Gene Summary

Gene:NTRK2; neurotrophic tyrosine kinase, receptor, type 2
Aliases: TRKB, trk-B, GP145-TrkB
Summary:This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation. Mutations in this gene have been associated with obesity and mood disorders. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:BDNF/NT-3 growth factors receptor
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (48)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NTRK2 (cancer-related)

Alonso-Alconada L, Eritja N, Muinelo-Romay L, et al.
ETV5 transcription program links BDNF and promotion of EMT at invasive front of endometrial carcinomas.
Carcinogenesis. 2014; 35(12):2679-86 [PubMed] Related Publications
Myometrial infiltration represents a main clinical determinant of endometrial carcinomas (EC) presenting as aggressive high-grade deeply invasive neoplasms, substantially associated with risk of recurrence and death. The up-regulation of ETV5 transcription factor linked to the promotion of epithelial to mesenchymal transition is considered as a basic mechanism underlying the initial steps of EC invasion. In this work, we aimed to investigate the transcription program of tumor invasion regulated by ETV5. We performed a comparative Chip-on-chip analysis at invasive front and superficial area of human EC. ETV5 specific binding to promoter regions of genes related to cellular migration, adhesion and invasion at deep invasion tumor areas highlighted the relevance of neural networks associated with cellular plasticity. Interestingly, brain-derived neurotrophic factor (BDNF) demonstrated a principal role orchestrating ETV5-mediated epithelial-to-mesenchymal transition in endometrial cancer. Impairment of the BDNF/tropomyosin-related kinase B (TrkB)/extracellular signal-regulated kinase axis in endometrial cancer cell lines reversed the aggressive and invasive phenotype promoted by the up-regulation of ETV5 at the invasive front of EC. Likewise, BDNF directly impacted on the efficiency of ETV5 promoted metastasis in a mice model of endometrial distant dissemination. These results translate the recognized role of BDNF/TrkB on neural plasticity into a relevant cancer metastasis event; suggest common mechanisms shared by neural development and tumor invasion; and offer new therapeutic opportunities specifically directed against disseminated disease in endometrial cancer.

Lin CY, Hung SY, Chen HT, et al.
Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.
Biochem Pharmacol. 2014; 91(4):522-33 [PubMed] Related Publications
Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.

Sinkevicius KW, Kriegel C, Bellaria KJ, et al.
Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis.
Proc Natl Acad Sci U S A. 2014; 111(28):10299-304 [PubMed] Free Access to Full Article Related Publications
Lung cancer is notorious for its ability to metastasize, but the pathways regulating lung cancer metastasis are largely unknown. An in vitro system designed to discover factors critical for lung cancer cell migration identified brain-derived neurotrophic factor, which stimulates cell migration through activation of tropomyosin-related kinase B (TrkB; also called NTRK2). Knockdown of TrkB in human lung cancer cell lines significantly decreased their migratory and metastatic ability in vitro and in vivo. In an autochthonous lung adenocarcinoma model driven by activated oncogenic Kras and p53 loss, TrkB deficiency significantly reduced metastasis. Hypoxia-inducible factor-1 directly regulated TrkB expression, and, in turn, TrkB activated Akt signaling in metastatic lung cancer cells. Finally, TrkB expression was correlated with metastasis in patient samples, and TrkB was detected more often in tumors that did not have Kras or epidermal growth factor receptor mutations. These studies demonstrate that TrkB is an important therapeutic target in metastatic lung adenocarcinoma.

Ghim J, Moon JS, Lee CS, et al.
Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis.
Arterioscler Thromb Vasc Biol. 2014; 34(8):1697-703 [PubMed] Related Publications
OBJECTIVE: Aberrant regulation of the proliferation, survival, and migration of endothelial cells (ECs) is closely related to the abnormal angiogenesis that occurs in hypoxia-induced pathological situations, such as cancer and vascular retinopathy. Hypoxic conditions and the subsequent upregulation of hypoxia-inducible factor-1α and target genes are important for the angiogenic functions of ECs. Phospholipase D2 (PLD2) is a crucial signaling mediator that stimulates the production of the second messenger phosphatidic acid. PLD2 is involved in various cellular functions; however, its specific roles in ECs under hypoxia and in vivo angiogenesis remain unclear. In the present study, we investigated the potential roles of PLD2 in ECs under hypoxia and in hypoxia-induced pathological angiogenesis in vivo.
APPROACH AND RESULTS: Pld2 knockout ECs exhibited decreased hypoxia-induced cellular responses in survival, migration, and thus vessel sprouting. Analysis of hypoxia-induced gene expression revealed that PLD2 deficiency disrupted the upregulation of hypoxia-inducible factor-1α target genes, including VEGF, PFKFB3, HMOX-1, and NTRK2. Consistent with this, PLD2 contributed to hypoxia-induced hypoxia-inducible factor-1α expression at the translational level. The roles of PLD2 in hypoxia-induced in vivo pathological angiogenesis were assessed using oxygen-induced retinopathy and tumor implantation models in endothelial-specific Pld2 knockout mice. Pld2 endothelial-specific knockout retinae showed decreased neovascular tuft formation, despite a larger avascular region. Tumor growth and tumor blood vessel formation were also reduced in Pld2 endothelial-specific knockout mice.
CONCLUSIONS: Our findings demonstrate a novel role for endothelial PLD2 in the survival and migration of ECs under hypoxia via the expression of hypoxia-inducible factor-1α and in pathological retinal angiogenesis and tumor angiogenesis in vivo.

Wu G, Diaz AK, Paugh BS, et al.
The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.
Nat Genet. 2014; 46(5):444-50 [PubMed] Free Access to Full Article Related Publications
Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase-RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.

Chiang JH, Cheng WS, Hood L, Tian Q
An epigenetic biomarker panel for glioblastoma multiforme personalized medicine through DNA methylation analysis of human embryonic stem cell-like signature.
OMICS. 2014; 18(5):310-23 [PubMed] Article available free on PMC after 01/05/2015 Related Publications
Alterations of DNA methylation occur during the course of both stem cell development and tumorigenesis. We present a novel strategy that can be used to stratify glioblastoma multiforme (GBM) patients through the epigenetic states of genes associated with human embryonic stem cell (hESC) identity in order to 1) assess linkages between the methylation signatures of these stem cell genes and survival of GBM patients, and 2) delineate putative mechanisms leading to poor prognosis in some patient subgroups. A DNA methylation signature was established for stratifying GBM patients into several hESC methylator subgroups. The hESC methylator-negative phenotype has demonstrated poor survival and upregulation of glioma stem cell (GSC) markers, and is enriched in one of the previously defined transcriptomic phenotypes-the mesenchymal phenotype. We further identified a refined signature of 36 genes as the gene panel, including SOX2, POU3F2, FGFR2, GAP43, NTRK2, NTRK3, and NKX2-2, which are highly enriched in the nervous system. Both signatures outperformed the O6-methylguanine-DNA methyltransferase (MGMT) methylation test in predicting patient's outcome. These findings were also validated through an independent dataset of patients. Furthermore, through statistical analyses, both signatures were examined significantly. Hypomethylation of hESC-associated genes predicted poorer clinical outcome in GBM, supporting the idea that epigenetic activation of stem cell genes contributes to GBM aggression. The gene panel presented herein may be developed into clinical assays for patient stratification and future personalized medicine interventions.

Forsyth PA, Krishna N, Lawn S, et al.
p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.
J Biol Chem. 2014; 289(12):8067-85 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

Sakane C, Okitsu T, Wada A, et al.
Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives.
Biochem Biophys Res Commun. 2014; 444(1):24-9 [PubMed] Related Publications
Lysine-specific demethylase 1 (LSD1) is upregulated in many cancers, especially neuroblastoma. We set out to explore whether geranylgeranoic acid (GGA) inhibits LSD1 activity by using recombinant human LSD1. GGA inhibited LSD1 activity with IC50 similar to that of the clinically used drug tranylcypromine. In human neuroblastoma SH-SY5Y cells, GGA induced NTRK2 gene expression alongside upregulation of histone H3 with dimethylated lysine-4 in the regulatory regions of the NTRK2 gene. Dihydrogenation of GGA reinforced the LSD1-inhibitory effect in a position-dependent manner. The inhibitory effects of dihydro-derivatives of GGA on recombinant LSD1 strongly correlated with the induction of NTRK2 gene expression in SH-SY5Y cells. These data demonstrate for the first time the efficient LSD1-inhibitor activity of GGA and its derivatives, providing a novel prospect of preventing cancer onset by using GGA to regulate epigenetic modification.

Nakamura Y, Suganami A, Fukuda M, et al.
Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma.
Cancer Med. 2014; 3(1):25-35 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Neuroblastoma (NB) is one of the most frequent solid tumors in children and its prognosis is still poor. The neurotrophin receptor TrkB and its ligand brain-derived neurotrophic factor (BDNF) are expressed at high levels in high-risk NBs and are involved in defining the poor prognosis of the patients. However, the TrkB targeting therapy has never been realized in the clinic. We performed an in silico screening procedure utilizing an AutoDock/grid computing technology in order to identify novel small chemical compounds targeting the BDNF-binding domain of TrkB. For the first screening, a library of three million synthetic compounds was screened in silico and was ranked according to the Docking energy. The top-ranked 37 compounds were further functionally screened for cytotoxicity by using NB cell lines. We have finally identified seven compounds that kill NB cells with the IC50 values of 0.07-4.6 μmol/L. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that these molecules induce apoptosis accompanied by p53 activation in NB cell lines. The candidate compounds and BDNF demonstrated an antagonistic effect on cell growth, invasion, and colony formation, possibly suggesting competition at the BDNF-binding site of TrkB. The candidate compounds had tumor-suppressive activity in xenograft and in vivo toxicity tests (oral and intravenous administrations) using mice, and did not show any abnormal signs. Using in silico Docking screening we have found new candidate TrkB inhibitors against high-risk NBs, which could lead to new anti-cancer drugs.

Bao W, Wang HH, Tian FJ, et al.
A TrkB-STAT3-miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells.
Mol Cancer. 2013; 12:155 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
BACKGROUND: We previously identified TrkB as an oncogene involved in promoting metastasis in endometrial carcinoma (EC). Here, we sought to delineate the effect of changes in TrkB expression on the global profile of microRNAs (miRNAs) in EC cells and further investigated the correlation between the expression of certain miRNA and TrkB in the clinicopathologic characteristics of EC patients.
METHODS AND RESULTS: Using quantitative reverse transcription-PCR (qRT-PCR), we found that expression of TrkB mRNA has no significant difference in transcript levels between normal endometrium and EC cells captured by laser capture microdissection, while immunohistochemistry results demonstrated a markedly higher expression of TrkB protein in EC tissues. The microRNA array showed that ectopic overexpression and knockdown of TrkB expression caused global changes in miRNA expression in EC cells. qRT-PCR results showed that elevated TrkB repressed miR-204-5p expression in EC cells. Furthermore, immunoblotting assays revealed that TrkB overexpression in IshikawaTrkB cells noticeably increased JAK2 and STAT3 phosphorylation, which, however, was aborted by TrkB knockdown in HEC-1BshTrkB cells. Moreover, ChIP assays showed that phospho-STAT3 could directly bind to STAT3-binding sites near the TRPM3 promoter region upstream of miR-204-5p. Interestingly, using bioinformatics analysis and luciferase assays, we identified TrkB was a novel target of miR-204-5p. Functionally, the MTT assays, clonogenic and Transwell assays showed that miR-204-5p significantly suppressed the clonogenic growth, migration and invasion of EC cells. Furthermore, miR-204-5p also inhibited the growth of tumor xenografts bearing human EC cells. Importantly, we found lower miR-204-5p expression was associated with advanced FIGO stages, lymph node metastasis and probably a lower chance for survival in EC patients.
CONCLUSIONS: This study uncovers a new regulatory loop involving TrkB/miR-204-5p that is critical to the tumorigenesis of EC and proposes that reestablishment of miR-204-5p expression could be explored as a potential new therapeutic target for this disease.

Li SS, Liu JJ, Wang S, et al.
Clinical significance of TrkB expression in nasopharyngeal carcinoma.
Oncol Rep. 2014; 31(2):665-72 [PubMed] Related Publications
Recent research has demonstrated that tropomyosin‑related kinase B (TrkB) plays an important role in neuronal survival, differentiation and migration; yet, its specific role in human nasopharyngeal carcinoma (NPC) is unclear. To elucidate its role in NPC, we examined TrkB expression in NPC tissues and cell lines, and investigated the correlation between TrkB expression and prognosis in patients with NPC. Immunohistochemical analysis was performed on NPC specimens from 108 patients with follow-up information. Additionally, reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analyses were used to determine TrkB expression levels in NPC and noncancerous nasopharyngeal tissues. RT-PCR and western blot analyses were also used to determine TrkB expression levels in 7 NPC cell lines and a nasopharyngeal epithelium cell line. High TrkB expression was significantly correlated with T classification, lymph node metastasis and clinical stage, respectively. Patients with NPC who had high TrkB expression had reduced disease-free survival and overall survival when compared with patients who had low TrkB expression. Multivariate Cox regression analysis revealed that TrkB overexpression was an independent prognostic factor for patients with NPC. Furthermore, TrkB was overexpressed in NPC specimens and cell lines. TrkB expression levels were significantly increased in NPC specimens, and enhanced levels were correlated with a poor prognosis in patients with NPC. These findings suggest that TrkB may contribute to NPC progression and represent a novel prognostic indicator for patients with NPC.

Bao W, Qiu H, Yang T, et al.
Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma.
PLoS One. 2013; 8(7):e70616 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.

Lin CY, Chen HJ, Li TM, et al.
β5 integrin up-regulation in brain-derived neurotrophic factor promotes cell motility in human chondrosarcoma.
PLoS One. 2013; 8(7):e67990 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.

Peng WM, Maintz L, Allam JP, et al.
Increased circulating levels of neurotrophins and elevated expression of their high-affinity receptors on skin and gut mast cells in mastocytosis.
Blood. 2013; 122(10):1779-88 [PubMed] Related Publications
Mastocytosis is a rare heterogeneous disease characterized by increase of mast cells (MCs) in different organs. Neurotrophins (NTs) have been shown to promote differentiation and survival of MCs, which in turn represent a major source of NTs. Thus, a contribution of NTs to mastocytosis seems highly conceivable but has not yet been investigated. We could demonstrate expression of high-affinity NT receptors tropomyosin-related kinase A (TrkA) for nerve growth factor (NGF)-β, TrkB for brain-derived neurotrophic factor, and NT-4 and TrkC for NT-3 on skin MCs; and of TrkA and TrkC on intestinal MCs of patients with mastocytosis. Moreover, increased expression of NGF-β; NT-3; TrkA, TrkB, and TrkC; and isoforms truncated TrkB-T1 and truncated TrkC were observed on skin MCs. Patients with mastocytosis featured elevated serum levels of NGF, NT-3, and NT-4. Levels of NGF-β and NT-4 correlated with tryptase levels, suggesting a link between MC load and blood levels of NGF and NT-4. Migration of CD117+ progenitor cells from the blood was enhanced toward NGF-β gradient in both mastocytosis and controls. Together with enhanced NT levels, the elevated expression of modified Trk receptors on skin and gut MCs might contribute to the pathophysiology of mastocytosis in autocrine and paracrine loops.

Jones DT, Hutter B, Jäger N, et al.
Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma.
Nat Genet. 2013; 45(8):927-32 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.

Lee KB, Park do J, Choe G, et al.
Protein expression status in mucosal and submucosal portions of early gastric cancers and their predictive value for lymph node metastasis.
APMIS. 2013; 121(10):926-37 [PubMed] Related Publications
We aimed to find out predictive markers for lymph node (LN) metastasis of early gastric carcinoma (EGC) by separating evaluation of protein expression in mucosa and submucosa considering tumor heterogeneity. We selected 37 pN1-3 EGCs and depth- and size-matched 31 pN0 EGCs as training set and 72 EGCs including 14 pN1-3 EGCs as test set. Protein expression for β-catenin, E-cadherin, N-cadherin, galectin-3, c-MET, TrkB, and Ki-67 was assessed by immunohistochemistry in mucosal (-m) and submucosal (-sm) portions of tumor. In the training set, Ki67-m was higher than in Ki67-sm (mean ± SD: 82.67 ± 11.99% vs 61.79 ± 22.53%, p < 0.001). Altered E-cadherin-sm, high Ki67-m, and high Ki67-sm were correlated with LN metastasis (p < 0.05) and Ki67-sm was independent with lymphatic invasion and desmoplasia (p = 0.015 by multivariate logistic analysis). The test set confirmed Ki67-sm and E-cadherin-sm as predictors of LN metastasis (p < 0.05). Submucosal EGCs with ≥2 predictive factors out of high Ki67-sm, altered E-cadherin-sm, large tumor size (≥3 cm), diffuse type histology, and present lymphatic invasion yielded 100% sensitivity and 90.9% specificity for prediction of LN metastasis in 21 submucosal EGCs of test set. The proliferative activity of tumor in submucosa is suggested to be an independent predictor for LN metastasis in EGC.

Frisch SM, Schaller M, Cieply B
Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis.
J Cell Sci. 2013; 126(Pt 1):21-9 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
The oncogenic epithelial-mesenchymal transition (EMT) contributes to tumor progression in various context-dependent ways, including increased metastatic potential, expansion of cancer stem cell subpopulations, chemo-resistance and disease recurrence. One of the hallmarks of EMT is resistance of tumor cells to anoikis. This resistance contributes to metastasis and is a defining property not only of EMT but also of cancer stem cells. Here, we review the mechanistic coupling between EMT and resistance to anoikis. The discussion focuses on several key aspects. First, we provide an update on new pathways that lead from the loss of E-cadherin to anoikis resistance. We then discuss the relevance of transcription factors that are crucial in wound healing in the context of oncogenic EMT. Next, we explore the consequences of the breakdown of cell-polarity complexes upon anoikis sensitivity, through the Hippo, Wnt and transforming growth factor β (TGF-β) pathways, emphasizing points of crossregulation. Finally, we summarize the direct regulation of cell survival genes through EMT-inducing transcription factors, and the roles of the tyrosine kinases focal adhesion kinase (FAK) and TrkB neurotrophin receptor in EMT-related regulation of anoikis. Emerging from these studies are unifying principles that will lead to improvements in cancer therapy by reprogramming sensitivity of anoikis.

Ai LS, Sun CY, Wang YD, et al.
Gene silencing of the BDNF/TrkB axis in multiple myeloma blocks bone destruction and tumor burden in vitro and in vivo.
Int J Cancer. 2013; 133(5):1074-84 [PubMed] Related Publications
Osteolytic bone diseases are a prominent feature of multiple myeloma (MM), resulting from aberrant osteoclastic bone resorption that is uncoupled from osteoblastic bone formation. Myeloma stimulates osteoclastogenesis, which is largely dependent on an increase in receptor activator of NF-κB ligand (RANKL) and a decrease in osteoprotegerin (OPG) within the bone marrow milieu. Recently, brain-derived neurotrophic factor (BDNF) was identified as a MM-derived factor that correlates with increased RANKL levels and contributes to osteolytic bone destruction in myeloma patients. Because tyrosine receptor kinase B (TrkB), the receptor of BDNF, is abundantly expressed in osteoblasts, we sought to evaluate the role of BDNF/TrkB in myeloma-osteoblast interactions and the effect of this pathway on the RANKL/OPG ratio and osteoclastogenesis. Coculture systems constructed with noncontact transwells revealed that, in vitro, MM-derived BDNF increased RANKL and decreased OPG production in osteoblasts in a time- and dose-dependent manner. These effects were completely abolished by a specific small interfering RNA for TrkB. BDNF regulates RANKL/OPG expression in osteoblasts through the TrkB/ERK pathway. To investigate the biological effects of BDNF on myeloma in vivo, a SCID-RPMI8226 mice model was constructed using lentiviral short hairpin RNA-transfected RPMI8226 cells. In this system, stable knockdown of BDNF in MM cells significantly restored the RANKL/OPG homostasis, inhibited osteolytic bone destruction and reduced angiogenesis and tumor burden. Our studies provide further support for the potential osteoclastogenic effects of BDNF, which mediates stroma-myeloma interactions to disrupt the balance of RANKL/OPG expression, ultimately increasing osteoclastogenesis in MM.

Zhi W, Minturn J, Rappaport E, et al.
Network-based analysis of multivariate gene expression data.
Methods Mol Biol. 2013; 972:121-39 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Multivariate microarray gene expression data are commonly collected to study the genomic responses under ordered conditions such as over increasing/decreasing dose levels or over time during biological processes, where the expression levels of a give gene are expected to be dependent. One important question from such multivariate gene expression experiments is to identify genes that show different expression patterns over treatment dosages or over time; these genes can also point to the pathways that are perturbed during a given biological process. Several empirical Bayes approaches have been developed for identifying the differentially expressed genes in order to account for the parallel structure of the data and to borrow information across all the genes. However, these methods assume that the genes are independent. In this paper, we introduce an alternative empirical Bayes approach for analysis of multivariate gene expression data by assuming a discrete Markov random field (MRF) prior, where the dependency of the differential expression patterns of genes on the networks are modeled by a Markov random field. Simulation studies indicated that the method is quite effective in identifying genes and the modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway information, with similar observed false discovery rates. We applied the proposed methods for analysis of a microarray time course gene expression study of TrkA- and TrkB-transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal adhesion, and prion disease pathways that may explain cell differentiation in TrkA-transfected cell lines.

Sasahira T, Ueda N, Kurihara M, et al.
Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma.
Hum Pathol. 2013; 44(6):1098-106 [PubMed] Related Publications
Members of the tropomyosin receptor kinase (Trk) family have a high affinity for neurotrophins and regulate neuronal survival. The role of Trks in cancer is still controversial. The expression and role of TrkB and TrkC were examined in colorectal cancer (CRC). Immunohistochemical analysis of TrkB and TrkC was performed in 133 patients with CRC. Using human CRC cell lines, expression of vascular endothelial growth factor (VEGF) and transforming growth factor β, cell growth, invasion, and apoptosis were examined by knockdown methods. Immunohistochemistry showed positive results of TrkB and TrkC (23.3% and 12.8%, respectively). TrkB expression was associated with local progression (P = .0284), clinical stage (P = .0026), nodal metastasis (P = .0068), and peritoneal metastasis (P = .0026). TrkC expression was only related to liver metastasis (P = .0001). Coexpression of TrkB or TrkC and their ligands was found in 80.6% and 82.4% of cases, respectively. In vitro analysis using human CRC cells showed that TrkB positively regulated gene expression of VEGF-A (P < .05) and VEGF-C (P < .05), whereas TrkC suppressed transforming growth factor β expression (P < .05). TrkB and TrkC induced cell growth (P < .05) and invasion (P < .05), respectively. Both TrkB and TrkC showed antiapoptotic effect (P < .05). These results suggest that TrkB and TrkC have a tumor progressive function and may be a useful diagnostic and therapeutic target in CRC.

Imam JS, Plyler JR, Bansal H, et al.
Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.
PLoS One. 2012; 7(12):e52397 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF), a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB) parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

Kopp F, Oak PS, Wagner E, Roidl A
miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression.
PLoS One. 2012; 7(11):e50469 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Acquired resistance to classical chemotherapeutics is a major obstacle in cancer treatment. Doxorubicin is frequently used in breast cancer therapy either as single-agent or in combination with other drugs like docetaxel and cyclophosphamide. All these chemotherapies have in common that they are administered sequentially and often result in chemoresistance. Here, we mimicked this pulse therapy of breast cancer patients in an in vitro cell culture model, where the epithelial breast cancer cell line BT474 was sequentially treated with doxorubicin for several treatment cycles. In consequence, we obtained chemoresistant cells displaying a mesenchymal-like phenotype with decreased levels of miR-200c. To investigate the involvement of miR-200c in resistance formation, we inhibited and overexpressed miR-200c in different cell lines. Thereby, the cells were rendered more resistant or susceptible to doxorubicin treatment. Moreover, the receptor tyrosine kinase TrkB and the transcriptional repressor Bmi1 were identified as miR-200c targets mediating the drug resistance. Hence, we provide a mechanism of acquired resistance to doxorubicin that is caused by the loss of miR-200c. Along with this, our study demonstrates the complex network of microRNA mediated chemoresistance highlighting the challenges in cancer therapy and the importance of novel microRNA-modulating anticancer agents.

Howe EN, Cochrane DR, Cittelly DM, Richer JK
miR-200c targets a NF-κB up-regulated TrkB/NTF3 autocrine signaling loop to enhance anoikis sensitivity in triple negative breast cancer.
PLoS One. 2012; 7(11):e49987 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Anoikis is apoptosis initiated upon cell detachment from the native extracellular matrix. Since survival upon detachment from basement membrane is required for metastasis, the ability to resist anoikis contributes to the metastatic potential of breast tumors. miR-200c, a potent repressor of epithelial to mesenchymal transition, is expressed in luminal breast cancers, but is lost in more aggressive basal-like, or triple negative breast cancers (TNBC). We previously demonstrated that miR-200c restores anoikis sensitivity to TNBC cells by directly targeting the neurotrophic receptor tyrosine kinase, TrkB. In this study, we identify a TrkB ligand, neurotrophin 3 (NTF3), as capable of activating TrkB to induce anoikis resistance, and show that NTF3 is also a direct target of miR-200c. We present the first evidence that anoikis resistant TNBC cells up-regulate both TrkB and NTF3 when suspended, and show that this up-regulation is necessary for survival in suspension. We further demonstrate that NF-κB activity increases 6 fold in suspended TNBC cells, and identify RelA and NF-κB1 as the transcription factors responsible for suspension-induced up-regulation of TrkB and NTF3. Consequently, inhibition of NF-κB activity represses anoikis resistance. Taken together, our findings define a critical mechanism for transcriptional and post-transcriptional control of suspension-induced up-regulation of TrkB and NTF3 in anoikis resistant breast cancer cells.

Shiohira H, Kitaoka A, Enjoji M, et al.
Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.
Biomed Res. 2012; 33(5):291-7 [PubMed] Related Publications
Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

Cittelly DM, Dimitrova I, Howe EN, et al.
Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel.
Mol Cancer Ther. 2012; 11(12):2556-65 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
A therapeutic intervention that could decrease tumor burden and increase sensitivity to chemotherapy would have a significant impact on the high morbidity rate associated with ovarian cancer. miRNAs have emerged as potential therapeutic candidates due to their ability to downregulate multiple targets involved in tumor progression and chemoresistance. miRNA-200c (miR-200c) is downregulated in ovarian cancer cell lines and stage III ovarian tumors, and low miR-200c correlates with poor prognosis. miR-200c increases sensitivity to taxanes in vitro by targeting class III β-tubulin gene (TUBB3), a tubulin known to mediate chemoresistance. Indeed, we find that patients with tumors having low TUBB3 had significantly prolonged survival (average survival 52.73 ± 4.08 months) as compared with those having high TUBB3 (average survival 42.56 ± 3.19 months). miR-200c also targets TrkB, a mediator of resistance to anoikis. We show that restoration of miR-200c to ovarian cancer cells results in increased anoikis sensitivity and reduced adherence to biologic substrates in vitro. Because both chemo- and anoikis-resistance are critical steps in the progression of ovarian cancer, we sought to determine how restoration of miR-200c affects tumor burden and chemosensitivity in an in vivo preclinical model of ovarian cancer. Restoration of miR-200c in an intraperitoneal xenograft model of human ovarian cancer results in decreased tumor formation and tumor burden. Furthermore, even in established tumors, restoration of miR-200c, alone or in combination with paclitaxel, results in significantly decreased tumor burden. Our study suggests that restoration of miR-200c immediately before cytotoxic chemotherapy may allow for a better response or lower effective dose.

Asgharzadeh S, Salo JA, Ji L, et al.
Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma.
J Clin Oncol. 2012; 30(28):3525-32 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
PURPOSE: Children diagnosed at age ≥ 18 months with metastatic MYCN-nonamplified neuroblastoma (NBL-NA) are at high risk for disease relapse, whereas those diagnosed at age < 18 months are nearly always cured. In this study, we investigated the hypothesis that expression of genes related to tumor-associated inflammatory cells correlates with the observed differences in survival by age at diagnosis and contributes to a prognostic signature.
METHODS: Tumor-associated macrophages (TAMs) in localized and metastatic neuroblastomas (n = 71) were assessed by immunohistochemistry. Expression of 44 genes representing tumor and inflammatory cells was quantified in 133 metastatic NBL-NAs to assess age-dependent expression and to develop a logistic regression model to provide low- and high-risk scores for predicting progression-free survival (PFS). Tumors from high-risk patients enrolled onto two additional studies (n = 91) served as independent validation cohorts.
RESULTS: Metastatic neuroblastomas had higher infiltration of TAMs than locoregional tumors, and metastatic tumors diagnosed in patients at age ≥ 18 months had higher expression of inflammation-related genes than those in patients diagnosed at age < 18 months. Expression of genes representing TAMs (CD33/CD16/IL6R/IL10/FCGR3) contributed to 25% of the accuracy of a novel 14-gene tumor classification score. PFS at 5 years for children diagnosed at age ≥ 18 months with NBL-NA with a low- versus high-risk score was 47% versus 12%, 57% versus 8%, and 50% versus 20% in three independent clinical trials, respectively.
CONCLUSION: These data suggest that interactions between tumor and inflammatory cells may contribute to the clinical metastatic neuroblastoma phenotype, improve prognostication, and reveal novel therapeutic targets.

Makino K, Kawamura K, Sato W, et al.
Inhibition of uterine sarcoma cell growth through suppression of endogenous tyrosine kinase B signaling.
PLoS One. 2012; 7(7):e41049 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Uterine leiomyosarcoma is an aggressive tumor typically found at advanced stages due to difficulties with early diagnosis. Because uterine leiomyosarcoma is resistant to conventional radiation and chemotherapy, the development of more potent medical therapeutics is anticipated. Using quantitative real-time RT-PCR and immunostaining, we found the expression of brain-derived neurotrophic factor (BDNF) and neurotropin-4/5, together with their receptor, tyrosine kinase B (TrkB), in different uterine sarcoma cell lines and primary tumor samples from uterine leiomyosarcoma patients. We noted that levels of BDNF were more abundant than those of neurotropin-4/5. Moreover, the expression of TrkB and its ligands was elevated in a multidrug-resistant cell line and samples obtained from patients with leiomyosarcoma. In cultured uterine sarcoma cells, inhibition of endogenous TrkB signaling by treatment with either the soluble TrkB ectodomain or the Trk receptor inhibitor, K252a, suppressed cell proliferation and increased apoptosis based on cell viability and proliferation, in situ terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling and caspase-3/7 assays, whereas an inactive plasma membrane nonpermeable K252b was ineffective. Correspondingly, treatment with exogenous BDNF increased cell proliferation. In in vivo studies in athymic nude mice bearing multidrug-resistant uterine sarcoma cell tumors, we demonstrate suppression of tumor growth by treatment with K252a, but not K252b, as reflected by decreased cell proliferation and increased levels of apoptosis and caspase-3/7 activities without obvious side effects. Our findings indicated that endogenous signaling of the TrkB pathway contributed to uterine sarcoma cell growth, and inhibition of TrkB signaling in these tumors could provide a novel medical therapy for patients with uterine sarcomas.

Okamura K, Harada T, Wang S, et al.
Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer.
Lung Cancer. 2012; 78(1):100-6 [PubMed] Related Publications
High expression levels of TrkB and BDNF are associated with aggressive malignant behavior in tumor cells and a poor prognosis in patients with various types of cancer. In this study, we aimed to identify the relationship between TrkB and BDNF expression and clinicopathological variables and prognosis in non-small cell lung cancer (NSCLC). We evaluated TrkB and BDNF expression in the tumor cells of 102 NSCLC patients by immunohistochemistry. Out of all clinicopathological factors examined, only vascular invasion was significantly correlated with TrkB (P=0.010) and BDNF (P=0.015) expression. TrkB-positive tumors had significantly worse disease-free survival (P=0.0094) and overall survival (P=0.0019) than TrkB-negative tumors, and TrkB expression was an independent prognostic factor for disease-free survival (HR 3.735, 95% CI 1.560-11.068, P=0.002) and overall survival (HR 4.335, 95% CI 1.534-15.963, P=0.004) in multivariate analysis. Finally, our analysis revealed that co-expression of TrkB and BDNF conferred poorer prognosis compared with overexpression of either protein alone. Our results indicate that expression of TrkB and BDNF is associated with poor prognosis in NSCLC patients.

Ryan J, Tivnan A, Fay J, et al.
MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome.
Br J Cancer. 2012; 107(6):967-76 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
BACKGROUND: Neuroblastoma remains a major cause of cancer-linked mortality in children. miR-204 has been used in microRNA expression signatures predictive of neuroblastoma patient survival. The aim of this study was to explore the independent association of miR-204 with survival in a neuroblastoma cohort, and to investigate the phenotypic effects mediated by miR-204 expression in neuroblastoma.
METHODS: Neuroblastoma cell lines were transiently transfected with miR-204 mimics and assessed for cell viability using MTS assays. Apoptosis levels in cell lines were evaluated by FACS analysis of Annexin V-/propidium iodide-stained cells transfected with miR-204 mimics and treated with chemotherapy drug or vehicle control. Potential targets of miR-204 were validated using luciferase reporter assays.
RESULTS: miR-204 expression in primary neuroblastoma tumours was predictive of patient event-free and overall survival, independent of established known risk factors. Ectopic miR-204 expression significantly increased sensitivity to cisplatin and etoposide in vitro. miR-204 direct targeting of the 3' UTR of BCL2 and NTRK2 (TrkB) was confirmed.
CONCLUSION: miR-204 is a novel predictor of outcome in neuroblastoma, functioning, at least in part, through increasing sensitivity to cisplatin by direct targeting and downregulation of anti-apoptotic BCL2. miR-204 also targets full-length NTRK2, a potent oncogene involved with chemotherapy drug resistance in neuroblastoma.

Sasahira T, Ueda N, Yamamoto K, et al.
Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma.
Clin Exp Metastasis. 2013; 30(2):165-76 [PubMed] Related Publications
The function of tropomyosin receptor kinase (Trk) family including TrkA, TrkB, and TrkC in cancer remains unknown. The role of Trks in oral squamous cell carcinoma (OSCC) was examined. Knockdown of Trks provided inhibition of growth or invasion and decrease of apoptosis in OSCC cells, which expressed Trks at high levels. VEGF expression was associated with TrkA and TrkB expression; a decrease of VEGF-C and VEGF-D was observed in OSCC cells with TrkB knockdown. TrkC did not affect the expression of VEGF family. An immunohistochemical analysis of 102 OSCCs showed that TrkB expression was related to microvessel density (MVD), lymph vessel density (LVD), and poor prognosis. TrkC expression was correlated with clinical stage, lymph node metastasis, MVD, LVD, and poor prognosis. TrkA expression was associated with VEGF expression, whereas TrkB expression was associated with the expressions of VEGF, VEGF-C and VEGF-D. No significant association was found between the expression of TrkC and genes of the VEGF family. Expression of Trks was not associated with RUNX3 silencing by methylation in OSCC cells. Trks expression was inversely correlated with RUNX3 expression in the OSCC cases. These results suggested that Trks enhances progression of OSCC through angiogenesis and lymphangiogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NTRK2, Cancer Genetics Web: http://www.cancer-genetics.org/NTRK2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999