Gene Summary

Gene:PIK3CD; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta
Aliases: APDS, PI3K, IMD14, p110D, P110DELTA
Summary:Phosphoinositide 3-kinases (PI3Ks) phosphorylate inositol lipids and are involved in the immune response. The protein encoded by this gene is a class I PI3K found primarily in leukocytes. Like other class I PI3Ks (p110-alpha p110-beta, and p110-gamma), the encoded protein binds p85 adapter proteins and GTP-bound RAS. However, unlike the other class I PI3Ks, this protein phosphorylates itself, not p85 protein.[provided by RefSeq, Jul 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (40)
Pathways:What pathways are this gene/protein implicaed in?
Show (17)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PIK3CD (cancer-related)

Lan YT, Jen-Kou L, Lin CH, et al.
Mutations in the RAS and PI3K pathways are associated with metastatic location in colorectal cancers.
J Surg Oncol. 2015; 111(7):905-10 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Identification of mutations in the downstream epidermal growth factor receptor (EGFR) signaling pathway could provide important insights of EGFR-targeted therapies in colorectal cancers. We analyzed the mutation spectra of the PI3K/PTEN/AKT and RAS/RAF/MAPK pathways in colorectal cancers and the associations of these mutations with sites of metastases or recurrence.
METHODS: The study population comprised 1,492 retrospectively collected stages I-IV colorectal cancer specimens. Tissue was obtained between 2000 and 2010 at a single hospital. We analyzed 61 hot spots using MALDI-TOF mass spectrometry for nucleic acid analysis.
RESULTS: Mutations were found in the RAS pathway in 47.3% of patients and in the PI3K pathway in 14.3% of patients, with 9.2% of patients carrying mutations in both pathways. Both the RAS and PI3K pathway mutations were significantly associated with proximal tumors, mucinous tumors, and microsatellite instability. Tumors carrying a RAS pathway mutation exhibited a higher frequency of lung and peritoneal metastasis than did tumors with a wild-type gene (P = 0.025 and 0.009, respectively). NRAS gene mutation was significantly associated with lung metastasis (P = 0.001).
CONCLUSIONS: Somatic mutations in the RAS pathway of the primary tumor in colorectal cancer can influence patterns of metastasis and recurrence.

Maggi LB, Weber JD
Targeting PTEN-defined breast cancers with a one-two punch.
Breast Cancer Res. 2015; 17:51 [PubMed] Free Access to Full Article Related Publications
With tremendous advances in sequencing and analysis in recent years, a wealth of genetic information has become available to identify and classify breast cancer into five main subtypes - luminal A, luminal B, claudin-low, human epidermal growth factor receptor 2-enriched, and basal-like. Current treatment decisions are often based on these classifications, and while more beneficial than any single treatment for all breast cancers, targeted therapeutics have exhibited limited success with most of the subtypes. Luminal B breast cancers are associated with early relapse following endocrine therapy and often exhibit a poor prognosis that is similar to that of the aggressive basal-like breast cancers. Identifying genetic components that contribute to the luminal B endocrine resistant phenotype has become imperative. To this end, numerous groups have identified activation of the phosphatidylinositol 3-kinase (PI3K) pathway as a common recurring event in luminal B cancers with poor outcome. Examining the pathways downstream of PI3K, Fu and colleagues have recreated a human model of the luminal B subtype of breast cancer. The authors were able to reduce expression of phosphatase and tensin homolog (PTEN), the negative regulator of PI3K, using inducible short hairpin RNAs. By varying the expression of PTEN, the authors effectively conferred endocrine resistance and recapitulated the luminal B gene expression signature. Using this system in vitro and in vivo, they then tested the ability of selective kinase inhibitors downstream of PI3K to enhance current endocrine therapies. A combination of fulvestrant, which blocks ligand-dependent and -independent estrogen receptor signaling, with protein kinase B inhibition was found to overcome endocrine resistance. These findings squarely place PTEN expression levels at the nexus of luminal B breast cancers and indicates that patients with PTEN-low estrogen receptor-positive tumors might benefit from combined endocrine and PI3K pathway therapies.

Mann MB, Black MA, Jones DJ, et al.
Transposon mutagenesis identifies genetic drivers of Braf(V600E) melanoma.
Nat Genet. 2015; 47(5):486-95 [PubMed] Related Publications
Although nearly half of human melanomas harbor oncogenic BRAF(V600E) mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in Braf(V600E) mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAF(V600E) melanoma and discover new genes with potential clinical importance in human melanoma.

Kristensen L, Kristensen T, Abildgaard N, et al.
High expression of PI3K core complex genes is associated with poor prognosis in chronic lymphocytic leukemia.
Leuk Res. 2015; 39(6):555-60 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults in the Western world. Autophagy is a highly conserved process in eukaryotic cells. In CLL autophagy is involved in mediating the effect of chemotherapy but the role of autophagy in CLL pathogenesis remains unknown. In the present study, we used real-time RT-PCR to analyze expression of the PIK3C3, PIK3R4, and BECN1 genes. These genes encode the components of the PI3K core complex, which is central to initiation of autophagy. A consecutive series of 149 well-characterized CLL cases from Region of Southern Denmark were included in the study. All three genes were observed to be independent markers of prognosis in CLL with high expression being associated with more aggressive disease. With this clear association with outcome in CLL, these genes thereby represent promising candidates for future functional studies on the role of autophagy in CLL, and they may further represent targets of treatment.

Zhang L, Zhou Y, Cheng C, et al.
Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma.
Am J Hum Genet. 2015; 96(4):597-611 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets.

Cheong JK, Zhang F, Chua PJ, et al.
Casein kinase 1α-dependent feedback loop controls autophagy in RAS-driven cancers.
J Clin Invest. 2015; 125(4):1401-18 [PubMed] Free Access to Full Article Related Publications
Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS-induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS-driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS-driven cancers.

Guo B, Gao J, Zhan J, Zhang H
Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration.
Cancer Lett. 2015; 361(2):271-81 [PubMed] Related Publications
Epidermal growth factor receptor (EGFR) mediates multiple signaling pathways that regulate cell proliferation, migration and tumor invasion. Kindlin-2 has been known as a focal adhesion molecule that binds to integrin to control cell migration and invasion. However, molecular mechanisms underlying the role of Kindlin-2 in breast cancer progression remain elusive. Here we report that Kindlin-2 interacts with EGFR and mediates EGF-induced breast cancer cell migration. We found that EGF treatment dramatically increases Kindlin-2 expression at both mRNA and protein levels in a variety of cancer cells. Inhibitors specific for EGFR or PI3K blocked Kindlin-2 induction by EGF. Importantly, Kindlin-2 interacted with EGFR kinase domain, which was independent of Kindlin-2 binding to integrin cytoplasmic domain. Intriguingly, Kindlin-2 stabilized EGFR protein by blocking its ubiquitination and degradation. Depletion of Kindlin-2 impaired EGF-induced cell migration. Our results demonstrated that Kindlin-2 participates in EGFR signaling and regulates breast cancer progression.

Zhang QY, Cheng WX, Li WM, et al.
Occurrence of low frequency PIK3CA and AKT2 mutations in gastric cancer.
Mutat Res. 2014; 769:108-12 [PubMed] Related Publications
The PI3K/AKT signal transduction pathway has distinct functional roles in tumor progression. PIK3CA was reported to harbor the hot-spot in many types of tumor. Akt, the downstream of PI3K, its family members especially AKT2 activation in human cancer has been extensively studied, but its activation by mutation was less reported. The occurrence of PIK3CA and AKT2 mutations in a variety of cancers indicates their important involvement in carcinogenesis. Therefore, we investigated their mutation frequencies in gastric cancer (GC) in China. In our study, we selected hot-spot related exons 9, 18 and 20 of PIK3CA and kinase domain exons 6-14 of AKT2 genes were screened in 10 GC cell lines, 100 advanced primary GC and matched normal tissues. Denaturing high performance liquid chromatography (DHPLC) and DNA sequencing were used to analyze the mutations in the two genes. Two point mutations in the PIK3CA gene were identified in 4 of 10 GC cell lines and in 4 of 100 GC primary tumors. Two polymorphisms in AKT2 were detected in 19 of 100 GC primary tumors. One point mutation in AKT2 was detected in 1 of 10 GC cell lines and 3 of 100 GC primary tumors but no hot spot variation was detected. Our results indicate that PIK3CA and AKT2 mutations occurred at low frequency in GC, and suggest that the PIK3CA/AKT2 pathway might engage other events during gastric carcinogenesis.

Zuo M, Rashid A, Churi C, et al.
Novel therapeutic strategy targeting the Hedgehog signalling and mTOR pathways in biliary tract cancer.
Br J Cancer. 2015; 112(6):1042-51 [PubMed] Article available free on PMC after 17/03/2016 Related Publications
BACKGROUND: Activation of the PI3K/mTOR and Hedgehog (Hh) signalling pathways occurs frequently in biliary tract cancer (BTC). Crosstalk between these pathways occurs in other gastrointestinal cancers. The respective signalling inhibitors rapamycin and vismodegib may inhibit BTC synergistically and suppress cancer stem cells (CSCs).
METHODS: Gene expression profiling for p70S6k and Gli1 was performed with BTC cell lines. Tumour and pathway inhibitory effects of rapamycin and vismodegib were investigated in BTC preclinical models and CSCs.
RESULTS: Rapamycin and vismodegib synergistically reduced BTC cell viability and proliferation. This drug combination arrested BTC Mz-ChA-1 cells in the G1 phase but had no significant effect on the cell cycle of BTC Sk-ChA-1 cells. Combined treatment inhibited the proliferation of CSCs and ALDH-positive cells. Nanog and Oct-4 expression in CSCs was decreased by the combination treatment. Western blotting results showed the p-p70S6K, p-Gli1, p-mTOR, and p-AKT protein expression were inhibited by the combination treatment in BTC cells. In an Mz-ChA-1 xenograft model, combination treatment resulted in 80% inhibition of tumour growth and prolonged tumour doubling time. In 4 of 10 human BTC specimens, tumour p-p70S6K and Gli1 protein expression levels were decreased with the combination treatment.
CONCLUSIONS: Targeted inhibition of the PI3K/mTOR and Hhpathways indicates a new avenue for BTC treatment with combination therapy.

Rijal S, Fleming S, Cummings N, et al.
Inositol polyphosphate 4-phosphatase II (INPP4B) is associated with chemoresistance and poor outcome in AML.
Blood. 2015; 125(18):2815-24 [PubMed] Related Publications
Phosphoinositide signaling regulates diverse cellular functions. Phosphoinositide-3 kinase (PI3K) generates PtdIns(3,4,5)P3 and PtdIns(3,4)P2, leading to the activation of proliferative and anti-apoptotic signaling pathways. Termination of phosphoinositide signaling requires hydrolysis of inositol ring phosphate groups through the actions of PtdIns(3,4,5)P3 3-phosphatase (PTEN), PtdIns(3,4,5)P3 5-phosphatases (eg, SHIP), and PtdIns(3,4)P2 4-phosphatases (eg, INPP4B). The biological relevance of most of these phosphoinositide phosphatases in acute myeloid leukemia (AML) remains poorly understood. Mass spectrometry-based gene expression profiling of 3-, 4- and 5-phosphatases in human AML revealed significant overexpression of INPP4B. Analysis of an expanded panel of 205 AML cases at diagnosis revealed INPP4B overexpression in association with reduced responses to chemotherapy, early relapse, and poor overall survival, independent of other risk factors. Ectopic overexpression of INPP4B conferred leukemic resistance to cytosine arabinoside (ara-C), daunorubicin, and etoposide. Expression of a phosphatase inert variant (INPP4B C842A) failed to abrogate resistance of AML cells to chemotherapy in vitro or in vivo. In contrast, targeted suppression of endogenously overexpressed INPP4B by RNA interference sensitized AML cell lines and primary AML to chemotherapy. These findings demonstrate a previously unsuspected and clinically relevant role for INPP4B gain of function as a mediator of chemoresistance and poor survival outcome in AML independent of its phosphoinositide phosphatase function.

Kannan K, Coarfa C, Chao PW, et al.
Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma.
Proc Natl Acad Sci U S A. 2015; 112(11):E1272-7 [PubMed] Article available free on PMC after 17/09/2015 Related Publications
High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient's tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC.

Yang P, Li Z, Wang Y, et al.
Secreted pyruvate kinase M2 facilitates cell migration via PI3K/Akt and Wnt/β-catenin pathway in colon cancer cells.
Biochem Biophys Res Commun. 2015; 459(2):327-32 [PubMed] Related Publications
Pyruvate Kinase M2 (PKM2) is a key glycolytic enzyme, which highly expressed in tumor cells, and plays a pivotal role in the growth, survival and metabolism reprogramming of cancer cells. Besides the location of cytoplasm as a glycolytic enzyme and the location of nucleus as a protein kinase, extracellular PKM2 is present in serum and feces of tumor patients. However, little is known about the secretion of PKM2 and its significance in the progression of colon cancer. Here we demonstrated that PKM2 could be secreted from colon cancer cells, and purified PKM2 protein mimicing the secreted PKM2 was able to promote colon cancer cell migration. Moreover, PI3K/Akt and Wnt/β-catenin signaling were involved in secreted PKM2 induced colon cancer cell migration. The results reveal critical roles of secreted PKM2 in the progression of colon cancer, and indicate that PKM2 may be a therapeutic target for colon cancer.

Andersson AK, Ma J, Wang J, et al.
The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.
Nat Genet. 2015; 47(4):330-7 [PubMed] Related Publications
Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.

Hao NB, Tang B, Wang GZ, et al.
Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-κB signaling pathway for gastric cancer metastasis.
Cancer Lett. 2015; 361(1):57-66 [PubMed] Related Publications
Heparanase (HPA) is an endoglucuronidase that can promote the shedding of associated cytokines in several types of tumors. However, little is known about what controls the expression of HPA or its role in gastric cancer. In this study, we report for the first time that HGF regulates HPA expression to promote gastric cancer metastasis. In this study, HGF and HPA were found to be significantly expressed in 58 gastric cancer patients. High expression of both HGF and HPA was positively associated with TNM stage, invasion depth and poor prognosis. In MKN74 cells, exogenous HGF significantly increased HPA expression at both the mRNA and protein levels. Further study revealed that HGF first activated PI3K/Akt signaling. NF-κB signaling was activated downstream of PI3K/Akt and promoted HPA expression. However, when c-met, PI3K/Akt or NF-κB signal inhibitors were used, HPA expression was significantly decreased. All of these results indicate that HGF regulates HPA expression by PI3K/Akt and downstream NF-κB signaling. Using bioinformatics and the ChIP assay, p65 was observed to bind to the HPA promoter. Furthermore, HGF significantly induced tumor cell migration, whereas treatment with an NF-κB inhibitor decreased migration. Moreover, when HPA was overexpressed in MKN74 cells, migration was significantly enhanced, and the HGF concentration was increased. However, when HPA was down-regulated in MKN45 cells, migration and HGF levels decreased. Together, these results demonstrate that HGF/c-met can activate PI3K/Akt and downstream NF-κB signaling to promote HPA expression and subsequent tumor metastasis.

Matano M, Date S, Shimokawa M, et al.
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.
Nat Med. 2015; 21(3):256-62 [PubMed] Related Publications
Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

Guest ST, Kratche ZR, Bollig-Fischer A, et al.
Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes.
Exp Cell Res. 2015; 332(2):223-35 [PubMed] Related Publications
Gene amplification is a common mechanism of oncogene activation in cancer. Several large-scale efforts aimed at identifying the comprehensive set of genomic regions that are recurrently amplified in cancer have been completed. In breast cancer, these studies have identified recurrently amplified regions containing known drivers such as HER2 and CCND1 as well as regions where the driver oncogene is unknown. In this study, we integrated RNAi-based functional genetic data with copy number and expression data to identify genes that are recurrently amplified, overexpressed and also necessary for the growth/survival of breast cancer cells. Further analysis using clinical data from The Cancer Genome Atlas specifically identified candidate genes that play a role in determining patient outcomes. Using this approach, we identified two genes, TCP1 and CCT2, as being recurrently altered in breast cancer, necessary for growth/survival of breast cancer cells in vitro, and determinants of overall survival in breast cancer patients. We also show that expression of TCP1 is regulated by driver oncogene activation of PI3K signaling in breast cancer. Interestingly, the TCP1 and CCT2 genes both encode for components of a multi-protein chaperone complex in the cell known as the TCP1 Containing Ring Complex (TRiC). Our results demonstrate a role for the TRiC subunits TCP1 and CCT2, and potentially the entire TRiC complex, in breast cancer and provide rationale for TRiC as a novel therapeutic target in breast cancer.

Al-Kaabi MM, Alshareeda AT, Jerjees DA, et al.
Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response.
Br J Cancer. 2015; 112(5):901-11 [PubMed] Article available free on PMC after 03/03/2016 Related Publications
BACKGROUND: Checkpoint kinase1 (CHK1), which is a key component of DNA-damage-activated checkpoint signalling response, may have a role in breast cancer (BC) pathogenesis and influence response to chemotherapy. This study investigated the clinicopathological significance of phosphorylated CHK1 (pCHK1) protein in BC.
METHOD: pCHK1 protein expression was assessed using immunohistochemistry in a large, well-characterized annotated series of early-stage primary operable invasive BC prepared as tissue microarray (n=1200).
RESULT: pCHK1 showed nuclear and/or cytoplasmic expression. Tumours with nuclear expression showed positive associations with favourable prognostic features such as lower grade, lower mitotic activity, expression of hormone receptor and lack of expression of KI67 and PI3K (P<0.001). On the other hand, cytoplasmic expression was associated with features of poor prognosis such as higher grade, triple-negative phenotype and expression of KI67, p53, AKT and PI3K. pCHK1 expression showed an association with DNA damage response (ATM, RAD51, BRCA1, KU70/KU80, DNA-PKCα and BARD1) and sumoylation (UBC9 and PIASγ) biomarkers. Subcellular localisation of pCHK1 was associated with the expression of the nuclear transport protein KPNA2. Positive nuclear expression predicted better survival outcome in patients who did not receive chemotherapy in the whole series and in ER-positive tumours. In ER-negative and triple-negative subgroups, nuclear pCHK1 predicted shorter survival in patients who received cyclophosphamide, methotrexate and 5-florouracil chemotherapy.
CONCLUSIONS: Our data suggest that pCHK1 may have prognostic and predictive significance in BC. Subcellular localisation of pCHK1 protein is related to its function.

Lai K, Killingsworth MC, Lee CS
Gene of the month: PIK3CA.
J Clin Pathol. 2015; 68(4):253-7 [PubMed] Related Publications
PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K) which through its role in the PI3K/Akt pathway is important for the regulation of important cellular functions such as proliferation, metabolism and protein synthesis, angiogenesis and apoptosis. Mutations in PIK3CA are known to be involved in a wide range of human cancers and mutant PIK3CA is thought to act as an oncogene. The specific PIK3CA inhibitor, NVP-BYL719, has displayed promising results in cancer therapy and is currently under clinical trials. Furthermore, PI3K regulates autophagy, a cellular process that recycles proteins and organelles through lysosomal degradation and has recently been recognised as an attractive therapeutic target due to its pro- and anti-cancer properties. Several studies have attempted to investigate the effects of combining the inhibition of both PI3K and autophagy in cancer therapy, and an in vivo model has demonstrated that the combined use of a concomitant PI3K and autophagy inhibitor induced apoptosis in glioma cells.

Bitler BG, Aird KM, Garipov A, et al.
Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers.
Nat Med. 2015; 21(3):231-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
The gene encoding ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently have no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A-mutated ovarian cancer cells and that ARID1A mutational status correlated with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct target of ARID1A and EZH2 that is upregulated by EZH2 inhibition and contributed to the observed synthetic lethality by inhibiting PI3K-AKT signaling. Importantly, EZH2 inhibition caused regression of ARID1A-mutated ovarian tumors in vivo. To our knowledge, this is the first data set to demonstrate a synthetic lethality between ARID1A mutation and EZH2 inhibition. Our data indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for cancers involving ARID1A mutations.

Chalabi-Dchar M, Cassant-Sourdy S, Duluc C, et al.
Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
Gastroenterology. 2015; 148(7):1452-65 [PubMed] Related Publications
BACKGROUND & AIMS: The KRAS gene is mutated in most pancreatic ductal adenocarcinomas (PDAC). Expression of this KRAS oncoprotein in mice is sufficient to initiate carcinogenesis but not progression to cancer. Activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is required for KRAS for induction and maintenance of PDAC in mice. The somatostatin receptor subtype 2 (sst2) inhibits PI3K, but sst2 expression is lost during the development of human PDAC. We investigated the effects of sst2 loss during KRAS-induced PDAC development in mice.
METHODS: We analyzed tumor growth in mice that expressed the oncogenic form of KRAS (KRAS(G12D)) in pancreatic precursor cells, as well as sst2+/- and sst2-/-, and in crossed KRAS(G12D);sst2+/- and KRAS(G12D);sst2-/- mice. Pancreatic tissues and acini were collected and assessed by histologic, immunoblot, immunohistochemical, and reverse-transcription polymerase chain reaction analyses. We also compared protein levels in paraffin-embedded PDAC samples from patients vs heathy pancreatic tissues from individuals without pancreatic cancer.
RESULTS: In sst2+/- mice, PI3K was activated and signaled via AKT (PKB; protein kinase B); when these mice were crossed with KRAS(G12D) mice, premalignant lesions, tumors, and lymph node metastases developed more rapidly than in KRAS(G12D) mice. In crossed KRAS(G12D);sst2+/- mice, activation of PI3K signaling via AKT resulted in activation of nuclear factor-κB (NF-κB), which increased KRAS activity and its downstream pathways, promoting initiation and progression of neoplastic lesions. We found this activation loop to be mediated by PI3K-induced production of the chemokine CXCL16. Administration of a CXCL16-neutralizing antibody to KRAS(G12D) mice reduced activation of PI3K signaling to AKT and NF-κB, blocking carcinogenesis. Levels of CXCL16 and its receptor CXCR6 were significantly higher in PDAC tissues and surrounding acini than in healthy pancreatic tissues from mice or human beings. In addition, expression of sst2 was progressively lost, involving increased PI3K activity, in mouse lesions that expressed KRAS(G12D) and progressed to PDAC.
CONCLUSIONS: Based on analyses of mice, loss of sst2 from pancreatic tissues activates PI3K signaling via AKT, leading to activation of NF-κB, amplification of oncogenic KRAS signaling, increased expression of CXCL16, and pancreatic tumor formation. CXCL16 might be a therapeutic target for PDAC.

Yacqub-Usman K, Pickard MR, Williams GT
Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells.
Prostate. 2015; 75(7):693-705 [PubMed] Related Publications
BACKGROUND: New therapies are required for castrate-resistant prostate cancer (CRPC), and growth-arrest specific 5 (GAS5) lncRNA, which riborepresses androgen receptor action, may offer novel opportunities in this regard. This lncRNA promotes the apoptosis of prostate cancer cells and its levels decline as prostate cancer cells acquire castrate-resistance, so that enhancing GAS5 expression may improve the effectiveness of chemotherapies. Since GAS5 is a member of the 5' terminal oligopyrimidine gene family, we have examined mTOR inhibition as a strategy to increase GAS5 expression. Furthermore, we have determined if GAS5 itself mediates the action of mTOR inhibitors, as demonstrated for other chemotherapeutic agents in prostate cancer cells.
METHODS: The effects of mTOR inhibitors on GAS5 lncRNA levels and cell growth were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNAs and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action.
RESULTS: First generation mTORC1, combined mTORC1/mTORC2 and dual PI3K/mTOR inhibitors all increased cellular GAS5 levels and inhibited culture growth in androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU 145) cell lines. The latter exhibited low endogenous GAS5 expression, and GAS5 silencing in LNCaP and 22Rv1 cells decreased the sensitivity to mTOR inhibitors, whereas transfection of GAS5 lncRNA sensitized PC-3 and DU 145 cells to these agents.
CONCLUSION: mTOR inhibition enhances GAS5 transcript levels in certain prostate cancer cell lines. This selectivity is likely to be related to endogenous GAS5 expression levels, since GAS5 lncRNA is itself required for mTOR inhibitor action in prostate cancer cells.

Shinohara H, Taniguchi K, Kumazaki M, et al.
Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia.
Cancer Lett. 2015; 360(1):28-38 [PubMed] Related Publications
The fusion gene bcr-abl develops chronic myeloid leukemia (CML), and stimulates PI3K/Akt/mTOR signaling, leading to impaired autophagy. PI3K/Akt/mTOR signaling also plays an important role in cell metabolism. The Warburg effect is a well-recognized hallmark of cancer energy metabolism, and is regulated by the mTOR/c-Myc/hnRNP/PKM signaling cascade. To develop a new strategy for the treatment of CML, we investigated the associations among bcr-abl, the cascade related to cancer energy metabolism, and autophagy induced by a fatty-acid derivative that we had previously reported as being an autophagy inducer. Here we report that a fatty-acid derivative, AIC-47, induced transcriptional repression of the bcr-abl gene and modulated the expression profile of PKM isoforms, resulting in autophagic cell death. We show that c-Myc functioned as a transcriptional activator of bcr-abl, and regulated the hnRNP/PKM cascade. AIC-47, acting through the PPARγ/β-catenin pathway, induced down-regulation of c-Myc, leading to the disruption of the bcr-abl/mTOR/hnRNP signaling pathway, and switching of the expression of PKM2 to PKM1. This switching caused autophagic cell death through an increase in the ROS level. Our findings suggest that AIC-47 induced autophagic cell death through the PPARγ/β-catenin/bcr-abl/mTOR/hnRNP/PKM cascade.

Troiano A, Lomoriello IS, di Martino O, et al.
Y-box Binding Protein-1 Is Part of a Complex Molecular Network Linking ΔNp63α to the PI3K/akt Pathway in Cutaneous Squamous Cell Carcinoma.
J Cell Physiol. 2015; 230(9):2067-74 [PubMed] Related Publications
Cutaneous squamous cell carcinomas (SCCs) typically lack somatic oncogene-activating mutations and most of them contain p53 mutations. However, the presence of p53 mutations in skin premalignant lesions suggests that these represent early events during tumor progression and additional alterations may be required for SCC development. SCC cells frequently express high levels of ΔNp63α and Y-box binding 1 (YB-1 or YBX1) oncoproteins. Here, we show that knockdown of YB-1 in spontaneously immortalized HaCaT and non-metastatic SCC011 cells led to a dramatic decrease of ΔNp63α, cell detachment and death. In highly metastatic SCC022 cells, instead, YB-1 silencing induces PI3K/AKT signaling hyperactivation which counteracts the effect of YB-1 depletion and promotes cell survival. In summary, our results unveil a functional cross-talk between YB-1, ΔNp63α and the PI3K/AKT pathway critically governing survival of squamous carcinoma cells.

Till KJ, Pettitt AR, Slupsky JR
Expression of functional sphingosine-1 phosphate receptor-1 is reduced by B cell receptor signaling and increased by inhibition of PI3 kinase δ but not SYK or BTK in chronic lymphocytic leukemia cells.
J Immunol. 2015; 194(5):2439-46 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BCR signaling pathway inhibitors such as ibrutinib, idelalisib, and fostamatinib (respective inhibitors of Bruton's tyrosine kinase, PI3Kδ, and spleen tyrosine kinase) represent a significant therapeutic advance in B cell malignancies, including chronic lymphocytic leukemia (CLL). These drugs are distinctive in increasing blood lymphocytes while simultaneously shrinking enlarged lymph nodes, suggesting anatomical redistribution of CLL cells from lymph nodes into the blood. However, the mechanisms underlying this phenomenon are incompletely understood. In this study, we showed that the egress receptor, sphingosine-1-phosphate (S1P) receptor 1 (S1PR1), was expressed at low levels in normal germinal centers and CLL lymph nodes in vivo but became upregulated on normal B cells and, to a variable and lesser extent, CLL cells following in vitro incubation in S1P-free medium. Spontaneous recovery of S1PR1 expression on normal B and CLL cells was prevented by BCR cross-linking, whereas treatment of CLL cells with idelalisib increased S1PR1 expression and migration toward S1P, the greatest increase occurring in cases with unmutated IgH V region genes. Intriguingly, ibrutinib and fostamatinib had no effect on S1PR1 expression or function. Conversely, chemokine-induced migration, which requires integrin activation and is essential for the entry of lymphocytes into lymph nodes as well as their retention, was blocked by ibrutinib and fostamatinib, but not idelalisib. In summary, our results suggest that different BCR signaling inhibitors redistribute CLL cells from lymph nodes into the blood through distinct mechanisms: idelalisib actively promotes egress by upregulating S1PR1, whereas fostamatinib and ibrutinib may reduce CLL cell entry and retention by suppressing chemokine-induced integrin activation.

Slomovitz BM, Jiang Y, Yates MS, et al.
Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma.
J Clin Oncol. 2015; 33(8):930-6 [PubMed] Article available free on PMC after 10/03/2016 Related Publications
PURPOSE: The phosphoinositol-3 kinase (PI3K) pathway is frequently dysregulated in endometrial cancer (EC). Hormonal manipulation leads to response in some patients with EC, but resistance derived from PI3K pathway activation has been documented. Targeting mammalian target of rapamycin (mTOR) may overcome endocrine resistance. We conducted a two-institution phase II trial of everolimus and letrozole in women with recurrent EC.
PATIENTS AND METHODS: Patients were considered incurable, had measurable disease, and were treated with up to two prior cytotoxic regimens. Everolimus was administered orally at 10 mg daily and letrozole was administered orally at 2.5 mg daily. Each cycle consisted of 4 weeks of therapy. Patients were treated until progression, toxicity, or complete response (CR). The primary end point was the clinical benefit rate (CBR), which was defined as CR, partial response, or stable disease (≥ 16 weeks) by RECIST 1.0 criteria. Translational studies were performed to correlate biomarkers with response.
RESULTS: Thirty-eight patients were enrolled (median age, 62 years; range, 24 to 82 years). Thirty-five patients were evaluable for response. The CBR was 40% (14 of 35 patients); the median number of cycles among responders was 15 (range, seven to 29 cycles). The confirmed objective response rate (RR) was 32% (11 of 35 patients; nine CRs and two partial responses; median, 15 cycles; range, eight to 29 cycles). Twenty percent of patients (seven of 35 patients) were taken off treatment after a prolonged CR and at the discretion of the treating clinician. None of the patients discontinued treatment as a result of toxicity. Serous histology was the best predictor of lack of response. Patients with endometrioid histology and CTNNB1 mutations responded well to everolimus and letrozole.
CONCLUSION: Everolimus plus letrozole results in a high CBR and RR in patients with recurrent EC. Further development of this combination in recurrent endometrioid EC is under way.

Russo A, Okur MN, Bosland M, O'Bryan JP
Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2β) isoform contributes to neuroblastoma tumorigenesis.
Cancer Lett. 2015; 359(2):262-8 [PubMed] Article available free on PMC after 10/04/2016 Related Publications
Phosphatidylinositol 3-kinases (PI3Ks) play important roles in human tumorigenesis. Activation of the PI3K target AKT is frequent in neuroblastoma (NB) and correlates with poor prognosis. PI3K pan-inhibitors reduce NB tumor formation but present severe toxicity, which limits their therapeutic potential. Therefore, defining the importance of specific PI3K isoforms may aid in developing more effective therapeutic strategies. We previously demonstrated that PI3K Class IIβ (PI3KC2β) and its regulator intersectin 1 (ITSN1) are highly expressed in primary NB tumors and cell lines. Silencing ITSN1 dramatically reduced the tumorigenic potential of NB cells. Interestingly, overexpression of PI3KC2β rescued the anchorage-independent growth of ITSN1-silenced cells suggesting that PI3KC2β mediates ITSN1's function in NB cells. To address the importance of PI3KC2β in NBs, we generated PI3KC2β-silenced lines and examined their biologic activity. Herein, we demonstrate that PI3KC2β-silencing inhibits early stages of NB tumorigenic growth. We also show that loss of endogenous PI3KC2β or ITSN1 reduces AKT activation but does not impact ERK-MAPK activation. These data reveal a novel role for PI3KC2β in human NB tumorigenesis.

Song C, Chen H, Wang T, et al.
Expression profile analysis of microRNAs in prostate cancer by next-generation sequencing.
Prostate. 2015; 75(5):500-16 [PubMed] Related Publications
BACKGROUND: Prostate cancer (PCa) is the second leading cause of tumor mortality among males in western societies. In China, the diagnostic and fatality rate of PCa is increasing yearly.
METHODS: To characterize underlying molecular mechanisms, the microRNA (miRNA) profile of high-grade PCa, low-grade PCa, and benign prostate hyperplasia (BPH) were compared using high-throughput Illumina sequencing and quantitative real-time PCR (qRT-PCR) methods. Moreover, a variety of biological information softwares and databases were applied to predict the target genes of miRNA, molecular functions, and signal pathways.
RESULTS: Eighteen miRNAs were differentially expressed (fold change ≥ 2, P < 0.05), of which thirteen were upregulated and five were downregulated by sequencing. This was confirmed by qRT-PCR in more clinical tissue samples. In the tumors, miRNAs (miR-125b-5p, miR-126-5p, miR-151a-5p, miR-221-3p, and miR-222-3p) were significantly upregulated with downregulation of miR-486-5p. In addition, 13 novel miRNAs were identified from three prostate tissue libraries, with 12 of them assayed in 21 human normal tissues by qRT-PCR. Multiple databases indicated target genes for these differentially expressed miRNAs. Function annotation of target genes indicated that most of them tend to target genes involved in signal transduction and cell communication, especially cancer-related PI3K-Akt and p53 signaling pathway.
CONCLUSIONS: The small RNA transcriptomes obtained in this study uncovers six differentially expressed miRNAs and 12 novel miRNAs, and provides a better understanding of the expression and function of miRNAs in the development of PCa and reveals several miRNAs in PCa that may have biomarker and therapeutic potentials.

Abdel-Latif MM, Kelleher D, Reynolds JV
Molecular mechanisms of constitutive and inducible NF-kappaB activation in oesophageal adenocarcinoma.
Eur J Cancer. 2015; 51(4):464-72 [PubMed] Related Publications
BACKGROUND: Nuclear factor-kappaB (NF-κB) regulates the expression of a large number of genes involved in the immune and inflammatory response. NF-κB is constitutively activated in oesophageal tumour tissues and induced in oesophageal cells by bile and acid. The aim of the present study was to define the mechanisms underlying NF-κB activation in oesophageal adenocarcinoma.
PATIENTS AND METHODS: Fresh biopsy specimens were obtained from 20 patients with oesophageal adenocarcinoma. The activation of NF-κB in oesophageal tumour specimens and oesophageal SKGT-4 cells was assessed by gel mobility shift and Western blotting. Phosphorylation of protein kinase B (AKT/PKB), Ikappa kinase-alpha/beta (IKK-α/β) and extracellular signal-regulated kinase 1/2 (ERK1/2) was examined by Western blotting. High content analysis was used to quantify NF-κB translocation in oesophageal cells.
RESULTS: Oesophageal tumour tissues had higher levels of NF-κB. Increased levels of phosphorylated AKT and IKK-α/β and ERK1/2 were detected in tumour tissues compared with normal oesophageal mucosa. Exposure of SKGT-4 cells to deoxycholic acid (DCA) or acid resulted in NF-κB activation and phosphorylation of AKT, IKK-α/β and ERK1/2. Specific inhibitors for phosphoinositide 3-kinase; PI3K (LY294002 and worhmannin) and ERK1/2 inhibitors (PD98059 and U0126) suppressed DCA- and acid-induced NF-κB activation. The proteasome inhibitor MG-132 and the antioxidants vitamin C and pyrrolidine dithiocarbamate (PDTC) also inhibited NF-κB activation.
CONCLUSIONS: Our data demonstrate a major role for PI3K/AKT-IKK-α/β-ERK1/2 signalling pathway in NF-κB activation in oesophageal adenocarcinoma. These results suggest that NF-κB may be a prognostic marker for oesophageal adenocarcinoma, and modulating of NF-κB may uncover new therapeutic strategies.

Yuan L, Zhou C, Lu Y, et al.
IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1.
Cancer Lett. 2015; 359(1):136-47 [PubMed] Related Publications
To investigate the clinicopathological significance and underlying mechanism of microRNA-29b (miR-29b) in colorectal cancer (CRC), the role of miR-29b was investigated using in vivo and in vitro assays. Luciferase reporter assays were conducted to determine the association between miR-29b and the insulin-like growth factor 1 (IGF1) 3' untranslated region (3'UTR). Chromatin immunoprecipitation (ChIP) assays were employed to assess the direct binding of interferon regulatory factor 1 (IRF1) to miR-29b. We found that interferon (IFN)-γ could induce miR-29b by recruiting IRF1 to binding sites in the miR-29b promoter. A low level of miR-29b was significantly associated with an aggressive phenotype. MiR-29b inhibited CRC cell growth and invasion. IGF1, an activator of PI3K/Akt signaling, was confirmed as a novel target of miR-29b. Moreover, miR-29b increased IRF1 expression, and the inhibition of miR-29b suppressed IFN-γ-induced apoptosis. We elucidated the potential signaling pathway, IFN-γ/IRF1/miR-29b/IGF1, and its implication for CRC tumorigenesis. A positive feedback loop between IRF1 and miR-29b may contribute to the sensitivity of CRC cells to IFN-γ. Targeting miR-29b may provide a strategy for blocking CRC growth and metastasis.

Chen K, Yang D, Li X, et al.
Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy.
Proc Natl Acad Sci U S A. 2015; 112(4):1107-12 [PubMed] Article available free on PMC after 10/04/2016 Related Publications
Gastric cancer (GC) is a highly heterogeneous disease. To identify potential clinically actionable therapeutic targets that may inform individualized treatment strategies, we performed whole-exome sequencing on 78 GCs of differing histologies and anatomic locations, as well as whole-genome sequencing on two GC cases, each with three primary tumors and two matching lymph node metastases. The data showed two distinct GC subtypes with either high-clonality (HiC) or low-clonality (LoC). The HiC subtype of intratumoral heterogeneity was associated with older age, TP53 (tumor protein P53) mutation, enriched C > G transition, and significantly shorter survival, whereas the LoC subtype was associated with younger age, ARID1A (AT rich interactive domain 1A) mutation, and significantly longer survival. Phylogenetic tree analysis of whole-genome sequencing data from multiple samples of two patients supported the clonal evolution of GC metastasis and revealed the accumulation of genetic defects that necessitate combination therapeutics. The most recurrently mutated genes, which were validated in a separate cohort of 216 cases by targeted sequencing, were members of the homologous recombination DNA repair, Wnt, and PI3K-ERBB pathways. Notably, the drugable NRG1 (neuregulin-1) and ERBB4 (V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 4) ligand-receptor pair were mutated in 10% of GC cases. Mutations of the BRCA2 (breast cancer 2, early onset) gene, found in 8% of our cohort and validated in The Cancer Genome Atlas GC cohort, were associated with significantly longer survivals. These data define distinct clinicogenetic forms of GC in the Chinese population that are characterized by specific mutation sets that can be investigated for efficacy of single and combination therapies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PIK3CD, Cancer Genetics Web: http://www.cancer-genetics.org/PIK3CD.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999