Gene Summary

Gene:CHEK1; checkpoint kinase 1
Aliases: CHK1
Summary:The protein encoded by this gene belongs to the Ser/Thr protein kinase family. It is required for checkpoint mediated cell cycle arrest in response to DNA damage or the presence of unreplicated DNA. This protein acts to integrate signals from ATM and ATR, two cell cycle proteins involved in DNA damage responses, that also associate with chromatin in meiotic prophase I. Phosphorylation of CDC25A protein phosphatase by this protein is required for cells to delay cell cycle progression in response to double-strand DNA breaks. Several alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Oct 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:serine/threonine-protein kinase Chk1
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cancer Gene Expression Regulation
  • Apoptosis
  • DNA Damage
  • Drug Resistance
  • MicroRNAs
  • Adolescents
  • Exons
  • Protein-Serine-Threonine Kinases
  • Promoter Regions
  • Single Nucleotide Polymorphism
  • Base Sequence
  • Chromosome 11
  • Breast Cancer
  • DNA-Binding Proteins
  • Ataxia Telangiectasia Mutated Proteins
  • Sequence Deletion
  • Genetic Predisposition
  • DNA Methylation
  • Cell Proliferation
  • Ubiquitin-Protein Ligases
  • CHEK2
  • Cell Cycle Proteins
  • Ovarian Cancer
  • Disease Progression
  • Transfection
  • Platinum Compounds
  • p53 Protein
  • RNA
  • Oligonucleotide Array Sequence Analysis
  • Tumor Suppressor Proteins
  • Signal Transduction
  • Acute Myeloid Leukaemia
  • Neoplasm Proteins
  • Gene Expression Profiling
  • DNA Repair
  • Protein Kinases
  • Mutation
  • siRNA
  • Colorectal Cancer
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CHEK1 (cancer-related)

Lecona E, Fernández-Capetillo O
Replication stress and cancer: it takes two to tango.
Exp Cell Res. 2014; 329(1):26-34 [PubMed] Related Publications
Problems arising during DNA replication require the activation of the ATR-CHK1 pathway to ensure the stabilization and repair of the forks, and to prevent the entry into mitosis with unreplicated genomes. Whereas the pathway is essential at the cellular level, limiting its activity is particularly detrimental for some cancer cells. Here we review the links between replication stress (RS) and cancer, which provide a rationale for the use of ATR and Chk1 inhibitors in chemotherapy. First, we describe how the activation of oncogene-induced RS promotes genome rearrangements and chromosome instability, both of which could potentially fuel carcinogenesis. Next, we review the various pathways that contribute to the suppression of RS, and how mutations in these components lead to increased cancer incidence and/or accelerated ageing. Finally, we summarize the evidence showing that tumors with high levels of RS are dependent on a proficient RS-response, and therefore vulnerable to ATR or Chk1 inhibitors.

Smith SC, Petrova AV, Madden MZ, et al.
A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response.
Nucleic Acids Res. 2014; 42(18):11517-27 [PubMed] Related Publications
The Replication Stress Response (RSR) is a signaling network that recognizes challenges to DNA replication and coordinates diverse DNA repair and cell-cycle checkpoint pathways. Gemcitabine is a nucleoside analogue that causes cytotoxicity by inducing DNA replication blocks. Using a synthetic lethal screen of a RNAi library of nuclear enzymes to identify genes that when silenced cause gemcitabine sensitization or resistance in human triple-negative breast cancer cells, we identified NIMA (never in mitosis gene A)-related kinase 9 (NEK9) as a key component of the RSR. NEK9 depletion in cells leads to replication stress hypersensitivity, spontaneous accumulation of DNA damage and RPA70 foci, and an impairment in recovery from replication arrest. NEK9 protein levels also increase in response to replication stress. NEK9 complexes with CHK1, and moreover, NEK9 depletion impairs CHK1 autophosphorylation and kinase activity in response to replication stress. Thus, NEK9 is a critical component of the RSR that promotes CHK1 activity, maintaining genome integrity following challenges to DNA replication.

Zhang P, Wei Y, Wang L, et al.
ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1.
Nat Cell Biol. 2014; 16(9):864-75 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Epithelial-mesenchymal transition (EMT) is associated with characteristics of breast cancer stem cells, including chemoresistance and radioresistance. However, it is unclear whether EMT itself or specific EMT regulators play causal roles in these properties. Here we identify an EMT-inducing transcription factor, zinc finger E-box binding homeobox 1 (ZEB1), as a regulator of radiosensitivity and DNA damage response. Radioresistant subpopulations of breast cancer cells derived from ionizing radiation exhibit hyperactivation of the kinase ATM and upregulation of ZEB1, and the latter promotes tumour cell radioresistance in vitro and in vivo. Mechanistically, ATM phosphorylates and stabilizes ZEB1 in response to DNA damage, ZEB1 in turn directly interacts with USP7 and enhances its ability to deubiquitylate and stabilize CHK1, thereby promoting homologous recombination-dependent DNA repair and resistance to radiation. These findings identify ZEB1 as an ATM substrate linking ATM to CHK1 and the mechanism underlying the association between EMT and radioresistance.

Hematulin A, Sagan D, Sawanyawisuth K, et al.
Association between cellular radiosensitivity and G1/G2 checkpoint proficiencies in human cholangiocarcinoma cell lines.
Int J Oncol. 2014; 45(3):1159-66 [PubMed] Related Publications
Cholangiocarcinoma is a destructive malignancy with a poor prognosis and lack of effective medical treatment. Radiotherapy is an alternative treatment for patients with unresectable cholangiocarcinoma. However, there are limited data on the radiation responsiveness of individual cholangiocarcinoma cells, which is a key factor that influences radiation treatment outcome. In this study, we found that cholangiocarcinoma cell lines differ remarkably in their radiosensitivity. The variation of radiosensitivity of cholangiocarcinoma cells correlates with their p53 status and existing G1 and/or G2 checkpoint defects. We also demonstrated the potential of checkpoint kinase Chk1/2 inhibition on the enhancement of the radiosensitivity of cholangiocarcinoma cells. Thus, this study provides useful information for predicting radiation response and provides evidence for the enchantment of radiotherapeutic efficiency by targeting checkpoint kinase Chk1/2 in some subpopulations of cholangiocarcinoma patients.

Soriani A, Iannitto ML, Ricci B, et al.
Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1.
J Immunol. 2014; 193(2):950-60 [PubMed] Related Publications
Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner. Drug-induced MICA and PVR gene expression are transcriptionally regulated and involve DDR-dependent E2F1 transcription factor activity. We also describe the involvement of changes in the redox state in the control of DDR-dependent upregulation of ligand surface expression and gene transcriptional activity by using the antioxidant agent N-acetyl-L-cysteine. Finally, in accordance with much evidence indicating that DDR and oxidative stress are major determinants of cellular senescence, we found that redox-dependent DDR activation upon chemotherapeutic treatment is critical for MM cell entry in premature senescence and is required for the preferential ligand upregulation on senescent cells, which are preferentially killed by NK cells and trigger potent IFN-γ production. We propose immunogenic senescence as a mechanism that promotes the clearance of drug-treated tumor cells by innate effector lymphocytes, including NK cells.

Li L, Chang W, Yang G, et al.
Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer.
Sci Signal. 2014; 7(326):ra47 [PubMed] Article available free on PMC after 20/05/2015 Related Publications
Androgen deprivation is the standard treatment for advanced prostate cancer (PCa), but most patients ultimately develop resistance and tumor recurrence. We found that MYB is transcriptionally activated by androgen deprivation therapy or genetic silencing of the androgen receptor (AR). MYB silencing inhibited PCa growth in culture and xenografts in mice. Microarray data revealed that c-Myb and AR shared a subset of target genes that encode DNA damage response (DDR) proteins, suggesting that c-Myb may supplant AR as the dominant regulator of their common DDR target genes in AR inhibition-resistant or AR-negative PCa. Gene signatures including AR, MYB, and their common DDR-associated target genes positively correlated with metastasis, castration resistance, tumor recurrence, and decreased survival in PCa patients. In culture and in xenograft-bearing mice, a combination strategy involving the knockdown of MYB, BRCA1, or TOPBP1 or the abrogation of cell cycle checkpoint arrest with AZD7762, an inhibitor of the checkpoint kinase Chk1, increased the cytotoxicity of the poly[adenosine 5'-diphosphate (ADP)-ribose] polymerase (PARP) inhibitor olaparib in PCa cells. Our results reveal new mechanism-based therapeutic approaches for PCa by targeting PARP and the DDR pathway involving c-Myb, TopBP1, ataxia telangiectasia mutated- and Rad3-related (ATR), and Chk1.

Liou JS, Wu YC, Yen WY, et al.
Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest.
Toxicol Appl Pharmacol. 2014; 278(3):249-58 [PubMed] Related Publications
DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest.

Camps J, Wangsa D, Falke M, et al.
Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories.
FASEB J. 2014; 28(8):3423-34 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
Nuclear lamin B1 (LMNB1) constitutes one of the major structural proteins in the lamina mesh. We silenced the expression of LMNB1 by RNA interference in the colon cancer cell line DLD-1 and showed a dramatic redistribution of H3K27me3 from the periphery to a more homogeneous nuclear dispersion. In addition, we observed telomere attrition and an increased frequency of micronuclei and nuclear blebs. By 3D-FISH analyses, we demonstrated that the volume and surface of chromosome territories were significantly larger in LMNB1-depleted cells, suggesting that LMNB1 is required to maintain chromatin condensation in interphase nuclei. These changes led to a prolonged S phase due to activation of Chk1. Finally, silencing of LMNB1 resulted in extensive changes in alternative splicing of multiple genes and in a higher number of enlarged nuclear speckles. Taken together, our results suggest a mechanistic role of the nuclear lamina in the organization of chromosome territories, maintenance of genome integrity and proper gene splicing.

Napso T, Fares F
Zebularine induces prolonged apoptosis effects via the caspase-3/PARP pathway in head and neck cancer cells.
Int J Oncol. 2014; 44(6):1971-9 [PubMed] Related Publications
Zebularine, a potent DNA methyltransferase inhibitor, is potentially able to influence gene regulation and thereby alters cell behavior. This study illustrates the effect of zebularine on human squamous cell carcinoma (SCC-9 and SCC-25) in vitro. The results indicated that zebularine significantly (P<0.05) reduced viability and DNA synthesis of treated cancer cells, by induction of cell cycle arrest at G2/M phase and apoptosis in both tested cell lines. This effect was confirmed to be mediated through p21/CHK1- and caspase 3/PARP‑dependent pathways, respectively. However, no methylation was observed in the promoter region of the upregulated p21 and CHK1 genes. This may indicate that the alteration of p21 and CHK1 following zebularine administration was not due to inhibition of methylation of their promoter. Interestingly, it was observed that zebularine continued to influence cell viability for a week following its withdrawal. This may indicate feasibility of novel drug administration strategies, in which, daily administration of the drug replaced by weekly use, leading to improved therapeutic process and cost-effectiveness of the treatment in head and neck cancer.

Zuo X, Qin Y, Zhang X, et al.
Breast cancer cells are arrested at different phases of the cell cycle following the re-expression of ARHI.
Oncol Rep. 2014; 31(5):2358-64 [PubMed] Related Publications
ARHI is a maternally imprinted tumor suppressor gene that is expressed in normal breast epithelial cells but not in most breast cancer cells. Aberrant methylation and hypernomic histone deacetylation have been implicated in the silencing of ARHI. To investigate the mechanism of ARHI induction, MDA-MB-231 breast cancer cells were either transfected with the eukaryotic expression vector, pcDNA3.1(+)-ARHI, or were simultaneously treated with a histone deacetylase inhibitor, [trichostatin A, (TSA)] and the methyltransferase inhibitor, 5-aza-2'-deoxycytidine (DAC). The latter treatment group also included the targeting of ARHI by small interfering RNA (siRNA) to further examine interactions between ARHI and the drugs applied. Levels of ARHI were detected by western blotting, MTT assays were used to evaluate cell proliferation, and both cell cycle progression and apoptosis were detected using flow cytometry. Both the transfection of pcDNA3.1(+)‑ARHI and the application of TSA+DAC induced the expression of ARHI. Furthermore, reduced cell proliferation, cell cycle arrest and enhanced apoptosis were observed for both groups compared to controls. However, a G1/S cell cycle arrest was observed for the pcDNA3.1(+)-ARHI group, while a G2 cell cycle arrest was observed for the TSA+DAC group. The latter effect was reversed with the introduction of ARHI-targeted siRNA in combination with TSA+DAC treatment. To further clarify these observations, expression levels of several key cell cycle regulators were analyzed by western blotting. The pcDNA3.1(+)-ARHI group exhibited higher expression levels of p53, p21 and p27, and lower levels of cyclin D1, CDK4 and CDK6 when compared to the control group (P<0.05). For the TSA+DAC group, higher levels of p53, p21, cyclin B1 and Chk1 were detected, concomitant with lower levels of CDK1, when compared to the control group. Taken together, these results suggest that ARHI acts as a tumor suppressor gene in MDA-MB-231 cells and, although TSA+DAC can block the cells at different cell cycle phage, the antitumor effect is ARHI-dependent.

Bo S, Hui H, Li W, et al.
Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells.
Food Chem Toxicol. 2014; 68:61-70 [PubMed] Related Publications
Diallyl disulfide (DADS) has been shown to cause G2/M phase cell cycle arrest in several human cancers. Here we demonstrate a mechanism by which DADS induces G2/M phase arrest in BGC823 human gastric cancer cells via Chk1. From cell cycle gene array results, we next confirmed that cyclin B1 expression was decreased by DADS, while the expression of p21, GADD45α and p53 were increased. Despite the lack of change in Chk1 gene expression in response to DADS according to the array analysis, intriguingly overexpression of Chk1, but not Chk2, exhibited increased accumulation in G2/M phase. Moreover, overexpression of Chk1 promoted the effect of DADS-induced G2/M arrest. Augmented phosphorylation of Chk1 by DADS was observed in Chk1-transfected cells, followed by downregulation of Cdc25C and cyclin B1 proteins. In contrast, phosphorylated Chk2 showed no obvious change in Chk2-transfected cells after DADS treatment. Furthermore, knockdown of Chk1 by siRNA partially abrogated DADS-induced downregulation of Cdc25C and cyclin B1 proteins and G2/M arrest. In contrast, knockdown of Chk2 did not show these effects. Therefore, these data indicate that DADS may specifically modulate Chk1 phosphorylation, and DADS-induced G2/M phase arrest in BGC823 cells could result in part from Chk1-mediated inhibition of the Cdc25C/cyclin B1 pathway.

Colbert LE, Petrova AV, Fisher SB, et al.
CHD7 expression predicts survival outcomes in patients with resected pancreatic cancer.
Cancer Res. 2014; 74(10):2677-87 [PubMed] Article available free on PMC after 15/05/2015 Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor outcomes with current therapies. Gemcitabine is the primary adjuvant drug used clinically, but its effectiveness is limited. In this study, our objective was to use a rationale-driven approach to identify novel biomarkers for outcome in patients with early-stage resected PDAC treated with adjuvant gemcitabine. Using a synthetic lethal screen in human PDAC cells, we identified 93 genes, including 55 genes linked to DNA damage responses (DDR), that demonstrated gemcitabine sensitization when silenced, including CHD7, which functions in chromatin remodeling. CHD7 depletion sensitized PDAC cells to gemcitabine and delayed their growth in tumor xenografts. Moreover, CHD7 silencing impaired ATR-dependent phosphorylation of CHK1 and increased DNA damage induced by gemcitabine. CHD7 was dysregulated, ranking above the 90th percentile in differential expression in a panel of PDAC clinical specimens, highlighting its potential as a biomarker. Immunohistochemical analysis of specimens from 59 patients with resected PDAC receiving adjuvant gemcitabine revealed that low CHD7 expression was associated with increased recurrence-free survival (RFS) and overall survival (OS), in univariate and multivariate analyses. Notably, CHD7 expression was not associated with RFS or OS for patients not receiving gemcitabine. Thus, low CHD7 expression was correlated selectively with gemcitabine sensitivity in this patient population. These results supported our rationale-driven strategy to exploit dysregulated DDR pathways in PDAC to identify genetic determinants of gemcitabine sensitivity, identifying CHD7 as a novel biomarker candidate to evaluate further for individualizing PDAC treatment.

Alshareeda AT, Negm OH, Green AR, et al.
SUMOylation proteins in breast cancer.
Breast Cancer Res Treat. 2014; 144(3):519-30 [PubMed] Related Publications
Small Ubiquitin-like Modifier proteins (or SUMO) modify the function of protein substrates involved in various cellular processes including DNA damage response (DDR). It is becoming apparent that dysregulated SUMO contribute to carcinogenesis by affecting post-transcriptional modification of key proteins. It is hypothesised that SUMO contributes to the aggressive nature of breast cancer particularly those associated with features similar to breast carcinoma arising in patients with BRCA1 germline mutations. This study aims to assess the clinical and biological significance of three members of SUMO in a well-characterised annotated series of BC with emphasis on DDR. The study cohort comprised primary operable invasive BC including tumours from patients with known BRCA1 germline mutations. SUMO proteins PIAS1, PIAS4 and UBC9 were assessed using immunohistochemistry utilising tissue microarray technology. Additionally, their expression was assessed using reverse phase protein microarray utilising different cell lines. PIAS1 and UBC9 showed cytoplasmic and/or nuclear expression while PIAS4 was detected only in the nuclei. There was a correlation between subcellular localisation and expression of the nuclear transport protein KPNA2. Tumours showing positive nuclear/negative cytoplasmic expression of SUMO featured good prognostic characteristics including lower histologic grade and had a good outcome. Strong correlation with DDR-related proteins including BRCA1, Rad51, ATM, CHK1, DNA-PK and KU70/KU80 was observed. Correlation with ER and BRCA1 was confirmed using RPPA on cell lines. SUMO proteins seem to play important role in BC. Not only expression but also subcellular location is associated with BC phenotype.

Nakouzi NA, Cotteret S, Commo F, et al.
Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer.
Oncotarget. 2014; 5(3):667-78 [PubMed] Article available free on PMC after 15/05/2015 Related Publications
Docetaxel is used as a standard treatment in patients with metastatic castration-resistant prostate cancer. However, a large subset of patients develops resistance. Understanding resistance mechanisms, which are largely unknown, will allow identification of predictive biomarkers and therapeutic targets. We established resistant IGR-CaP1 prostate cancer cell lines for different doses of Docetaxel. We investigated gene expression profiles by microarray analyses in these cell lines and generated a signature of 99 highly differentially expressed genes potentially implicated in chemoresistance. We focused on the role of the cell cycle regulator LZTS1, which was under-expressed in the Docetaxel-resistant cell lines, its inhibition resulting from the promoter methylation. Knockdown of LZTS1 in parental cells with siRNA showed that LZTS1 plays a role in the acquisition of the resistant phenotype. Furthermore, we observed that targeting CDC25C, a partner of LZTS1, with the NSC663284 inhibitor specifically killed the Docetaxel-resistant cells. To further investigate the role of CDC25C, we used inhibitors of the mitotic kinases that regulate CDC25C. Inhibition of CHEK1 and PLK1 induced growth arrest and cell death in the resistant cells. Our findings identify an important role of LZTS1 through its regulation of CDC25C in Docetaxel resistance in prostate cancer and suggest that CDC25C, or the mitotic kinases CHEK1 and PLK1, could be efficient therapeutic targets to overcome Docetaxel resistance.

Grabocka E, Pylayeva-Gupta Y, Jones MJ, et al.
Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response.
Cancer Cell. 2014; 25(2):243-56 [PubMed] Article available free on PMC after 15/05/2015 Related Publications
Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anticancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here, we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways and, consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo.

Mochmann LH, Neumann M, von der Heide EK, et al.
ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells.
Oncotarget. 2014; 5(2):351-62 [PubMed] Article available free on PMC after 15/05/2015 Related Publications
Overexpression of the oncogene ERG (ETS-related gene) is an adverse prognostic factor in acute myeloid and T-cell lymphoblastic leukemia (AML and T-ALL). We hypothesize that ERG overexpression is associated with primary drug resistance thereby influencing the outcome in leukemia. We previously reported a cell-line based model of ERG overexpression which induced a potentially chemo-resistant spindle shape cell type. Herein, we report a specific transcriptional gene signature for the observed spindle shaped morphology. Genes significantly over-expressed after ERG induction strongly resembled adhesive mesenchymal-like genes that included integrins (ITGA10, ITGB5, ITGB3, ITGA2B), CD44, and CD24. Interestingly, the mesenchymal-like signature was accompanied by the repression of DNA chromatin remodeling and DNA repair genes, such as CHEK1, EZH2, SUZ12, and DNMT3a. The ERG-induced mesenchymal-like signature positively correlated with TMPRSS2-ERG prostate tissues and invasive breast cancer mRNA expression datasets reflecting a general ERG-driven pattern of malignancy. Furthermore, inhibitors modulating ERG druggable pathways WNT, PKC, and AKT, and chemotherapeutic agent cytarabine revealed ERG-induced drug resistance. In particular, PKC412 treatment enhanced proliferative rates and promoted spindle shape formation in ERG-induced cells. Nilotinib and dasatinib were effective at abolishing ERG-induced cells. Moreover, ERG overexpression also led to an increase in double strand breaks. This report provides mechanistic clues into ERG-driven drug resistance in the poor prognostic group of high ERG expressers, provides insight to improved drug targeted therapies, and provides novel markers for a mesenchymal-like state in acute leukemia.

Singh R, Kalra RS, Hasan K, et al.
Molecular characterization of collaborator of ARF (CARF) as a DNA damage response and cell cycle checkpoint regulatory protein.
Exp Cell Res. 2014; 322(2):324-34 [PubMed] Related Publications
CARF is an ARF-binding protein that has been shown to regulate the p53-p21-HDM2 pathway. CARF overexpression was shown to cause growth arrest of human cancer cells and premature senescence of normal cells through activation of the p53 pathway. Because replicative senescence involves permanent withdrawal from the cell cycle in response to DNA damage response-mediated signaling, in the present study we investigated the relationship between CARF and the cell cycle and whether it is involved in the DNA damage response. We demonstrate that the half-life of CARF protein is less than 60 min, and that in cycling cells CARF levels are highest in G2 and early prophase. Serially passaged normal human skin and stromal fibroblasts showed upregulation of CARF during replicative senescence. Induction of G1 growth arrest and senescence by a variety of drugs was associated with increase in CARF expression at the transcriptional and translational level and was seen to correlate with increase in DNA damage response and checkpoint proteins, ATM, ATR, CHK1, CHK2, γH2AX, p53 and p21. Induction of growth arrest by oncogenic RAS and shRNA-mediated knockdown of TRF2 in cancer cells also caused upregulation of CARF. We conclude that CARF is associated with DNA damage response and checkpoint signaling pathways.

Islam MA, Thomas SD, Murty VV, et al.
c-Myc quadruplex-forming sequence Pu-27 induces extensive damage in both telomeric and nontelomeric regions of DNA.
J Biol Chem. 2014; 289(12):8521-31 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
Quadruplex-forming DNA sequences are present throughout the eukaryotic genome, including in telomeric DNA. We have shown that the c-Myc promoter quadruplex-forming sequence Pu-27 selectively kills transformed cells (Sedoris, K. C., Thomas, S. D., Clarkson, C. R., Muench, D., Islam, A., Singh, R., and Miller, D. M. (2012) Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol. Cancer Ther. 11, 66-76). In this study, we show that Pu-27 induces profound DNA damage, resulting in striking chromosomal abnormalities in the form of chromatid or chromosomal breaks, radial formation, and telomeric DNA loss, which induces γ-H2AX in U937 cells. Pu-27 down-regulates telomeric shelterin proteins, DNA damage response mediators (RAD17 and RAD50), double-stranded break repair molecule 53BP1, G2 checkpoint regulators (CHK1 and CHK2), and anti-apoptosis gene survivin. Interestingly, there are no changes of DNA repair molecules H2AX, BRCA1, and the telomere maintenance gene, hTERT. ΔB-U937, where U937 cells stably transfected with deleted basic domain of TRF2 is partially sensitive to Pu-27 but exhibits no changes in expression of shelterin proteins. However, there is an up-regulation of CHK1, CHK2, H2AX, BRCA1, and survivin. Telomere dysfunction-induced foci assay revealed co-association of TRF1with γ-H2AX in ATM deficient cells, which are differentially sensitive to Pu-27 than ATM proficient cells. Alt (alternating lengthening of telomere) cells are relatively resistant to Pu-27, but there are no significant changes of telomerase activity in both Alt and non-Alt cells. Lastly, we show that this Pu-27-mediated sensitivity is p53-independent. The data therefore support two conclusions. First, Pu-27 induces DNA damage within both telomeric and nontelomeric regions of the genome. Second, Pu-27-mediated telomeric damage is due, at least in part, to compromise of the telomeric shelterin protein complex.

Xie Y, Wei RR, Huang GL, et al.
Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma.
Med Oncol. 2014; 31(3):844 [PubMed] Related Publications
Checkpoint kinase 1 (CHEK1) is an evolutionarily conserved Ser/Thr kinase, which mediates cell-cycle arrest after DNA damage, and we previously reported that CHEK1 was overexpressed and associated with poor prognosis in hepatocellular carcinoma (HCC), indicating it was oncogenic gene. In this study, we aimed to elucidate the mechanism of CHEK1 overexpression in HCC. We first verified the upregulated CHEK1 by qRT-PCR and western blot in 30 HCC samples compared with corresponding non-tumor liver tissues. In silico analysis showed that CHEK1 was a candidate target of miR-497, which was previously found to be downregulated in HCC by us. To test whether miR-497 could bind to 3'untranslated region (3'UTR) of CHEK1, luciferase reporter assay was conducted. The result revealed that miR-497 could bind to the 3'untranslated region (3'UTR) of CHEK1 mRNA. Western blot showed that ectopic expression of miR-497 suppressed the CHEK1 expression and inhibition of miR-497 led to significant upregulation of CHEK1. Finally, miR-497 expression was measured in the same 30 HCC samples, and the correlation between miR-497 and CHEK1 was analyzed. The results indicated that miR-497 was downregulated in HCC and had a significant negative correlation with CHEK1. Taken together, these results demonstrated that CHEK1 was negatively regulated by miR-497, and the overexpressed CHEK1 was resulted from the downregulated miR-497 in HCC, which provided a potential molecular target for HCC therapy.

Bélanger F, Rajotte V, Drobetsky EA
A majority of human melanoma cell lines exhibits an S phase-specific defect in excision of UV-induced DNA photoproducts.
PLoS One. 2014; 9(1):e85294 [PubMed] Article available free on PMC after 21/03/2015 Related Publications
It is well established that efficient removal of highly-promutagenic UV-induced dipyrimidine photoproducts via nucleotide excision repair (NER) is required for protection against sunlight-associated malignant melanoma. Nonetheless, the extent to which reduced NER capacity might contribute to individual melanoma susceptibility in the general population remains unclear. Here we show that among a panel of 14 human melanoma strains, 11 exhibit significant inhibition of DNA photoproduct removal during S phase relative to G0/G1 or G2/M. Evidence is presented that this cell cycle-specific NER defect correlates with enhanced apoptosis and reduced clonogenic survival following UV irradiation. In addition, melanoma strains deficient in S phase-specific DNA photoproduct removal manifest significantly lower levels of phosphorylated histone H2AX at 1 h post-UV, suggesting diminished activation of ataxia telangiectasia and Rad 3-related (ATR) kinase, i.e., a primary orchestrator of the cellular response to UV-induced DNA replication stress. Consistently, in the case of DNA photoproduct excision-proficient melanoma cells, siRNA-mediated depletion of ATR (but not of its immediate downstream effector kinase Chk1) engenders deficient NER specifically during S. On the other hand simultaneous siRNA-mediated depletion of ataxia telangiectasia mutated kinase (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exerts no significant effect on either phosphorylation of H2AX at 1 h post-UV or the efficiency of DNA photoproduct removal. Our data suggest that defective NER exclusively during S phase, possibly associated with decreased ATR signaling, may constitute an heretofore unrecognized determinant in melanoma pathogenesis.

Lin ZP, Ratner ES, Whicker ME, et al.
Triapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors.
Mol Cancer Res. 2014; 12(3):381-93 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
UNLABELLED: PARP inhibitors exploit synthetic lethality to target epithelial ovarian cancer (EOC) with hereditary BRCA mutations and defects in homologous recombination repair (HRR). However, such an approach is limited to a small subset of EOC patients and compromised by restored HRR due to secondary mutations in BRCA genes. Here, it was demonstrated that triapine, a small-molecule inhibitor of ribonucleotide reductase, enhances the sensitivity of BRCA wild-type EOC cells to the PARP inhibitor olaparib and the topoisomerase II inhibitor etoposide. Triapine abolishes olaparib-induced BRCA1 and Rad51 foci, and disrupts the BRCA1 interaction with the Mre11-Rad50-Nbs1 (MRN) complex in BRCA1 wild-type EOC cells. It has been shown that phosphorylation of CtIP (RBBP8) is required for the interaction with BRCA1 and with MRN to promote DNA double-strand break (DSB) resection during S and G(2) phases of the cell cycle. Mechanistic studies within reveal that triapine inhibits cyclin-dependent kinase (CDK) activity and blocks olaparib-induced CtIP phosphorylation through Chk1 activation. Furthermore, triapine abrogates etoposide-induced CtIP phosphorylation and DSB resection as evidenced by marked attenuation of RPA32 phosphorylation. Concurrently, triapine obliterates etoposide-induced BRCA1 foci and sensitizes BRCA1 wild-type EOC cells to etoposide. Using a GFP-based HRR assay, it was determined that triapine suppresses HRR activity induced by an I-SceI-generated DSB. These results suggest that triapine augments the sensitivity of BRCA wild-type EOC cells to drug-induced DSBs by disrupting CtIP-mediated HRR.
IMPLICATIONS: These findings provide a strong rationale for combining triapine with PARP or topoisomerase inhibitors to target HRR-proficient EOC cells.

Li IC, Chiu CY, Wu CL, et al.
A dual-fluorescent reporter facilitates identification of thiol compounds that suppress microsatellite instability induced by oxidative stress.
Free Radic Biol Med. 2014; 69:86-95 [PubMed] Related Publications
The DNA mismatch-repair (MMR) system corrects replicative errors and minimizes mutations that occur at a high rate in microsatellites. Patients with chronic inflammation or inflammation-associated cancer display microsatellite instability (MSI), indicating a possible MMR inactivation. In fact, H2O2-generated oxidative stress inactivates the MMR function and increases mutation accumulation in a reporter microsatellite. However, it remains unclear whether MSI induced by oxidative stress is preventable because of the lack of a sufficiently sensitive detection assay. Here, we developed and characterized a dual-fluorescent system, utilizing DsRed harboring the (CA)13 microsatellite as a reporter and GFP for normalization, in near-isogenic human colorectal cancer cell lines. Via flow cytometry, this reporter sensitively detected H2O2-generated oxidative microsatellite mutations in a dose-dependent manner. The reporter further revealed that glutathione or N-acetylcysteine was better than aspirin and ascorbic acid for suppressing oxidative microsatellite mutations. These two thiol compounds also partially suppressed oxidative frameshift mutations in the coding microsatellites of the hMSH6 and CHK1 genes based on a fluoresceinated PCR-based assay. MSI suppression by N-acetylcysteine appears to be mediated through reduction of oxidative frameshift mutations in the coding microsatellite of hMSH6 and protection of hMSH6 and other MMR protein levels from being decreased by H2O2. Our findings suggest a linkage between oxidative damage, MMR deficiency, and MSI. The two thiol compounds are potentially valuable for preventing inflammation-associated MSI. The dual-fluorescent reporter with improved features will facilitate identification of additional compounds that modulate MSI, which is relevant to cancer initiation and progression.

Sankunny M, Parikh RA, Lewis DW, et al.
Targeted inhibition of ATR or CHEK1 reverses radioresistance in oral squamous cell carcinoma cells with distal chromosome arm 11q loss.
Genes Chromosomes Cancer. 2014; 53(2):129-43 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Oral squamous cell carcinoma (OSCC), a subset of head and neck squamous cell carcinoma (HNSCC), is the eighth most common cancer in the U.S.. Amplification of chromosomal band 11q13 and its association with poor prognosis has been well established in OSCC. The first step in the breakage-fusion-bridge (BFB) cycle leading to 11q13 amplification involves breakage and loss of distal 11q. Distal 11q loss marked by copy number loss of the ATM gene is observed in 25% of all Cancer Genome Atlas (TCGA) tumors, including 48% of HNSCC. We showed previously that copy number loss of distal 11q is associated with decreased sensitivity (increased resistance) to ionizing radiation (IR) in OSCC cell lines. We hypothesized that this radioresistance phenotype associated with ATM copy number loss results from upregulation of the compensatory ATR-CHEK1 pathway, and that knocking down the ATR-CHEK1 pathway increases the sensitivity to IR of OSCC cells with distal 11q loss. Clonogenic survival assays confirmed the association between reduced sensitivity to IR in OSCC cell lines and distal 11q loss. Gene and protein expression studies revealed upregulation of the ATR-CHEK1 pathway and flow cytometry showed G2 M checkpoint arrest after IR treatment of cell lines with distal 11q loss. Targeted knockdown of the ATR-CHEK1 pathway using CHEK1 or ATR siRNA or a CHEK1 small molecule inhibitor (SMI, PF-00477736) resulted in increased sensitivity of the tumor cells to IR. Our results suggest that distal 11q loss is a useful biomarker in OSCC for radioresistance that can be reversed by ATR-CHEK1 pathway inhibition.

Hu Z, Zhang D, Hao J, et al.
Induction of DNA damage and p21-dependent senescence by Riccardin D is a novel mechanism contributing to its growth suppression in prostate cancer cells in vitro and in vivo.
Cancer Chemother Pharmacol. 2014; 73(2):397-407 [PubMed] Related Publications
PURPOSE: Our previous studies had shown that Riccardin D (RD) exhibited cytotoxic effects by induction of apoptosis and inhibition of angiogenesis and topoisomerase II. Here, we reported that apoptosis is not the sole mechanism by which RD inhibits tumor cell growth because low concentrations of RD caused cellular senescence in prostate cancer (PCa) cells.
METHODS: Low concentrations of RD were used to treat PCa cells in vitro and in vivo, and senescence-associated β-galactosidase activity, DNA damage response markers, and/or colony-forming ability, cell cycle were analyzed, respectively. We then used siRNA knockdown to identify key factor in RD-triggered cellular senescence.
RESULTS: RD treatment caused growth arrest at G0/G1 phase with features of cellular senescence phenotype such as enlarged and flattened morphology, increased senescence-associated-beta-galactosidase staining cells, and decreased cell proliferation in PCa cells. Induction of cellular senescence by RD occurred through activation of DNA damage response including increases in the phosphor-H2AX, inactivation of Chk1/2, and suppression of repair-related Ku70/86 and phosphor-BRCA1 in PCa cells in vitro and in vivo. Analysis of expression levels of p53, p21(CIP1), p16(INK4a), p27(KIP1), pRb and E2F1 and genetic knockdown of p21(CIP1) demonstrated an important role of p21(CIP1) in RD-triggered cellular senescence.
CONCLUSIONS: Involvement of the DNA damage response and p21(CIP1) defines a novel mechanism of RD action and indicates that RD could be further developed as a promising anticancer agent for cancer therapy.

Choi JW, Schroeder MA, Sarkaria JN, Bram RJ
Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.
Cancer Res. 2014; 74(2):484-96 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

Yang CF, Peng LX, Huang TJ, et al.
Cancer stem-like cell characteristics induced by EB virus-encoded LMP1 contribute to radioresistance in nasopharyngeal carcinoma by suppressing the p53-mediated apoptosis pathway.
Cancer Lett. 2014; 344(2):260-71 [PubMed] Related Publications
Emerging evidence confirms that cancer stem cells (CSCs) are responsible for the chemoradioresistance of malignancies. EBV-encoded latent membrane protein 1 (LMP1) is associated with tumor relapse and poor prognosis of nasopharyngeal carcinoma (NPC). However, whether LMP1 induces the development of CSCs and the mechanism by which this rare cell subpopulation leads to radioresistance in NPC remain unclear. In the present study, LMP1-transformed NPC cells showed significant radioresistance compared to the empty vector control. We found that LMP1 up-regulated the expression of several stemness-related genes, increased the cell number of side population (SP) by flow cytometry analysis, enhanced the self-renewal properties of the cells in a spherical culture and enhanced the in vivo tumor initiation ability. We also found that LMP1 positively regulated the expression of the CSC marker CD44. The CD44(+/High) subpopulation of the LMP1-transformed NPC cells displayed more significant CSC characteristics than the CD44(-/Low) subpopulation of the LMP1-transformed NPC cells; these characteristics included the upregulation of stemness-related genes, in vitro self-renewal and in vivo tumor initiation ability. Importantly, the CD44(+/High) subpopulation displayed more radioresistance than the CD44(-/Low) subpopulation. Our results also demonstrated that phosphorylation of the DNA damage response (DDR) proteins, ATM, Chk1, Chk2 and p53, was inactivated in the LMP1-induced CD44(+/High) cells in response to DNA damage, and this was accompanied by a downregulation of the p53-targeted proapoptotic genes, which suggested that the inactivation of the p53-mediated apoptosis pathway was responsible for the radioresistance in the CD44(+/High) cells. Taken together, we found that LMP1 induced an increase in CSC-like CD44(+/High) cells, and we determined the molecular mechanism underlying the radioresistance of the LMP1-activated CSCs, highlighting the need of CSC-targeted radiotherapy in EBV-positive NPC.

Xie C, Drenberg C, Edwards H, et al.
Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51.
PLoS One. 2013; 8(11):e79106 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Acute myeloid leukemia (AML) remains a challenging disease to treat and urgently requires new therapies to improve its treatment outcome. In this study, we investigated the molecular mechanisms underlying the cooperative antileukemic activities of panobinostat and cytarabine or daunorubicin (DNR) in AML cell lines and diagnostic blast samples in vitro and in vivo. Panobinostat suppressed expression of BRCA1, CHK1, and RAD51 in AML cells in a dose-dependent manner. Further, panobinostat significantly increased cytarabine- or DNR-induced DNA double-strand breaks and apoptosis, and abrogated S and/or G2/M cell cycle checkpoints. Analogous results were obtained by shRNA knockdown of BRCA1, CHK1, or RAD51. Cotreatment of NOD-SCID-IL2Rγ(null) mice bearing AML xenografts with panobinostat and cytarabine significantly increased survival compared to either cytarabine or panobinostat treatment alone. Additional studies revealed that panobinostat suppressed the expression of BRCA1, CHK1, and RAD51 through downregulation of E2F1 transcription factor. Our results establish a novel mechanism underlying the cooperative antileukemic activities of these drug combinations in which panobinostat suppresses expression of BRCA1, CHK1, and RAD51 to enhance cytarabine and daunorubicin sensitivities in AML cells.

Pennington KP, Walsh T, Harrell MI, et al.
Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas.
Clin Cancer Res. 2014; 20(3):764-75 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
PURPOSE: Hallmarks of germline BRCA1/2-associated ovarian carcinomas include chemosensitivity and improved survival. The therapeutic impact of somatic BRCA1/2 mutations and mutations in other homologous recombination DNA repair genes is uncertain.
EXPERIMENTAL DESIGN: Using targeted capture and massively parallel genomic sequencing, we assessed 390 ovarian carcinomas for germline and somatic loss-of-function mutations in 30 genes, including BRCA1, BRCA2, and 11 other genes in the homologous recombination pathway.
RESULTS: Thirty-one percent of ovarian carcinomas had a deleterious germline (24%) and/or somatic (9%) mutation in one or more of the 13 homologous recombination genes: BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK1, CHEK2, FAM175A, MRE11A, NBN, PALB2, RAD51C, and RAD51D. Nonserous ovarian carcinomas had similar rates of homologous recombination mutations to serous carcinomas (28% vs. 31%, P = 0.6), including clear cell, endometrioid, and carcinosarcoma. The presence of germline and somatic homologous recombination mutations was highly predictive of primary platinum sensitivity (P = 0.0002) and improved overall survival (P = 0.0006), with a median overall survival of 66 months in germline homologous recombination mutation carriers, 59 months in cases with a somatic homologous recombination mutation, and 41 months for cases without a homologous recombination mutation.
CONCLUSIONS: Germline or somatic mutations in homologous recombination genes are present in almost one third of ovarian carcinomas, including both serous and nonserous histologies. Somatic BRCA1/2 mutations and mutations in other homologous recombination genes have a similar positive impact on overall survival and platinum responsiveness as germline BRCA1/2 mutations. The similar rate of homologous recombination mutations in nonserous carcinomas supports their inclusion in PARP inhibitor clinical trials.

Carminati PO, Donaires FS, Marques MM, et al.
Cisplatin associated with LY294002 increases cytotoxicity and induces changes in transcript profiles of glioblastoma cells.
Mol Biol Rep. 2014; 41(1):165-77 [PubMed] Related Publications
Glioblastoma, one of the deadliest forms of brain tumor, responds poorly to available therapies. This highlights the intense search for new treatment approaches, and an emerging strategy is based on molecular targets. In the present work, we aimed to study whether glioblastoma cells can be sensitized by cisplatin combined with LY294002 (LY), which is an inhibitor of PI3K-related family (ATM, ATR, DNA-PK). We observed that cisplatin caused a pronounced reduction in cell proliferation in U343 and U87 cells, and LY significantly increased the cytotoxic effects caused by cisplatin under these conditions. Differently of U343, U87 cells did not show a significant induction of apoptosis. The phosphorylation level of damage response proteins was analyzed after drug-treatment either with/without LY. The presence of γH2AX foci and phosphorylation of TP53(ser15) and CHK1(ser317) were shown in U343 cells, compatible with cisplatin-induced DNA damage. Similarly, the level of ATR phosphorylation (ser428) was also increased (24 h). The transcript expression profiles of drug-treated compared with untreated U343 cells showed significant changes in the expression of 108 genes, while 274 genes were modulated by cisplatin+LY. The combined treatment caused a high proportion of down-regulated genes, which were mainly involved with DNA repair, cell death and cell cycle control/proliferation, metabolism, transcription regulation and cellular adhesion. Altogether, the present results indicate that most probably, PI3K-related kinases may play an important role in the resistance of glioblastomas cells to cisplatin, and the combination with LY can, at least in part, sensitize these cells to drug treatment.

Valero ML, Cimas FJ, Arias L, et al.
E1a promotes c-Myc-dependent replicative stress: implications in glioblastoma radiosensitization.
Cell Cycle. 2014; 13(1):52-61 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The E1a gene from adenovirus is known to be a potent inducer of chemo/radiosensitivity in a wide range of tumors. However, the molecular bases of its radiosensitizer properties are still poorly understood. In an attempt to study this effect, U87MG cells, derived from a radio-resistant tumor as glioblastoma, where infected with lentivirus carrying E1a gene developing an acute sensitivity to ionizing radiation. The induction of radiosensitivity correlated with a marked G 2/M phase accumulation and a potent apoptotic response. Our findings demonstrate that c-Myc plays a pivotal role in E1a-associated radiosensitivity through the induction of a replicative stress situation, as our data support by genetic approaches, based in interference and overexpression in U87MG cells. In fact, we present evidence showing that Chk1 is a novel transcriptional target of E1a gene through the effect exerted by this adenoviral protein onto c-Myc. Moreover, c-Myc upregulation also explains the marked phosphorylation of H2AX associated to E1a expression in the absence of DNA damage. Indeed, all these observations were applicable to other experimental models, such as T98G, LN-405 and A172, rendering the same pattern in terms of radiosensitivity, cell cycle distribution, upregulation of Chk1, c-Myc, and phosphorylation pattern of H2AX. In summary, our data propose a novel mechanism to explain how E1a mediates radiosensitivity through the signaling axis E1a→c-Myc→ replicative stress situation. This novel mechanism of E1a-mediated radiosensitivity could be the key to open new possibilities in the current therapy of glioblastoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CHEK1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999