 5th most common cancer among European women. Approximately 70-80% of OC is diagnosed at advanced stage resulting in an elevated mortality rate. The aim of this study was to examine whether Annexin A2 and S100A10 expression can be used as prognostic markers for epithelial ovarian cancer (EOC).
MATERIALS AND METHODS: Expression of Annexin A2 and S100A10 was evaluated in EOC tissue samples (n=303) by immunohistochemistry. The staining of the membrane, cytoplasmic and stroma was assessed according to intensity.
RESULTS: The expression of both markers correlated to histological subtype, histological grading, International Federation of Gynecology and Obstetrics (FIGO) stage, and macro-radical surgery. Univariate Cox regression analysis showed that Annexin A2 and S100A10 in stromal tissue correlated with shorter overall survival (OS). Multivariate Cox regression analysis demonstrated no independent prognostic significance of stromal Annexin A2 expression.
CONCLUSION: High expression of Annexin A2 and S100A10 in stromal tissue from EOC patients was associated with reduced OS; however, no independent prognostic value was found for any of the markers.

Bai Y, Li LD, Li J, Lu X
Prognostic values of S100 family members in ovarian cancer patients.
BMC Cancer. 2018; 18(1):1256 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Exhibiting high consistence in sequence and structure, S100 family members are interchangeable in function and they show a wide spectrum of biological processes, including proliferation, apoptosis, migration, inflammation and differentiation and the like. While the prognostic value of each individual S100 in ovarian cancer is still elusive. In current study, we investigated the prognostic value of S100 family members in the ovarian cancer.
METHODS: We used the Kaplan Meier plotter (KM plotter) database, in which updated gene expression data and survival information are from 1657 ovarian cancer patients, to assess the relevance of individual S100 family mRNA expression to overall survival in various ovarian cancer subtypes and different clinicopathological features.
RESULTS: It was found that high expression of S100A2 (HR = 1.18, 95%CI: 1.04-1.34, P = 0.012), S100A7A (HR = 1.3, 95%CI: 1.04-1.63, P = 0.02),S100A10 (HR = 1.2, 95%CI: 1.05-1.38, P = 0.0087),and S100A16 (HR = 1.23, 95%CI: 1-1.51, P = 0.052) were significantly correlated with worse OS in all ovarian cancer patients, while the expression of S100A1 (HR = 0.87, 95%CI: 0.77-0.99, P = 0.039), S100A3 (HR = 0.83, 95%CI: 0.71-0.96, P = 0.0011), S100A5 (HR = 0.84, 95%CI: 0.73-0.97, P = 0.017), S100A6 (HR = 0.84, 95%CI: 0.72-0.98, P = 0.024), S100A13 (HR = 0.85, 95%CI:0.75-0.97, P = 0.014) and S100G (HR = 0.86, 95%CI: 0.74-0.99, P = 0.041) were associated with better prognosis. Furthermore, we assessed the prognostic value of S100 expression in different subtypes and the clinicopathological features, including pathological grades, clinical stages and TP53 mutation status, of ovarian cancer patients.
CONCLUSION: Comprehensive understanding of the S100 family members may have guiding significance for the diagnosis and outcome of ovarian cancer patients.

Khoontawad J, Intuyod K, Rucksaken R, et al.
Discovering proteins for chemoprevention and chemotherapy by curcumin in liver fluke infection-induced bile duct cancer.
PLoS One. 2018; 13(11):e0207405 [PubMed] Free Access to Full Article Related Publications
Modulation or prevention of protein changes during the cholangiocarcinoma (CCA) process induced by Opisthorchis viverrini (Ov) infection may become a key strategy for prevention and treatment of CCA. Monitoring of such changes could lead to discovery of protein targets for CCA treatment. Curcumin exerts anti-inflammatory and anti-CCA activities partly through its protein-modulatory ability. To support the potential use of curcumin and to discover novel target molecules for CCA treatment, we used a quantitative proteomic approach to investigate the effects of curcumin on protein changes in an Ov-induced CCA-harboring hamster model. Isobaric labelling and tandem mass spectrometry were used to compare the protein expression profiles of liver tissues from CCA hamsters with or without curcumin dietary supplementation. Among the dysregulated proteins, five were upregulated in liver tissues of CCA hamsters but markedly downregulated in the CCA hamsters supplemented with curcumin: S100A6, lumican, plastin-2, 14-3-3 zeta/delta and vimentin. Western blot and immunohistochemical analyses also showed similar expression patterns of these proteins in liver tissues of hamsters in the CCA and CCA + curcumin groups. Proteins such as clusterin and S100A10, involved in the NF-κB signaling pathway, an important signaling cascade involved in CCA genesis, were also upregulated in CCA hamsters and were then suppressed by curcumin treatment. Taken together, our results demonstrate the important changes in the proteome during the genesis of O. viverrini-induced CCA and provide an insight into the possible protein targets for prevention and treatment of this cancer.

Xiong TF, Pan FQ, Li D
Expression and clinical significance of S100 family genes in patients with melanoma.
Melanoma Res. 2019; 29(1):23-29 [PubMed] Free Access to Full Article Related Publications
Genes in the S100 family are abnormally expressed in a variety of tumor cells and are associated with clinical pathology, but their prognostic value in melanoma patients has not yet been fully elucidated. In this study, we extracted and profiled S100 family mRNA expression data and corresponding clinical data from the Gene Expression Omnibus database to analyze how expression of these genes correlates with clinical pathology. Compared with normal skin, S100A1, S100A13, and S100B were expressed at significantly higher levels in melanoma samples. S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, and S100P were all highly expressed in primary melanoma samples but were expressed at low levels in metastatic melanoma, and all of these genes were strongly correlated with each other (P<0.001). We found the expression of these S100 family genes to be significantly correlated with both lymphatic and distant melanoma metastasis, as well as with American Joint Committee on Cancer grade but not with Clark's grade, age, or sex. This suggests that expression of these genes may be related to the degree of tumor invasion. Although further validation through basic and clinical trials is needed, our results suggest that the S100 family genes have the potential to play an important role in the diagnosis of melanoma. S100 expression may be related to tumor invasion and may facilitate the early diagnosis of melanoma, allowing for a more accurate prognosis. Targeted S100 therapies are also potentially viable strategies in the context of melanoma.

Grindheim AK, Saraste J, Vedeler A
Protein phosphorylation and its role in the regulation of Annexin A2 function.
Biochim Biophys Acta Gen Subj. 2017; 1861(11 Pt A):2515-2529 [PubMed] Related Publications
BACKGROUND: Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair.
SCOPE OF REVIEW: The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2.
MAJOR CONCLUSIONS: AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications.
GENERAL SIGNIFICANCE: AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.

Gocheva V, Naba A, Bhutkar A, et al.
Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival.
Proc Natl Acad Sci U S A. 2017; 114(28):E5625-E5634 [PubMed] Free Access to Full Article Related Publications
The extracellular microenvironment is an integral component of normal and diseased tissues that is poorly understood owing to its complexity. To investigate the contribution of the microenvironment to lung fibrosis and adenocarcinoma progression, two pathologies characterized by excessive stromal expansion, we used mouse models to characterize the extracellular matrix (ECM) composition of normal lung, fibrotic lung, lung tumors, and metastases. Using quantitative proteomics, we identified and assayed the abundance of 113 ECM proteins, which revealed robust ECM protein signatures unique to fibrosis, primary tumors, or metastases. These analyses indicated significantly increased abundance of several S100 proteins, including Fibronectin and Tenascin-C (Tnc), in primary lung tumors and associated lymph node metastases compared with normal tissue. We further showed that Tnc expression is repressed by the transcription factor Nkx2-1, a well-established suppressor of metastatic progression. We found that increasing the levels of Tnc, via CRISPR-mediated transcriptional activation of the endogenous gene, enhanced the metastatic dissemination of lung adenocarcinoma cells. Interrogation of human cancer gene expression data revealed that high

Madureira PA, Bharadwaj AG, Bydoun M, et al.
Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10.
Oncotarget. 2016; 7(30):47720-47737 [PubMed] Free Access to Full Article Related Publications
The link between oncogenic RAS expression and the acquisition of the invasive phenotype has been attributed to alterations in cellular activities that control degradation of the extracellular matrix. Oncogenic RAS-mediated upregulation of matrix metalloproteinase 2 (MMP-2), MMP-9 and urokinase-type plasminogen activator (uPA) is critical for invasion through the basement membrane and extracellular matrix. The uPA converts cell surface-bound plasminogen to plasmin, a process that is regulated by the binding of plasminogen to specific receptors on the cell surface, however, the identity of the plasminogen receptors that function in this capacity is unclear. We have observed that transformation of cancer cells with oncogenic forms of RAS increases plasmin proteolytic activity by 2- to 4-fold concomitant with a 3-fold increase in cell invasion. Plasminogen receptor profiling revealed RAS-dependent increases in both S100A10 and cytokeratin 8. Oncogenic RAS expression increased S100A10 gene expression which resulted in an increase in S100A10 protein levels. Analysis with the RAS effector-loop mutants that interact specifically with Raf, Ral GDS pathways highlighted the importance of the RalGDS pathways in the regulation of S100A10 gene expression. Depletion of S100A10 from RAS-transformed cells resulted in a loss of both cellular plasmin generation and invasiveness. These results strongly suggest that increases in cell surface levels of S100A10, by oncogenic RAS, plays a critical role in RAS-stimulated plasmin generation, and subsequently, in the invasiveness of oncogenic RAS expressing cancer cells.

Zhang Y, Ran Y, Xiong Y, et al.
Effects of TMEM9 gene on cell progression in hepatocellular carcinoma by RNA interference.
Oncol Rep. 2016; 36(1):299-305 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a malignant tumor that has become a global health issue. The aim of the present study was to examine the role of transmembrane protein 9 (TMEM9) in cell progression, such as cell growth, cell cycle, cell metastasis of hepatoma cells, and to discuss the TMEM9 gene‑encoding protein as a potential therapy target of hepatoma. RT-qPCR was performed to examine TMEM9 expression in tumor tissues and adjacent tissues of patients with liver cancer. siRNAs were used to interfere TMEM9 in HepG2 and 7721 cells. A CCK-8 assay was performed to evaluate cell growth at 24, 48 and 72 h. Cell cycle and apoptosis were analyzed using flow cytometry. Transwell assays were used to determine cell invasion, migration and adhesion. The results showed that TMEM9 was expressed abnormally in liver cancers. TMEM9 expression increased significantly in the 34 examined patients. TMEM9 knockdown inhibited proliferation in the HepG2 and 7721 cells. The flow cytometric analysis revealed that TMEM9 knockdown by RNA interference resulted in G1 arrest and induced apoptosis. Cell invasion, migration and adhesion ability were also decreased. Western blotting indicated that expression of the cell cycle‑related proteins CDK1, EIF3H, RPL10L, S100A10, CCNB1 and CCNB2 was significantly decreased. In conclusion, TMEM9 plays an important role in the cell growth of hepatoma cells.

Lokman NA, Pyragius CE, Ruszkiewicz A, et al.
Annexin A2 and S100A10 are independent predictors of serous ovarian cancer outcome.
Transl Res. 2016; 171:83-95.e1-2 [PubMed] Related Publications
Annexin A2, a calcium phospholipid binding protein, has been shown to play an important role in ovarian cancer metastasis. This study examined whether annexin A2 and S100A10 can be used as prognostic markers in serous ovarian cancer. ANXA2 and S100A10 gene expressions were assessed in publicly available ovarian cancer data sets and annexin A2 and S100A10 protein expressions were assessed by immunohistochemistry in a uniform cohort of stage III serous ovarian cancers (n = 109). Kaplan-Meier and Cox regression analyses were performed to assess the relationship between annexin A2 or S100A10 messenger RNA (mRNA) and protein expressions with clinical outcome. High ANXA2 mRNA levels in stage III serous ovarian cancers were associated with reduced progression-free survival (PFS; P = 0.023) and overall survival (OS; P = 0.0038), whereas high S100A10 mRNA levels predicted reduced OS (P = 0.0019). Using The Cancer Genome Atlas data sets, ANXA2 but not S100A10 expression was associated with higher clinical stage (P = 0.005), whereas both ANXA2 and S100A10 expressions were associated with the mesenchymal molecular subtype (P < 0.0001). Kaplan-Meier and Cox regression analyses showed that high stromal annexin A2 immunostaining was significantly associated with reduced PFS (P = 0.013) and OS (P = 0.044). Moreover, high cytoplasmic S100A10 staining was significantly associated with reduced OS (P = 0.027). Multivariate Cox regression analysis showed stromal annexin A2 (P = 0.009) and cytoplasmic S100A10 (P = 0.016) levels to be independent predictors of OS. Patients with high stromal annexin A2 and high cytoplasmic S100A10 expressions had a 3.4-fold increased risk of progression (P = 0.02) and 7.9-fold risk of ovarian cancer death (P = 0.04). Our findings indicate that together annexin A2 and S100A10 expressions are powerful predictors of serous ovarian cancer outcome.

Gopalakrishnapillai A, Kolb EA, Dhanan P, et al.
Disruption of Annexin II /p11 Interaction Suppresses Leukemia Cell Binding, Homing and Engraftment, and Sensitizes the Leukemia Cells to Chemotherapy.
PLoS One. 2015; 10(10):e0140564 [PubMed] Free Access to Full Article Related Publications
The bone marrow microenvironment plays an important role in acute lymphoblastic leukemia (ALL) cell proliferation, maintenance, and resistance to chemotherapy. Annexin II (ANX2) is abundantly expressed on bone marrow cells and complexes with p11 to form ANX2/p11-hetero-tetramer (ANX2T). We present evidence that p11 is upregulated in refractory ALL cell lines and patient samples. A small molecule inhibitor that disrupts ANX2/p11 interaction (ANX2T inhibitor), an anti-ANX2 antibody, and knockdown of p11, abrogated ALL cell adhesion to osteoblasts, indicating that ANX2/p11 interaction facilitates binding and retention of ALL cells in the bone marrow. Furthermore, ANX2T inhibitor increased the sensitivity of primary ALL cells co-cultured with osteoblasts to dexamethasone and vincristine induced cell death. Finally, in an orthotopic leukemia xenograft mouse model, the number of ALL cells homing to the bone marrow was reduced by 40-50% in mice injected with anti-ANX2 antibody, anti-p11 antibody or ANX2T inhibitor compared to respective controls. In a long-term engraftment assay, the percentage of ALL cells in mouse blood, bone marrow and spleen was reduced in mice treated with agents that disrupt ANX2/p11 interaction. These data show that disruption of ANX2/p11 interaction results in reduced ALL cell adhesion to osteoblasts, increased ALL cell sensitization to chemotherapy, and suppression of ALL cell homing and engraftment.

Nymoen DA, Hetland Falkenthal TE, Holth A, et al.
Expression and clinical role of chemoresponse-associated genes in ovarian serous carcinoma.
Gynecol Oncol. 2015; 139(1):30-9 [PubMed] Related Publications
OBJECTIVE: To validate our earlier observation that 11 chemoresistance-associated mRNAs are molecular markers of poor overall survival in ovarian serous carcinoma.
METHODS: Ovarian serous carcinomas (n=112) and solid metastases (n=63; total=175) were analyzed for mRNA expression of APC, BAG3, EGFR, S100A10, ITGAE, MAPK3, TAP1, BNIP3, MMP9, FASLG and GPX3 using quantitative real-time PCR. mRNA expression was studied for association with clinicopathologic parameters and survival. Tumor heterogeneity was assessed in 20 cases with >1 specimen per patient. APC, BAG3, S100A10 and ERK1 protein expression by immunohistochemistry was analyzed in 58 specimens (38 primary carcinomas, 20 metastases).
RESULTS: BAG3 (p=0.013), TAP1 (p=0.014), BNIP3 (p<0.001) and MMP9 (p=0.036) were overexpressed in primary tumors, whereas S100A10 (p=0.027) and FASLG (p=0.006) were overexpressed in metastases. Analysis of patient-matched primary carcinomas and metastases showed overexpression of APC (p=0.022), MAPK3 (p=0.002) and BNIP3 (p=0.004) in the former. In primary carcinomas, higher APC (p=0.003) and MAPK3 (p=0.005) levels were related to less favorable chemoresponse. Higher S100A10 (p=0.029) and MAPK3 (p=0.041) levels were related to primary chemoresistance. Higher BAG3 (p=0.026) and APC (p=0.046) levels in primary carcinomas were significantly related to poor overall survival in univariate, though not in multivariate survival analysis. S100A10 protein expression was related to poor chemoresponse (p=0.002) and shorter overall (p=0.005) and progression-free (p<0.001) survival, the latter finding retained in multivariate analysis (p=0.035).
CONCLUSIONS: Our data provide evidence of heterogeneity in ovarian serous carcinoma and identify APC, MAPK3, BAG3 and S100A10 as potential biomarkers of poor chemotherapy response and/or poor outcome in this cancer.

Martínez-Aguilar J, Clifton-Bligh R, Molloy MP
A multiplexed, targeted mass spectrometry assay of the S100 protein family uncovers the isoform-specific expression in thyroid tumours.
BMC Cancer. 2015; 15:199 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mounting evidence demonstrates a causal role for S100 proteins in tumourigenesis and several S100 isoforms have shown utility as biomarkers of several types of cancer. The S100 family is comprised of 21 small isoforms, many of them implicated in important cellular functions such as proliferation, motility and survival. Furthermore, in vivo experiments have proven the role of S100 proteins in tumour growth and disease progression, while other studies have shown their prognostic value and involvement in resistance to chemotherapy drugs. Taken together, all these aspects highlight S100 proteins as potential therapeutic targets and as a promising panel of cancer biomarkers. In this work, we have developed a mass spectrometry (MS)-based method for the multiplexed and specific analysis of the entire S100 protein family in tumour tissues and have applied it to investigate the expression of S100 isoforms in the context of thyroid cancer, the main endocrine malignancy.
METHODS: Selected Reaction Monitoring (SRM)-MS and stable isotope labelling/label-free analysis were employed to investigate the expression of the 21 S100 protein isoforms in thyroid tissue samples. Specimens included 9 normal thyroid tissues and 27 tumour tissues consisting of 9 follicular adenomas (FA), 8 follicular carcinomas (FTC) and 10 papillary carcinomas (PTC).
RESULTS: The multiplexed and targeted mass spectrometry method led to the detection of eleven S100 protein isoforms across all tissues. Label- and label-free analyses showed the same significant differences and results were confirmed by western blot. S100A6, S100A11 and its putative interaction partner annexin A1 showed the highest overexpression in PTC compared to normal thyroid. S100A13 was also elevated in PTC. Reduced S100A4 expression was observed in FA compared to all other tissues. FA and FTC showed reduction of S100A10 and annexin A2 expression.
CONCLUSIONS: Targeted mass spectrometry allows the multiplexed and specific analysis of S100 protein isoforms in tumour tissue specimens. It revealed S100A13 as a novel candidate PTC biomarker. Results show that S100A6, S100A11 and Annexin A1 could help discriminate follicular and papillary tumours. The diagnostic and functional significance of S100A4 and S100A10 reduction in follicular tumours requires further investigation.

Zhang Q, Zhu M, Cheng W, et al.
Downregulation of 425G>a variant of calcium-binding protein S100A14 associated with poor differentiation and prognosis in gastric cancer.
J Cancer Res Clin Oncol. 2015; 141(4):691-703 [PubMed] Related Publications
PURPOSE: Altered level of S100 calcium-binding proteins is involved in tumor development and progression. However, their role in gastric cancer (GC) is not well documented. We investigated the expression pattern of S100 proteins and differentiation or prognosis as well as possible mechanisms in GC.
METHODS: RT-PCR, Western blot analysis, and immunohistochemistry were used to determine the mRNA and protein expression of S100 family genes in GC. The polymorphisms of promoter and 5'-UTR of S100A14 gene were identified and related to luciferase reporter gene activity. Association of S100A14 expression with clinicopathologic features and survival in GC was analyzed.
RESULTS: We detected upregulated S100A2, S100A6, S100A10, and S100A11 expression and downregulated S100P and S100B expression in GC. Particularly, we detected differential mRNA and protein expression of S100A14 in GC cell lines and primary tumors. Furthermore, S100A14 expression change was related to a differentiated GC phenotype, with an expression in 31/40 (77.5 %) samples of well-differentiated tumors and 29/85 (34.1 %) samples of poorly differentiated tumors (P < 0.001). Moreover, 5-year survival was better in GC cases with positive than negative S100A14 level (P = 0.02). The genetic variant 425G>A on the 5'-UTR of S100A14 was associated with reduced S100A14 expression in GC cells.
CONCLUSION: Decreased expression of S100A14 with presence of its genetic variant 425G>A may be associated with an undifferentiated phenotype and poor prognosis in GC.

Andey T, Marepally S, Patel A, et al.
Cationic lipid guided short-hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer stem cell model.
J Control Release. 2014; 184:67-78 [PubMed] Free Access to Full Article Related Publications
The role of side populations (SP) or cancer stem-like cells (CSC) in promoting the resistance phenotype presents a viable anticancer target. Human-derived H1650 SP cells over-express annexin A2 (AnxA2) and SOX2, and are resistant to conventional cytotoxic chemotherapeutics. AnxA2 and SOX2 bind to proto-oncogenes, c-Myc and c-Src, and AnxA2 forms a functional heterotetramer with S100A10 to promote tumor motility. However, the combined role of AnxA2, S100A10 and SOX2 in promoting the resistant phenotype of SP cells has not been investigated. In the current studies, we examined for the first time a possible role of AnxA2 in regulating SA100A10 and SOX2 in promoting a resistant phenotype of lung tumors derived from H1650 SP cells. The resistance of H1650 SP cells to chemotherapy compared to H1650 MP cells was investigated by cell viability studies. A short hairpin RNA targeting AnxA2 (shAnxA2) was formulated in a liposomal (cationic ligand-guided, CLG) carrier and characterized for size, charge and entrapment and loading efficiencies; CLG carrier uptake by H1650 SP cells was demonstrated by fluorescence microscopy, and knockdown of AnxA2 confirmed by qRT-PCR and Western blot. Targeting of xenograft and orthotopic lung tumors was demonstrated with fluorescent (DiR) CLG carriers in mice. The therapeutic efficacy of CLG-AnxA2, compared to that of placebo, was investigated after 2 weeks of treatment in terms of tumor weights and tumor burden in vivo. Compared to mixed population cells, H1650 SP cells showed exponential resistance to docetaxel (15-fold), cisplatin (13-fold), 5-fluorouracil (31-fold), camptothecin (7-fold), and gemcitabine (16-fold). CLG carriers were nanoparticulate (199nm) with a slight positive charge (21.82mV); CLG-shAnx2 was of similar size (217nm) with decreased charge (12.11mV), and entrapment and loading efficiencies of 97% and 6.13% respectively. Fluorescence microscopy showed high uptake of CLG-shAnxA2 in H1650 SP cells after 2h resulting in a 6-fold reduction in AnxA2 mRNA expression and 92% decreased protein expression. Fluorescence imaging confirmed targeting of tumors and lungs by DiR-CLG carriers with sustained localization up to 4h in mice. CLG-shAnxA2 treatment of mice significantly reduced the weights of lung tumors derived from H1650 SP cells and tumor burden was reduced to only 19% of controls. The loss in tumor weights in response to CLG-shAnxA2 was associated with a significant loss in the relative levels of AnxA2, SOX2, total β-catenin and S100A10, both at the RNA and protein levels. These results suggest the intriguing possibility that AnxA2 may directly or indirectly regulate relative levels of β-catenin, S100A10 and SOX2, and that the combination of these factors may contribute to the resistant phenotype of H1650 SP cells. Thus down-regulating AnxA2 using RNAi methods may provide a useful method for targeting cancer stem cells and help advance therapeutic efficacy against lung cancers.

Panagopoulos I, Brandal P, Gorunova L, et al.
Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors.
Int J Oncol. 2014; 44(5):1425-32 [PubMed] Free Access to Full Article Related Publications
RNA-sequencing was performed on three tenosynovial giant cell tumors (TSGCT) in an attempt to elicit more information on the mechanisms of CSF1 expression in this tumor type. A novel CSF1-S100A10 fusion gene was found in a TSGCT that carried the translocation t(1;1)(q21;p11) as the sole karyotypic abnormality. In this fusion gene, the part of CSF1 coding for the CSF1 protein (exons 1-8 in sequences with accession nos. NM_000757 and NM_172212) is fused to the 3'-part of S100A10. Since the stop codon TAG of CSF1 is present in it, the CSF1-S100A10 fusion gene's predominant consequence seems to be the replacement of the 3'-untranslated region (UTR) of CSF1 (exon 9; nt 2092-4234 in sequence with accession no. NM_000757 or nt 2092-2772 in NM_172212) by the 3'-end of S100A10 (exon 3; nt 641-1055 in sequence with accession no. NM_002966). In the other two TSGCT, a novel CSF1 transcript was detected, the same in both tumors. Similar to the occurrence in the CSF1-S100A10 fusion gene, the novel CSF1 transcript 3'-UTR is replaced by a new exon located ~48 kb downstream of CSF1 and 11 kb upstream of AHCYL1. Although only 3 TSGCT were available for study, the finding in all of them of a novel CSF1-S100A10 fusion gene or CSF1 transcript indicates the existence of a common pathogenetic theme in this tumor type: the replacement of the 3'-UTR of CSF1 with other sequences.

Fujishiro H, Ohashi T, Takuma M, Himeno S
Down-regulation of S100A9 and S100A10 in manganese-resistant RBL-2H3 cells.
J Toxicol Sci. 2013; 38(5):753-7 [PubMed] Related Publications
Exposure to excess amounts of manganese causes toxic effects, including neurological symptoms such as Parkinsonism. However, endogenous factors involved in the protection against manganese toxicity remain unclear. Previously, we showed that rat basophilic leukemia RBL-2H3 cells are highly sensitive to MnCl₂ compared with other rat cell lines. To identify the genes involved in resistance to manganese toxicity, two lines of Mn-resistant cells showing resistance to 300 µM MnCl₂ (RBL-Mnr300) and 1200 µM MnCl₂ (RBL-Mnr1200) were developed from RBL-2H3 cells by a stepwise increase in MnCl₂ concentration in the medium. Microarray analyses were carried out to compare gene expression between parental RBL-2H3 cells and RBL-Mnr300 or RBL-Mnr1200 cells. Five genes exhibited more than 10-fold up-regulation in both RBL-Mnr300 and RBL-Mnr1200 cells, and 24 genes exhibited less than 0.1-fold down-regulation in both Mn-resistant cell lines. The S100a9 and S100a10 genes, encoding the calcium-binding S100A9 and S100A10 proteins, respectively, were found among the three most down-regulated genes in both Mn-resistant cell lines. The marked decreases in mRNA levels of S100a9 and S100a10 were confirmed by real-time RT-PCR analyses. Further characterization and comparison of these Mn-resistant cells may enable the identification of novel genes that play important roles in the modification of manganese toxicity.

Zheng X, Naiditch J, Czurylo M, et al.
Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics.
Cell Death Dis. 2013; 4:e740 [PubMed] Free Access to Full Article Related Publications
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients.

Shan X, Miao Y, Fan R, et al.
MiR-590-5P inhibits growth of HepG2 cells via decrease of S100A10 expression and Inhibition of the Wnt pathway.
Int J Mol Sci. 2013; 14(4):8556-69 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma is one of the most common and lethal cancers worldwide, especially in developing countries. In the present study, we found that the expression of a microRNA, miR-590-5P, was down-regulated and S100A10 was up-regulated in six hepatocellular carcinoma cell lines. The reporter gene assay showed that overexpression of miR-590-5P effectively reduced the activity of luciferase expressed by a vector bearing the 3' untranslated region of S100A10 mRNA. Ectopic miR-590-5P overexpression mediated by lentiviral infection decreased expression of S100A10. Infection of Lv-miR-590-5P inhibited cell growth and induced cell cycle G1 arrest in HepG2 cells. In addition, miR-590-5P expression suppressed the expression of Wnt5a, cMyc and cyclin D1, and increased the phosphorylation of β-catenin and expression of Caspase 3, which may contribute to the inhibitory effect of miR-590-5P on cell growth. Taken together, our data suggest that down-regulation of miR-590-5P is involved in hepatocellular carcinoma and the restoration of miR-590-5P can impair the growth of cancer cells, suggesting that miR-590-5P may be a potential target molecule for the therapy of hepatocellular carcinoma.

Spijkers-Hagelstein JA, Mimoso Pinhanços S, Schneider P, et al.
Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia.
Leukemia. 2013; 27(5):1063-71 [PubMed] Related Publications
MLL-rearranged infant acute lymphoblastic leukemia (ALL) (<1 year of age) are frequently resistant to glucocorticoids, like prednisone and dexamethasone. As poor glucocorticoid responses are strongly associated with therapy failure, overcoming glucocorticoid resistance may be a crucial step towards improving prognosis. Unfortunately, the mechanisms underlying glucocorticoid resistance in MLL-rearranged ALL largely remain obscure. We here defined a gene signature that accurately discriminates between prednisolone-resistant and prednisolone-sensitive MLL-rearranged infant ALL patient samples, demonstrating that, among other genes, high-level ANXA2 is associated with prednisolone resistance in this type of leukemia. Further investigation demonstrated that the underlying factor of this association was the presence of Src kinase-induced phosphorylation (activation) of annexin A2, a process requiring the adapter protein p11 (encoded by human S100A10). shRNA-mediated knockdown of either ANXA2, FYN, LCK or S100A10, all led to inhibition of annexin A2 phosphorylation and resulted in marked sensitization to prednisolone. Likewise, exposure of prednisolone-resistant MLL-rearranged ALL cells to different Src kinase inhibitors exerting high specificity towards FYN and/or LCK had similar effects. In conclusion, we here present a novel mechanism of prednisolone resistance in MLL-rearranged leukemias, and propose that inhibition of annexin A2 phosphorylation embodies a therapeutic strategy for overcoming resistance to glucocorticoids in this highly aggressive type of leukemia.

Johnson H, Del Rosario AM, Bryson BD, et al.
Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.
Mol Cell Proteomics. 2012; 11(12):1724-40 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a mean survival of 15 months with the current standard of care. Genetic profiling efforts have identified the amplification, overexpression, and mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) in ≈ 50% of GBM patients. The genetic aberration of wtEGFR is frequently accompanied by the overexpression of a mutant EGFR known as EGFR variant III (EGFRvIII, de2-7EGFR, ΔEGFR), which is expressed in 30% of GBM tumors. The molecular mechanisms of tumorigenesis driven by EGFRvIII overexpression in human tumors have not been fully elucidated. To identify specific therapeutic targets for EGFRvIII driven tumors, it is important to gather a broad understanding of EGFRvIII specific signaling. Here, we have characterized signaling through the quantitative analysis of protein expression and tyrosine phosphorylation across a panel of glioblastoma tumor xenografts established from patient surgical specimens expressing wtEGFR or overexpressing wtEGFR (wtEGFR+) or EGFRvIII (EGFRvIII+). S100A10 (p11), major vault protein, guanylate-binding protein 1(GBP1), and carbonic anhydrase III (CAIII) were identified to have significantly increased expression in EGFRvIII expressing xenograft tumors relative to wtEGFR xenograft tumors. Increased expression of these four individual proteins was found to be correlated with poor survival in patients with GBM; the combination of these four proteins represents a prognostic signature for poor survival in gliomas. Integration of protein expression and phosphorylation data has uncovered significant heterogeneity among the various tumors and has highlighted several novel pathways, related to EGFR trafficking, activated in glioblastoma. The pathways and proteins identified in these tumor xenografts represent potential therapeutic targets for this disease.

Giráldez MD, Lozano JJ, Cuatrecasas M, et al.
Gene-expression signature of tumor recurrence in patients with stage II and III colon cancer treated with 5'fluoruracil-based adjuvant chemotherapy.
Int J Cancer. 2013; 132(5):1090-7 [PubMed] Related Publications
Although receiving adjuvant chemotherapy after radical surgery, a disappointing proportion of patients with colorectal cancer will develop tumor recurrence. Probability of relapse is currently predicted from pathological staging, there being a need for additional markers to further select high-risk patients. This study was aimed to identify a gene-expression signature to predict tumor recurrence in patients with Stages II and III colon cancer treated with 5'fluoruracil (5FU)-based adjuvant chemotherapy. Two-hundred and twenty-eight patients diagnosed with Stages II-III colon cancer and treated with surgical resection and 5FU-based adjuvant chemotherapy were included. RNA was extracted from formalin-fixed, paraffin-embedded tissue samples and expression of 27 selected candidate genes was analyzed by RT-qPCR. A tumor recurrence predicting model, including clinico-pathological variables and gene-expression profiling, was developed by Cox regression analysis and validated by bootstrapping. The regression analysis identified tumor stage and S100A2 and S100A10 gene expression as independently associated with tumor recurrence. The risk score derived from this model was able to discriminate two groups with a highly significant different probability of tumor recurrence (HR, 2.75; 95%CI, 1.71-4.39; p = 0.0001), which it was maintained when patients were stratified according to tumor stage. The algorithm was also able to distinguish two groups with different overall survival (HR, 2.68; 95%CI, 1.12-6.42; p = 0.03). Identification of a new gene-expression signature associated with a high probability of tumor recurrence in patients with Stages II and III colon cancer receiving adjuvant 5FU-based chemotherapy, and its combination in a robust, easy-to-use and reliable algorithm may contribute to tailor treatment and surveillance strategies.

Elsner M, Rauser S, Maier S, et al.
MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett's adenocarcinoma.
J Proteomics. 2012; 75(15):4693-704 [PubMed] Related Publications
To characterize proteomic changes found in Barrett's adenocarcinoma and its premalignant stages, the proteomic profiles of histologically defined precursor and invasive carcinoma lesions were analyzed by MALDI imaging MS. For a primary proteomic screening, a discovery cohort of 38 fresh frozen Barrett's adenocarcinoma patient tissue samples was used. The goal was to find proteins that might be used as markers for monitoring cancer development as well as for predicting regional lymph node metastasis and disease outcome. Using mass spectrometry for protein identification and validating the results by immunohistochemistry on an independent validation set, we could identify two of 60 differentially expressed m/z species between Barrett's adenocarcinoma and the precursor lesion: COX7A2 and S100-A10. Furthermore, among 22 m/z species that are differentially expressed in Barrett's adenocarcinoma cases with and without regional lymph node metastasis, one was identified as TAGLN2. In the validation set, we found a correlation of the expression levels of COX7A2 and TAGLN2 with a poor prognosis while S100-A10 was confirmed by multivariate analysis as a novel independent prognostic factor in Barrett's adenocarcinoma. Our results underscore the high potential of MALDI imaging for revealing new biologically significant molecular details from cancer tissues which might have potential for clinical application. This article is part of a Special Issue entitled: Translational Proteomics.

Fenouille N, Grosso S, Yunchao S, et al.
Calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance in colorectal cancer xenografts.
J Pathol. 2012; 227(1):118-29 [PubMed] Related Publications
CPT-11 (irinotecan), the first-line chemotherapy for advanced stage colorectal cancer, remains inactive in about half of patients (primary chemoresistance) and almost all initial responders develop secondary resistance after several courses of treatment (8 months on average). Nude mice bearing HT-29 colon cancer xenografts were treated with CPT-11 and/or an NF-κB inhibitor for two courses. We confirm that NF-κB inhibition potentiated CPT-11 anti-tumoural effect after the first course of treatment. However, tumours grew again at the end of the second course of treatment, generating resistant tumours. We observed an increase in the basal NF-κB activation in resistant tumours and in two resistant sublines, either obtained from resistant HT-29 tumours (HT-29R cells) or generated in vitro (RSN cells). The decrease of NF-κB activation in HT-29R and RSN cells by stable transfections with the super-repressor form of IκBα augmented their sensitivity to CPT-11. Comparing gene expression profiles of HT-29 and HT-29R cells, we identified the S100A10/Annexin A2 complex and calpain 2 as over-expressed potential NF-κB inducers. SiRNA silencing of calpain 2 but not of S100A10 and/or annexin A2, resulted in a decrease in NF-κB activation, an increase in cellular levels of IκBα and a partial restoration of the CPT-11 sensitivity in both HT-29R and RSN cells, suggesting that calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance. Thus, targeted therapies directed against calpain 2 may represent a novel strategy to enhance the anti-cancer efficacy of CPT-11.

Li J, Riau AK, Setiawan M, et al.
S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue.
Mol Vis. 2011; 17:2263-71 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To study the expression and cellular distribution of multiple S100A genes and proteins in normal corneal-limbal epithelium and ocular surface squamous cell carcinoma (SCC) tissue.
METHODS: Normal corneal-limbal tissue was obtained from the Lions Eye Bank, Tampa, FL. Ocular surface SCC tissues were excised from patients undergoing surgery at Singapore National Eye Centre. S100A mRNA expression was measured by quantitative PCR. S100 protein distribution was determined by immunofluorescent staining analysis.
RESULTS: Twelve S100 mRNAs were identified in human corneal and limbal epithelial cells. S100A2, A6, A8, A9, A10, and A11 mRNA was expressed at high level, while S100A1, A3, A4, A5, A6, A7, and A12 mRNA expression was low. The intracellular localization of S100A2, A6, A8, A9, A10 and A11 protein was determined in normal corneal-limbal and SCC tissues. S100A2 and S100A10 proteins were enriched in basal limbal epithelial cells of the normal tissue. S100A8 and S100A9 were found only at the surface of peripheral corneal and limbal epithelium. S100A6 was uniformly found at the plasma membrane of corneal and limbal epithelial cells. S100A11 was found at the supralayer limbal epithelial cells adjacent to the conjunctiva. SCC tissue showed typical pathological changes with expression of cytokeartin (CK) 14 and CK4 in the epithelial cells. All SCC epithelial cells were positive of S100A2, S100A10, S100A6 and S100A11 staining. Intracellular staining of S100A8 and S100A9 was found in several layers of SCC epithelium. Expression of S100A2 and S100A10 decreased dramatically in cultured limbal epithelial cells with increased passaging, which was accompanied by a small increase of S100A9 mRNA, with no changes of S100A8 gene expression. Serum and growth hormone depletion of the culture serum caused a small reduction of S100A2 and S100A10 gene expression, which was accompanied by a small increase of S100A9 mRNA while no changes of S100A8 expression was measured.
CONCLUSIONS: Normal corneal and limbal epithelial cells express a broad spectrum of S100 genes and proteins. Ocular surface SCC express high levels of S100A2, S100A10, S100A8 and S100A9 proteins. The expression of S100A2 and S100A10 is associated with limbal epithelial cell proliferation and differentiation.

Huang JC, Zhao PC, Zhang HZ, Wang H
A proteomical study on the radiosensitized target molecules of fuzheng zengxiao formula in pulmonary adenocarcinoma nude mice model.
J Tradit Chin Med. 2011; 31(1):3-6 [PubMed] Related Publications
OBJECTIVE: To investigate the radiosensitized target of Fuzheng Zengxiao Formula.
METHODS: The pulmonary adenocarcinoma (PAa) nude mice of tumor transplantation model were prepared and divided into four groups: Group I (blank control group, n = 10), Group II (simple radiotherapy group, n = 10), Group III (radiotherapy plus Fuzheng Zengxiao Formula, n = 10) and Group IV (radiotherapy plus metronidazole, n = 10). Radiation of X-rays was given to the tumors in Group I, II and III when they were averagely about 1 centimetre in diameter. 23 hours later, the tumors were taken, the total proteins were extracted, and the protein contents were determined. The proteins were isolated with two dimensional gel electrophoresis, and the differentially expressed proteins were analyzed with mass spectrometry and identified by protein database.
RESULTS: Six significant proteins, including apolipoprotein E, ceratin75, S100A9, cyclophilin A, S100A10 and hemoglobin, were determined. Compared with Group I, apolipoprotein E and ceratin75 highly expressed in the Group II; compared with Group II, S100A9, cyclophilin A and hemoglobin had high expression in the Group III; compared with Group II, S100A9, cyclophilin A, S100A10 and hemoglobin had high expression in the Group IV; compared with Group IV, S100A9 and S100A10 had low expression and hemoglobin had high expression in Group III.
CONCLUSION: The radiosensitization of Fuzheng Zengxiao Formula is related with the improvement of hypoxia state; and possibly S100A9 and cyclophilin A are the target proteins of Fuzheng Zengxiao Formula in radiosensitization.

Yang X, Popescu NC, Zimonjic DB
DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism.
Cancer Res. 2011; 71(8):2916-25 [PubMed] Free Access to Full Article Related Publications
The DLC1 gene encodes a Rho GTPase-activating protein (RhoGAP) that functions as a tumor suppressor in several common human cancers. The multidomain structure of DLC1 enables interaction with a number of other proteins. Here we report that the proinflammatory protein S100A10 (also known as p11), a key cell surface receptor for plasminogen which regulates pericellular proteolysis and tumor cell invasion, is a new binding partner of DLC1 in human cells. We determined that the 2 proteins colocalize in the cell cytoplasm and that their binding is mediated by central sequences in the central domain of DLC1 and the C-terminus of S100A10. Because the same S100A10 sequence also mediates binding to Annexin 2, we found that DLC1 competed with Annexin 2 for interaction with S100A10. DLC1 binding to S100A10 did not affect DLC1's RhoGAP activity, but it decreased the steady-state level of S100A10 expression in a dose-dependent manner by displacing it from Annexin 2 and making it accessible to ubiquitin-dependent degradation. This process attenuated plasminogen activation and resulted in inhibition of in vitro cell migration, invasion, colony formation, and anchorage-independent growth of aggressive lung cancer cells. These results suggest that a novel GAP-independent mechanism contributes to the tumor suppressive activity of DLC1, and highlight the importance and complexity of protein-protein interactions involving DLC1 in certain cancers.

Shimizu Y, Fujishiro H, Matsumoto K, et al.
Chronic exposure to arsenite induces S100A8 and S100A9 expression in rat RBL-2H3 mast cells.
J Toxicol Sci. 2011; 36(1):135-9 [PubMed] Related Publications
To investigate the effects of chronic exposure to arsenite on the gene expression profiles of mast cells, microarray analysis was performed on rat basophilic leukemia RBL-2H3 cells exposed to arsenite for 28 days. Upregulated genes include calcium-binding S100 proteins such as S100A9, S100A10, S100A6, and S100A13, and granzymes B and C. Among S100 proteins, S100A9 showed the highest expression (8.62-fold of untreated cells) after 4-weeks of exposure to arsenite. As S100A8 and S100A9 comprise a heterodimer called calprotectin, and are implicated in the development of atherosclerosis and cancer, mRNA levels of both S100A8 and S100A9 were analyzed. The results demonstrated that exposure of RBL-2H3 cells to arsenite for a few weeks induces marked increases in mRNA levels of S100A8 and S100A9.

McKiernan E, McDermott EW, Evoy D, et al.
The role of S100 genes in breast cancer progression.
Tumour Biol. 2011; 32(3):441-50 [PubMed] Related Publications
The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman's correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

Romanuik TL, Wang G, Morozova O, et al.
LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer.
BMC Med Genomics. 2010; 3:43 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown.
METHODS: We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC in vivo using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC.
RESULTS: Three million tags were sequenced using in vivo samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (CCNH, CUEDC2, FLNA, PSMA7), steroid synthesis and metabolism (DHCR24, DHRS7, ELOVL5, HSD17B4, OPRK1), neuroendocrine (ENO2, MAOA, OPRK1, S100A10, TRPM8), and proliferation (GAS5, GNB2L1, MT-ND3, NKX3-1, PCGEM1, PTGFR, STEAP1, TMEM30A), but neither supported nor discounted a role for cell survival genes.
CONCLUSIONS: The in vivo gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.

Zhang J, Guo B, Zhang Y, et al.
Silencing of the annexin II gene down-regulates the levels of S100A10, c-Myc, and plasmin and inhibits breast cancer cell proliferation and invasion.
Saudi Med J. 2010; 31(4):374-81 [PubMed] Related Publications
OBJECTIVE: To explore the roles of annexin II in breast cancer progression, and to study the effect of annexin II on breast cancer cell proliferation and invasion.
METHODS: This study was conducted in the Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China from December 2006 to January 2009. First, we employed Western blot and reverse transcriptase polymerase chain reaction to detect the expression of annexin II and S100A10 in a panel of well-characterized human breast cancer cell lines, and investigated the localization of annexin II and S100A10 by use of immunofluorescence. We then silenced the expression of annexin II in MDA-MB-435s, which was found to over express annexin II, using the chemically-synthetic annexin II small interfering RNA (siRNA) duplexes (including 3 groups: blank MDA-MB-435s cells, cells transfected with negative control siRNA, and cells transfected with annexin II-siRNA). Finally, the cell proliferation, invasion, and plasmin generation were assayed, and the cellular levels of S100A10 and c-Myc were also detected. All the tests were repeated 3 times.
RESULTS: Annexin II and S100A10 were over expressed in invasive human breast cancer cell lines. The siRNA targeting annexin II of MDA-MB-435s cells did not only decrease annexin II messenger RNA and protein levels, but also down-regulated the levels of S100A10, and c-Myc. The treated cells were remarkably blocked in the G0/G1 phase, and cells in the S/G2+M phase decreased. Additionally, the treatment with siRNA resulted in reduction of plasmin generation as well as a loss of the invasive capacity of breast cancer cells.
CONCLUSION: Annexin II might be a key contributor to breast cancer proliferation and invasion.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. S100A10, Cancer Genetics Web: http://www.cancer-genetics.org/S100A10.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999