RAC1

Gene Summary

Gene:RAC1; ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
Aliases: MIG5, Rac-1, TC-25, p21-Rac1
Location:7p22
Summary:The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:ras-related C3 botulinum toxin substrate 1
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (81)
Pathways:What pathways are this gene/protein implicaed in?
Show (35)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Glioblastoma
  • Messenger RNA
  • NIH 3T3 Cells
  • Down-Regulation
  • Neoplastic Cell Transformation
  • Tumor Suppressor Proteins
  • RNA Interference
  • Tumor Markers
  • Protein-Serine-Threonine Kinases
  • Breast Cancer
  • p21-Activated Kinases
  • Cell Movement
  • Cytoskeleton
  • Signal Transduction
  • Lung Cancer
  • RAC1
  • Neoplasm Metastasis
  • Phosphatidylinositol 3-Kinases
  • Cell Adhesion
  • Colorectal Cancer
  • Brain Tumours
  • Guanine Nucleotide Exchange Factors
  • Chromosome 7
  • Gene Expression Profiling
  • Cancer Gene Expression Regulation
  • Apoptosis
  • Cell Proliferation
  • Molecular Sequence Data
  • Enzyme Activation
  • Mutation
  • Phosphorylation
  • Gene Knockdown Techniques
  • GTPase-Activating Proteins
  • Cell Line
  • Immunohistochemistry
  • Western Blotting
  • Brain Tumours
  • siRNA
  • Protein Binding
  • Actins
  • AKT1
  • Neoplasm Invasiveness
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAC1 (cancer-related)

Wu CY, Carpenter ES, Takeuchi KK, et al.
PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice.
Gastroenterology. 2014; 147(6):1405-16.e7 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND & AIMS: New drug targets are urgently needed for the treatment of patients with pancreatic ductal adenocarcinoma (PDA). Nearly all PDAs contain oncogenic mutations in the KRAS gene. Pharmacological inhibition of KRAS has been unsuccessful, leading to a focus on downstream effectors that are more easily targeted with small molecule inhibitors. We investigated the contributions of phosphoinositide 3-kinase (PI3K) to KRAS-initiated tumorigenesis.
METHODS: Tumorigenesis was measured in the Kras(G12D/+);Ptf1a(Cre/+) mouse model of PDA; these mice were crossed with mice with pancreas-specific disruption of genes encoding PI3K p110α (Pik3ca), p110β (Pik3cb), or RAC1 (Rac1). Pancreatitis was induced with 5 daily intraperitoneal injections of cerulein. Pancreata and primary acinar cells were isolated; acinar cells were incubated with an inhibitor of p110α (PIK75) followed by a broad-spectrum PI3K inhibitor (GDC0941). PDA cell lines (NB490 and MiaPaCa2) were incubated with PIK75 followed by GDC0941. Tissues and cells were analyzed by histology, immunohistochemistry, quantitative reverse-transcription polymerase chain reaction, and immunofluorescence analyses for factors involved in the PI3K signaling pathway. We also examined human pancreas tissue microarrays for levels of p110α and other PI3K pathway components.
RESULTS: Pancreas-specific disruption of Pik3ca or Rac1, but not Pik3cb, prevented the development of pancreatic tumors in Kras(G12D/+);Ptf1a(Cre/+) mice. Loss of transformation was independent of AKT regulation. Preneoplastic ductal metaplasia developed in mice lacking pancreatic p110α but regressed. Levels of activated and total RAC1 were higher in pancreatic tissues from Kras(G12D/+);Ptf1a(Cre/+) mice compared with controls. Loss of p110α reduced RAC1 activity and expression in these tissues. p110α was required for the up-regulation and activity of RAC guanine exchange factors during tumorigenesis. Levels of p110α and RAC1 were increased in human pancreatic intraepithelial neoplasias and PDAs compared with healthy pancreata.
CONCLUSIONS: KRAS signaling, via p110α to activate RAC1, is required for transformation in Kras(G12D/+);Ptf1a(Cre/+) mice.

Sun Q, Zhao X, Liu X, et al.
miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1.
Prostate. 2014; 74(16):1613-21 [PubMed] Related Publications
BACKGROUND: miR-146a (miR-146a-5p) has been reported to be aberrantly expressed in different types of cancers, the current knowledge about the role of miR-146a in prostate cancer is still limited.
METHODS: The expression levels of miR-146a in cell lines and tissues were measured by qRT-PCR and in situ hybridization. Effects of miR-146a on cell growth and migration were evaluated by colony formation assay and RTCA assay, respectively. The dual luciferase assay was used to examine the binding between miR-146a and the 3'UTR of potential targets.
RESULTS: We found that enforced over-expression of miR-146a in prostate cancer cells suppressed whereas knockdown of miR-146a increased anchorage-independent growth, migration, and invasion. Mechanistic studies revealed that miR-146a repressed the expression of Rac1 through binding to its 3'UTR. Consistently, knockdown of Rac1 phenocopied the anti-migration effect of overexpressing miR-146a, and knockdown of Rac1 in miR-146a-silencing cells antagonized the increase in cell motility induced by silencing miR-146a. Furthermore, miR-146a was found to be inversely correlated with Rac1 in human prostate cancer tissues.
CONCLUSIONS: Our data suggest that miR-146a plays a suppressive role in prostate cancer through down-regulation of Rac1. The miR-146a/Rac1 signaling axis may be a potential therapeutic target to prevent prostate cancer progression.

Kenny HA, Chiang CY, White EA, et al.
Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion.
J Clin Invest. 2014; 124(10):4614-28 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Ovarian cancer (OvCa) metastasizes to organs in the abdominal cavity, such as the omentum, which are covered by a single layer of mesothelial cells. Mesothelial cells are generally thought to be "bystanders" to the metastatic process and simply displaced by OvCa cells to access the submesothelial extracellular matrix. Here, using organotypic 3D cultures, we found that primary human mesothelial cells secrete fibronectin in the presence of OvCa cells. Moreover, we evaluated the tumor stroma of 108 human omental metastases and determined that fibronectin was consistently overexpressed in these patients. Blocking fibronectin production in primary mesothelial cells in vitro or in murine models, either genetically (fibronectin 1 floxed mouse model) or via siRNA, decreased adhesion, invasion, proliferation, and metastasis of OvCa cells. Using a coculture model, we determined that OvCa cells secrete TGF-β1, which in turn activates a TGF-β receptor/RAC1/SMAD-dependent signaling pathway in the mesothelial cells that promotes a mesenchymal phenotype and transcriptional upregulation of fibronectin. Additionally, blocking α5 or β1 integrin function with antibodies reduced metastasis in an orthotopic preclinical model of OvCa metastasis. These findings indicate that cancer-associated mesothelial cells promote colonization during the initial steps of OvCa metastasis and suggest that mesothelial cells actively contribute to metastasis.

Fukui Y
Mechanisms behind signet ring cell carcinoma formation.
Biochem Biophys Res Commun. 2014; 450(4):1231-3 [PubMed] Related Publications
Signet ring cell carcinomas are highly malignant dedifferentiated adenocarcinomas. There are no cell-cell interactions between these round-shaped cells. They contain huge numbers of vacuoles, filled with mucins, which are secreted from the cells. The mechanism behind this phenotype has recently begun to be elucidated. In highly differentiated adenocarcinomas the ErbB2/ErbB3 complex is activated, which is followed by phosphatidylinositol 3-kinase (PI3K) activation. p38 MAP kinase is activated downstream of PI3K and adherens junctions are disrupted via Rac1 activation. Loss of adherens junctions leads to the disappearance of tight junctions, which results in a loss of cell-cell interactions. Secretion of mucin is enhanced by activation of PI3K. One of the mucins - Muc4 - can activate ErbB2. Under normal conditions Muc4 and ErbB2 are separated by adherens and tight junctions, however in signet ring cells they are able to interact, since these junctions have been lost. Therefore, an activation loop is formed, consisting of ERbB2/ErbB3-Muc4-ErbB2/ErbB3. As a result, the ErbB2/ErbB3 signaling pathway becomes constitutively activated, cell-cell interactions are lost, and signet ring carcinomas are formed. As a result of constitutive activation of the ErbB2/ErbB3 complex, cell growth is continuously enhanced. Some signet ring cell carcinomas have been found to have mutations in the E-cadherin gene, which fits the above hypothesis.

Chen S, Li C, Wu B, et al.
Identification of differentially expressed genes and their subpathways in recurrent versus primary bone giant cell tumors.
Int J Oncol. 2014; 45(3):1133-42 [PubMed] Related Publications
Giant cell tumor (GCT) of the bone is a benign but locally aggressive bone neoplasm with a strong tendency to develop local recurrent and metastatic disease. Thus, it provides a useful model system for the identification of biological mechanisms involved in bone tumor progression and metastasis. This study profiled 24 cases of recurrent versus primary bone GCT tissues using QuantiGene 2.0 Multiplex Arrays that included Human p53 80-Plex Panels and Human Stem Cell 80-Plex Panels. A total of 32 differentially expressed genes were identified, including the 20 most upregulated genes and the 12 most downregulated genes in recurrent GCT. The genes identified are related to cell growth, adhesion, apoptosis, signal transduction and bone formation. Furthermore, iSubpathwayMiner analyses were performed to identify significant biological pathway regions (subpathway) associated with this disease. The pathway analysis identified 11 statistically significant enriched subpathways, including pathways in cancer, p53 signaling pathway, osteoclast differentiation pathway and Wnt signaling pathway. Among these subpathways, four genes (IGF1, MDM2, STAT1 and RAC1) were presumed to play an important role in bone GCT recurrence. The differentially expressed MDM2 protein was immunohistochemically confirmed in the recurrent versus primary bone GCT tissues. This study identified differentially expressed genes and their subpathways in recurrent GCT, which may serve as potential biomarkers for the prediction of GCT recurrence.

Oppelt A, Haugsten EM, Zech T, et al.
PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1.
Biochem J. 2014; 461(3):383-90 [PubMed] Related Publications
Previously, we have shown that the phosphoinositide metabolizing enzymes PIKfyve (phosphoinositide 5-kinase, FYVE finger containing) and MTMR3 (myotubularin-related protein 3), together with their lipid product PtdIns5P, are important for migration of normal human fibroblasts. As these proteins are a kinase and a phosphatase respectively, and thereby considered druggable, we wanted to test their involvement in cancer cell migration and invasion. First, we showed that PIKfyve and MTMR3 are expressed in most cancer cells. Next, we demonstrated that depletion of PIKfyve or MTMR3 resulted in decreased velocity in three different cancer cell lines by using new software for cell tracking. Inhibition of the enzymatic activity of PIKfyve by the inhibitor YM201636 also led to a strong reduction in cell velocity. Mechanistically, we show that PIKfyve and MTMR3 regulate the activation of the Rho family GTPase Rac1. Further experiments also implicated PtdIns5P in the activation of Rac1. The results suggest a model for the activation of Rac1 in cell migration where PIKfyve and MTMR3 produce PtdIns5P on cellular membranes which may then serve to recruit effectors to activate Rac1. Finally, in an invasion assay, we demonstrate that both PIKfyve and MTMR3 are implicated in invasive behaviour of cancer cells. Thus PIKfyve and MTMR3 could represent novel therapeutic targets in metastatic cancer.

Xiao Y, Lin VY, Ke S, et al.
14-3-3τ promotes breast cancer invasion and metastasis by inhibiting RhoGDIα.
Mol Cell Biol. 2014; 34(14):2635-49 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
14-3-3τ is frequently overexpressed in breast cancer; however, whether it contributes to breast cancer progression remains undetermined. Here, we identify a critical role for 14-3-3τ in promoting breast cancer metastasis, in part through binding to and inhibition of RhoGDIα, a negative regulator of Rho GTPases and a metastasis suppressor. 14-3-3τ binds Ser174-phosphorylated RhoGDIα and blocks its association with Rho GTPases, thereby promoting epidermal growth factor (EGF)-induced RhoA, Rac1, and Cdc42 activation. When 14-3-3τ is overexpressed in MCF7 breast cancer cells that express 14-3-3τ at low levels, it increases motility, reduces adhesion, and promotes metastasis in mammary fat pad xenografts. On the other hand, depletion of 14-3-3τ in MCF7 cells and in an invasive cell line, MDA-MB231, inhibits Rho GTPase activation and blocks breast cancer migration and invasion. Moreover, 14-3-3τ overexpression in human breast tumors is associated with the activation of ROCK (a Rho GTPase effector), high metastatic rate, and shorter survival, underscoring a clinically significant role for 14-3-3τ in breast cancer progression. Our work indicates that 14-3-3τ is a novel therapeutic target to prevent breast cancer metastasis.

Wang J, Dai JM, Che YL, et al.
Elmo1 helps dock180 to regulate Rac1 activity and cell migration of ovarian cancer.
Int J Gynecol Cancer. 2014; 24(5):844-50 [PubMed] Related Publications
OBJECTIVE: Engulfment and cell motility 1 (Elmo1) has been reported to cooperate with dedicator of cytokinesis 1 (Dock180) and to be linked to the invasive phenotype of cancer cells through activating small G-protein Rac. We aimed to study the role of Elmo1 in the malignant migration of ovarian cancer.
METHODS: Engulfment and cell motility 1 expression was evaluated in specimens from 93 patients with serous ovarian cancer (SOC) by immunohistochemical staining. Next, Elmo1-RNAi cells were established by validated small interference RNAs. Cell proliferation and cell motility were observed and compared with Dock180-RNAi cells. To confirm their synergetic contribution to forming focal adhesion and activating Rac1, Rac1-GTP level was measured by GST pull-down assay and immunofluorescence was used to observe focal adhesion formation both in Elmo1-RNAi and Dock180-RNAi cells.
RESULTS: Engulfment and cell motility 1 was mainly overexpressed in high-grade SOC tissues. Western blot analysis demonstrated that both Elmo1 and Dock180 expressions were hampered in Elmo1-RNAi cells. Compared with the negative control, decreased colony formation and cell invasion were observed in Elmo1-RNAi cells and Dock180-RNAi cells. Consistently, both exhibited reduced Rac1-GTP level and inhibited focal adhesion formation.
CONCLUSIONS: Engulfment and cell motility 1 presents with synergetic action in helping Dock180 to activate Rac1 and promote cell motility, and thus promote untoward expansion and aggressiveness of SOC.

Li M, Tian L, Yao H, et al.
ASAP1 mediates the invasive phenotype of human laryngeal squamous cell carcinoma to affect survival prognosis.
Oncol Rep. 2014; 31(6):2676-82 [PubMed] Related Publications
ASAP1 helps regulate cellular structures such as actin cytoskeletal remodeling and focal adhesions that have a pivotal function in tumor progression. Overexpression of ASAP1 has proven to be a malignant indicator for a variety of tumors. To further determine the potential involvement of ASAP1 in laryngeal squamous cell carcinoma (LSCC), we evaluated the expression levels of ASAP1 by quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and immunohistochemistry in tissue samples of 64 LSCC patients. We then analyzed and correlated the results with clinicopathological features. Furthermore, we used small interfering RNA (siRNA) to inhibit ASAP1 expression in vitro. The potential function of ASAP1 in invasiveness was evaluated in the Hep-2 LSCC cell line. Kaplan-Meier method was utilized to determine the association of ASAP1 expression with survival of patients. We showed that ASAP1 was upregulated in primary LSCC tumors and was correlated with lymph node metastasis and clinical tumor stage. Similarly, higher levels of ASAP1 were detected in the Hep-2 cell line compared to the 16 human bronchial epithelial (16HBE) cell line. ASAP1 expression was downregulated by lentiviral vector transfection containing siRNA in vitro. The invasive potential of these cells was found to be significantly suppressed, while expression levels of Rac1 and Cdc42 positively correlated with the inhibition of ASAP1 expression. In Kaplan-Meier overall survival curves, higher ASAP1 mRNA levels were found to be associated with a shorter progression-free survival trend. Based on these results, ASAP1 appears to contribute to the malignant mechanism of LSCC and may represent a significant prognostic marker for LSCC patients.

Skvortsov S, Dudás J, Eichberger P, et al.
Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC).
Br J Cancer. 2014; 110(11):2677-87 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
BACKGROUND: In order to improve therapy for HNSCC patients, novel methods to predict and combat local and/or distant tumour relapses are urgently needed. This study has been dedicated to the hypothesis that Rac1, a Rho GTPase, is implicated in HNSCC insensitivity to chemo-radiotherapy resulting in tumour recurrence development.
METHODS: Parental and radiation-resistant (IRR) HNSCC cells were used to support this hypothesis. All cells were investigated for their sensitivity to ionising radiation and cisplatin, Rac1 activity, its intracellular expression and subcellular localisation. Additionally, tumour tissues obtained from 60 HNSCC patients showing different therapy response were evaluated for intratumoral Rac1 expression.
RESULTS: Radiation-resistant IRR cells also revealed resistance to cisplatin accompanied by increased expression, activity and trend towards nuclear translocation of Rac1 protein. Chemical inhibition of Rac1 expression and activity resulted in significant improvement of HNSCC sensitivity to ionising radiation and cisplatin. Preclinical results were confirmed in clinical samples. Although Rac1 was poorly presented in normal mucosa, tumour tissues revealed increased Rac1 expression. The most pronounced Rac1 presence was observed in HNSCC patients with poor early or late responses to chemo-radiotherapy. Tissues taken at recurrence were characterised not only by enhanced Rac1 expression but also increased nuclear Rac1 content.
CONCLUSIONS: Increased expression, activity and subcellular localisation of Rac1 could be associated with lower early response rate and higher risk of tumour recurrences in HNSCC patients and warrants further validation in larger independent studies. Inhibition of Rac1 activity can be useful in overcoming treatment resistance and could be proposed for HNSCC patients with primary or secondary chemo-radioresistance.

Guo J, Feng XQ, Nie SM, et al.
Effect of 5-aza-2'-deoxycytidine combined with trichostatin A on RPMI-8226 cell proliferation, apoptosis and DLC-1 gene expression.
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014; 22(2):357-63 [PubMed] Related Publications
This study was aimed to investigate the effects of the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) and histone deacetylase inhibitor trichostatin A (TSA) on DLC-1 gene transcription regulation and molecular biological behaviours in the human multiple myeloma RPMI-8226 cells. The cells were treated respectively with 5-Aza-CdR and TSA alone, or the both combination; the cell proliferation and apoptosis, DLC-1 expression, the protein expression of Ras homolog family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1) were examined by CCK-8 method, RT-PCR and ELISA, respectively. The results showed that the 5-Aza-CdR and TSA had cell growth inhibitory and apoptosis-inducing effects in dose-dependent manner (P < 0.05). Compared with a single drug (5-Aza-CdR or TSA alone), the effects were significantly enhanced after treatment with the combination of 5-Aza-CdR and TSA (P < 0.05). DLC-1 was weakly expressed in the control group; the treatment with 5-Aza-CdR alone enhanced its re-expression dose-dependently (P < 0.05). Compared with 5-Aza-CdR alone, 5-Aza-CdR plus TSA enhanced DLC-1 re-expression significantly.Compared with the control, 5-Aza-CdR and TSA significantly decreased RhoA and Rac1 protein expression (P < 0.05). It is concluded that 5-Aza-CdR and TSA can effectively reverse DLC-1 expression of RPMI-8226 cells; TSA has a synergistic effect on its re-expression. 5-Aza-CdR and TSA have significant cell growth inhibitory and apoptosis-inducing effects on RPMI-8226 cells. These effects may be related to the inhibition of Rho/Rho kinase signalling pathway.

Parray A, Siddique HR, Kuriger JK, et al.
ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models.
Int J Cancer. 2014; 135(11):2493-506 [PubMed] Related Publications
High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans.

Kaneto N, Yokoyama S, Hayakawa Y, et al.
RAC1 inhibition as a therapeutic target for gefitinib-resistant non-small-cell lung cancer.
Cancer Sci. 2014; 105(7):788-94 [PubMed] Related Publications
Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKI), including gefitinib, provide a significant clinical benefit in non-small-cell lung cancer (NSCLC) patients, the acquisition of drug resistance has been known to limit the efficacy of EGFR-TKI therapy. In this study, we demonstrated the involvement of EGF-EGFR signaling in NSCLC cell migration and the requirement of RAC1 in EGFR-mediated progression of NSCLC. We showed the significant role of RAC1 pathway in the cell migration or lamellipodia formation by using gene silencing of RAC1 or induction of constitutive active RAC1 in EGFR-mutant NSCLC cells. Importantly, the RAC1 inhibition suppressed EGFR-mutant NSCLC cell migration and growth in vitro, and growth in vivo even in the gefitinib-resistant cells. In addition, these suppressions by RAC1 inhibition were mediated through MEK or PI3K independent mechanisms. Collectively, these results open up a new opportunity to control the cancer progression by targeting the RAC1 pathway to overcome the resistance to EGFR-TKI in NSCLC patients.

Romanov VS, Brichkina AI, Morrison H, et al.
Novel mechanism of JNK pathway activation by adenoviral E1A.
Oncotarget. 2014; 5(8):2176-86 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action.

Godinho SA, Picone R, Burute M, et al.
Oncogene-like induction of cellular invasion from centrosome amplification.
Nature. 2014; 510(7503):167-71 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
Centrosome amplification has long been recognized as a feature of human tumours; however, its role in tumorigenesis remains unclear. Centrosome amplification is poorly tolerated by non-transformed cells and, in the absence of selection, extra centrosomes are spontaneously lost. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumours, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumour progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behaviour is similar to that induced by overexpression of the breast cancer oncogene ERBB2 (ref. 4) and indeed enhances invasiveness triggered by ERBB2. Our data indicate that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation.

Guida M, Maraldi T, Beretti F, et al.
Nuclear Nox4-derived reactive oxygen species in myelodysplastic syndromes.
Biomed Res Int. 2014; 2014:456937 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(P)H oxidase (Nox) complexes, are frequently activated in AML (acute myeloid leukemia) blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML.

Hamamura K, Minami K, Tanjung N, et al.
Attenuation of malignant phenotypes of breast cancer cells through eIF2α-mediated downregulation of Rac1 signaling.
Int J Oncol. 2014; 44(6):1980-8 [PubMed] Related Publications
Blocking dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) is reported to alter proliferation and differentiation of various cells. Using salubrinal and guanabenz as an inhibitory agent of dephosphorylation of eIF2α, we addressed a question whether an elevated level of phosphorylated eIF2α attenuates malignant phenotypes of triple negative breast cancer cells (TNBCs) that lack estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2. We determined effects of salubrinal and guanabenz on in vitro phenotype of 4T1 mammary tumor cells and MDA-MB-231 human breast cancer cells and evaluated their effects on in vivo tumor growth using BALB/c mice injected with 4T1 cells. The results revealed that these agents block the proliferation and survival of 4T1 and MDA-MB-231 cells, as well as their invasion and motility. Silencing eIF2α revealed that eIF2α is involved in the reduction in invasion and motility. Furthermore, salubrinal-driven inactivation of Rac1 was suppressed in the cells treated with eIF2α siRNA, and treatment with Rac1 siRNA reduced cell invasion and motility. In vivo assay revealed that subcutaneous administration of salubrinal reduced the volume and weight of tumors induced by 4T1 cells. Collectively, the results indicate that these agents can attenuate malignant phenotype and tumor growth of breast cancer cells through the eIF2α-mediated Rac1 pathway. Since salubrinal and guanabenz are known to inhibit bone resorption, this study provides a potential use of eIF2α-mediated Rac1 regulation in suppressing the growth and metastasis of breast cancer.

Taddei ML, Giannoni E, Morandi A, et al.
Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells.
Cell Commun Signal. 2014; 12:24 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
BACKGROUND: Cellular plasticity confers cancer cells the ability to adapt to microenvironmental changes, a fundamental requirement for tumour progression and metastasis. The epithelial to mesenchymal transition (EMT) is a transcriptional programme associated with increased cell motility and stemness. Besides EMT, the mesenchymal to amoeboid transition (MAT) has been described during tumour progression but to date, little is known about its transcriptional control and involvement in stemness. The aim of this manuscript is to investigate (i) the transcriptional profile associated with the MAT programme and (ii) to study whether MAT acquisition in melanoma cancer cells correlates with clonogenic potential to promote tumour growth.
RESULTS: By using a multidisciplinary approach, we identified four different treatments able to induce MAT in melanoma cells: EphA2 overexpression, Rac1 functional inhibition using its RacN17 dominant negative mutant, stimulation with Ilomastat or treatment with the RhoA activator Calpeptin. First, gene expression profiling identified the transcriptional pathways associated with MAT, independently of the stimulus that induces the MAT programme. Notably, gene sets associated with the repression of mesenchymal traits, decrease in the secretion of extracellular matrix components as well as increase of cellular stemness positively correlate with MAT. Second, the link between MAT and stemness has been investigated in vitro by analysing stemness markers and clonogenic potential of melanoma cells undergoing MAT. Finally, the link between MAT inducing treatments and tumour initiating capability has been validated in vivo.
CONCLUSION: Taken together, our results demonstrate that MAT programme in melanoma is characterised by increased stemness and clonogenic features of cancer cells, thus sustaining tumour progression. Furthermore, these data suggest that stemness is not an exclusive feature of cells undergoing EMT, but more generally is associated with an increase in cellular plasticity of cancer cells.

Dong S, Zhao J, Wei J, et al.
F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation.
Mol Cancer. 2014; 13:76 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
BACKGROUND: Rac3 is a small GTPase multifunctional protein that regulates cell adhesion, migration, and differentiation. It has been considered as an oncogene in breast cancer; however, its role in esophageal cancer and the regulation of its stability have not been studied. F-box proteins are major subunits within the Skp1-Cullin-1-F-box (SCF) E3 ubiquitin ligases that recognize particular substrates for ubiquitination and proteasomal degradation. Recently, we have shown that SCFFBXL19 targets Rac1 and RhoA, thus regulating Rac1 and RhoA ubiquitination and degradation. Here, we demonstrate the role of FBXL19 in the regulation of Rac3 site-specific ubiquitination and stability. Expression of TGFβ1 is associated with poor prognosis of esophageal cancer. TGFβ1 reduces tumor suppressor, E-cadherin, expression in various epithelial-derived cancers. Here we investigate the role of FBXL19-mediated Rac3 degradation in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells.
METHODS: FBXL19-regulated endogenous and over-expressed Rac3 stability were determined by immunoblotting and co-immunoprecipitation. Esophageal cancer cells (OE19 and OE33) were used to investigate TGFβ1-induced E-cadherin down-regulation by Immunoblotting and Immunostaining.
RESULTS: Overexpression of FBXL19 decreased endogenous and over-expressed Rac3 expression by interacting and polyubiquitinating Rac3, while down-regulation of FBXL19 suppressed Rac3 degradation. Lysine166 within Rac3 was identified as an ubiquitination acceptor site. The FBXL19 variant with truncation at the N-terminus resulted in an increase in Rac3 degradation; however, the FBXL19 variant with truncation at the C-terminus lost its ability to interact with Rac3 and ubiquitinate Rac3 protein. Further, we found that Rac3 plays a critical role in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells. Over-expression of FBXL19 attenuated TGFβ1-induced E-cadherin down-regulation and esophageal cancer cells elongation phenotype.
CONCLUSIONS: Collectively these data unveil that FBXL19 functions as an antagonist of Rac3 by regulating its stability and regulates the TGFβ1-induced E-cadherin down-regulation. This study will provide a new potential therapeutic strategy to regulate TGFβ1 signaling, thus suppressing esophageal tumorigenesis.

Cai K, Mulatz K, Ard R, et al.
Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion.
BMC Cancer. 2014; 14:208 [PubMed] Article available free on PMC after 27/05/2015 Related Publications
BACKGROUND: Unraveling the signaling pathways responsible for the establishment of a metastatic phenotype in carcinoma cells is critically important for understanding the pathology of cancer. The acquisition of cell motility is a key property of metastatic tumor cells and is a prerequisite for invasion. Rho GTPases regulate actin cytoskeleton reorganization and the cellular responses required for cell motility and invasion. Diacylglycerol kinase ζ (DGKζ), an enzyme that phosphorylates diacylglycerol to yield phosphatidic acid, regulates the activity of the Rho GTPases Rac1 and RhoA. DGKζ mRNA is highly expressed in several different colon cancer cell lines, as well as in colon cancer tissue relative to normal colonic epithelium, and thus may contribute to the metastatic process.
METHODS: To investigate potential roles of DGKζ in cancer metastasis, a cellular, isogenic model of human colorectal cancer metastatic transition was used. DGKζ protein levels, Rac1 and RhoA activity, and PAK phosphorylation were measured in the non-metastatic SW480 adenocarcinoma cell line and its highly metastatic variant, the SW620 line. The effect of DGKζ silencing on Rho GTPase activity and invasion through Matrigel-coated Transwell inserts was studied in SW620 cells. Invasiveness was also measured in PC-3 prostate cancer and MDA-MB-231 breast cancer cells depleted of DGKζ.
RESULTS: DGKζ protein levels were elevated approximately 3-fold in SW620 cells compared to SW480 cells. There was a concomitant increase in active Rac1 in SW620 cells, as well as substantial increases in the expression and phosphorylation of the Rac1 effector PAK1. Similarly, RhoA activity and expression were increased in SW620 cells. Knockdown of DGKζ expression in SW620 cells by shRNA-mediated silencing significantly reduced Rac1 and RhoA activity and attenuated the invasiveness of SW620 cells in vitro. DGKζ silencing in highly metastatic MDA-MB-231 breast cancer cells and PC-3 prostate cancer cells also significantly attenuated their invasiveness.
CONCLUSION: Elevated DGKζ expression contributes to increased Rho GTPase activation and the enhanced motility of metastatic cancer cells. These findings warrant further investigation of the clinical relevance of DGKζ upregulation in colon and other cancers. Interfering with DGKζ function could provide a means of inhibiting invasion and metastasis.

Dai W, Wang C, Wang F, et al.
Anti-miR-197 inhibits migration in HCC cells by targeting KAI 1/CD82.
Biochem Biophys Res Commun. 2014; 446(2):541-8 [PubMed] Related Publications
AIM: To investigate the metastatic effects and mechanisms of miR-197 in hepatocellular carcinoma (HCC).
METHODS AND RESULTS: The levels of miR-197 increased in HCC cells and tissues compared with a normal hepatic cell line (LO2) and adjacent nontumorous liver tissues, respectively. miR-197 expression negatively correlated with CD82 mRNA expression in these cell lines and tissues. Dual luciferase reporter assay and Western blot confirmed a direct interaction between miR-197 and CD82 3'UTR sequences. After miR-197 was silenced in HCC cells, CD82 expression increased. In the presence of human hepatocyte growth factor (HGF), cells silenced for anti-miR-197 exhibited elongated cellular tails and diminished lamellipodia due to reductions in both ROCK activity and the levels of Rac 1 protein. Downregulation of miR-197 along with the upregulation of CD82 in HCC cells resulted in the inhibition of HCC migration and invasion in vitro and in vivo.
CONCLUSION: Taken together, these data suggest that anti-miR-197 suppresses HCC migration and invasion by targeting CD82. The regulation of the miR-197/CD82 axis could be a novel therapeutic target in future HCC effective therapy.

Gonçalves V, Henriques A, Pereira J, et al.
Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells.
RNA. 2014; 20(4):474-82 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
The premessenger RNA of the majority of human genes can generate various transcripts through alternative splicing, and different tissues or disease states show specific patterns of splicing variants. These patterns depend on the relative concentrations of the splicing factors present in the cell nucleus, either as a consequence of their expression levels or of post-translational modifications, such as protein phosphorylation, which are determined by signal transduction pathways. Here, we analyzed the contribution of protein kinases to the regulation of alternative splicing variant Rac1b that is overexpressed in certain tumor types. In colorectal cells, we found that depletion of AKT2, AKT3, GSK3β, and SRPK1 significantly decreased endogenous Rac1b levels. Although knockdown of AKT2 and AKT3 affected only Rac1b protein levels suggesting a post-splicing effect, the depletion of GSK3β or SRPK1 decreased Rac1b alternative splicing, an effect mediated through changes in splicing factor SRSF1. In particular, the knockdown of SRPK1 or inhibition of its catalytic activity reduced phosphorylation and subsequent translocation of SRSF1 to the nucleus, limiting its availability to promote the inclusion of alternative exon 3b into the Rac1 pre-mRNA. Altogether, the data identify SRSF1 as a prime regulator of Rac1b expression in colorectal cells and provide further mechanistic insight into how the regulation of alternative splicing events by protein kinases can contribute to sustain tumor cell survival.

Yang S, Kim HM
ROCK inhibition activates MCF-7 cells.
PLoS One. 2014; 9(2):e88489 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Dormant carcinoma cancer cells showing epithelial characteristics can be activated to dissipate into the surrounding tissue or organs through epithelial-mesenchymal transition (EMT). However, the molecular details underlying the activation of dormant cancer cells have been less explored. In this study, we examined the molecular pathway to activate dormant breast cancer cells. Rho-associated kinase (ROCK) inhibition disrupted cell junction, promoted cell proliferation and migration / invasion in both two-dimensional and three-dimensional substrates. The disintegration of cell junction upon ROCK inhibition, coupled with the loss of E-cadherin and b-catenin from the cell membrane, was associated with the activation of Rac1 upon ROCK inhibition. Migration / invasion also increased upon ROCK inhibition. However, the activation of MCF-7 cells upon ROCK inhibition was not associated with the up-regulation of typical EMT markers, such as snail and slug. Based on these results, we suggest the potential risk for dormant cancer cells to dissipate through non-typical EMT when ROCK activity is down-regulated.

Webber J, Stone TC, Katilius E, et al.
Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan™) platform.
Mol Cell Proteomics. 2014; 13(4):1050-64 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
We have used a novel affinity-based proteomics technology to examine the protein signature of small secreted extracellular vesicles called exosomes. The technology uses a new class of protein binding reagents called SOMAmers® (slow off-rate modified aptamers) and allows the simultaneous precise measurement of over 1000 proteins. Exosomes were highly purified from the Du145 prostate cancer cell line, by pooling selected fractions from a continuous sucrose gradient (within the density range of 1.1 to 1.2 g/ml), and examined under standard conditions or with additional detergent treatment by the SOMAscan™ array (version 3.0). Lysates of Du145 cells were also prepared, and the profiles were compared. Housekeeping proteins such as cyclophilin-A, LDH, and Hsp70 were present in exosomes, and we identified almost 100 proteins that were enriched in exosomes relative to cells. These included proteins of known association with cancer exosomes such as MFG-E8, integrins, and MET, and also those less widely reported as exosomally associated, such as ROR1 and ITIH4. Several proteins with no previously known exosomal association were confirmed as exosomally expressed in experiments using individual SOMAmer® reagents or antibodies in micro-plate assays. Western blotting confirmed the SOMAscan™-identified enrichment of exosomal NOTCH-3, L1CAM, RAC1, and ADAM9. In conclusion, we describe here over 300 proteins of hitherto unknown association with prostate cancer exosomes and suggest that the SOMAmer®-based assay technology is an effective proteomics platform for exosome-associated biomarker discovery in diverse clinical settings.

Hofbauer SW, Krenn PW, Ganghammer S, et al.
Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells.
Blood. 2014; 123(14):2181-8 [PubMed] Related Publications
Signals from the tumor microenvironment promote the migration, survival, and proliferation of chronic lymphocytic leukemia (CLL) cells. Rho GTPases control various signaling pathways downstream of microenvironmental cues. Here, we analyze the function of Rac1 in the motility and proliferation of CLL cells. We found decreased transcription of the Rac guanine nucleotide exchange factors Tiam1 and Vav1 in unstimulated peripheral blood CLL cells with almost complete loss of Tiam1 but increased transcription of the potential Rac antagonist RhoH. Consistently, stimulation of CLL cells with the chemokine CXCL12 induced RhoA but not Rac1 activation, whereas chemokine-induced CLL cell motility was Rac1-independent. Coculture of CLL cells with activated T cells induced their activation and subsequent proliferation. Here, Tiam1 expression was induced in the malignant cells in line with increased Ki-67 and c-Myc expression. Rac1 or Tiam1 knockdown using siRNA or treatment with the Tiam1/Rac inhibitor NSC-23766 attenuated c-Myc transcription. Furthermore, treatment of CLL cells with NSC-23766 reduced their proliferation. Rac inhibition also antagonized the chemoresistance of activated CLL cells toward fludarabine. Collectively, our data suggest a dynamic regulation of Rac1 function in the CLL microenvironment. Rac inhibition could be of clinical use by selectively interfering with CLL cell proliferation and chemoresistance.

Chen QY, Zheng Y, Jiao DM, et al.
Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway.
J Nutr Biochem. 2014; 25(2):177-85 [PubMed] Related Publications
Curcumin, a natural and crystalline compound isolated from the plant Curcuma longa with low toxicity in normal cells, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about antimetastasis effects and mechanism of curcumin in lung cancer. Rac1 is an important small Rho GTPases family protein and has been widely implicated in cytoskeleton rearrangements and cancer cell migration, invasion and metastasis. In this study, we examined the influence of curcumin on in vitro invasiveness of human lung cancer cells and the expressions of Rac1. The results indicate that curcumin at 10 μM slightly reduced the proliferation of 801D lung cancer cells but showed an obvious inhibitory effect on epidermal growth factor or transforming growth factor β1-induced lung cancer cell migration and invasion. Meanwhile, we demonstrated that the suppression of invasiveness correlated with inhibition of Rac1/PAK1 signaling pathways and matrix metalloproteinase (MMP) 2 and 9 protein expression by combining curcumin treatment with the methods of Rac1 gene silence and overexpression in lung cancer cells. Laser confocal microscope also showed that Rac1-regulated actin cytoskeleton rearrangement may be involved in anti-invasion effect of curcumin on lung cancer cell. At last, through xenograft experiments, we confirmed the connection between Rac1 and the growth and metastasis inhibitory effect of curcumin in vivo. In summary, these data demonstrated that low-toxic levels of curcumin could efficiently inhibit migration and invasion of lung cancer cells through inhibition of Rac1/PAK1 signaling pathway and MMP-2 and MMP-9 expression, which provided a novel insight into the molecular mechanism of curcumin against lung cancer.

Shakhova O
Neural crest stem cells in melanoma development.
Curr Opin Oncol. 2014; 26(2):215-21 [PubMed] Related Publications
PURPOSE OF REVIEW: Metastatic melanoma is the most aggressive skin cancer and despite tremendous efforts and considerable progress in clinical treatment of melanoma patients within recent years, it remains a deadly disease. Current treatments affect melanoma cells indiscriminately, while accumulating evidence suggests that melanoma might be a disease of stem cells. This review aims to summarize the important accomplishments in the field and to emphasize the common molecular and cellular mechanisms regulating self-renewal of neural crest stem cells (NCSCs) and melanoma cells.
RECENT FINDINGS: A growing number of publications highlight the existence of phenotypic and functional similarities between embryonic NCSCs and melanoma cells. These studies provide compelling evidence that the propagation of melanoma cells critically depends on genes instrumental in neural crest development. The example of Sox10 and Rac1 genes provides detailed illustration of how interfering with these important genes for neural crest development can prevent melanoma formation.
SUMMARY: The development of new therapies, targeting RAF-MEK-ERK pathway, provided major improvements in outcomes for patients with metastatic melanoma; however, acquired resistance followed by tumor recurrence represents a major clinical challenge. The striking parallels between embryonic NCSCs (eNCSCs) and melanoma cells might lead to the development of new targeted therapeutics selectively eliminating cell populations accountable for tumor initiation, progression and relapse.

Bhat HF, Baba RA, Adams ME, Khanday FA
Role of SNTA1 in Rac1 activation, modulation of ROS generation, and migratory potential of human breast cancer cells.
Br J Cancer. 2014; 110(3):706-14 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
BACKGROUND: Alpha-1-syntrophin (SNTA1) has been implicated in the activation of Rac1. However, the underlying mechanism has not yet been explored. Here, we show that a novel complex, involving SNTA1, P66shc, and Grb2 proteins, is involved in Rac1 activation.
METHODS: Co-immunoprecipitation assays were used to show the complex formation, while siRNAs and shRNAs were used to downregulate expression of these proteins. Various Rac1 activation assays and functional assays, such as migration assays, in vitro wound healing assays, cell proliferation assays, and ROS generation assays, were also performed.
RESULTS: The results showed a significant increase in activation of Rac1 when SNTA1 and P66shc were overexpressed, whereas depletion of SNTA1 and P66shc expression effectively reduced the levels of active Rac1. The results indicated a significant displacement of Sos1 protein from Grb2 when SNTA1 and P66shc are overexpressed in breast cancer cell lines, resulting in Sos1 predominantly forming a complex with Eps8 and E3b1. In addition, the SNTA1/P66shc-mediated Rac1 activation resulted in an increase in reactive oxygen species (ROS) production and migratory potential in human breast cancer cells.
CONCLUSION: Together, our results present a possible mechanism of Rac1 activation involving SNTA1 and emphasise its role in ROS generation, cell migration, and acquisition of malignancy.

Afshordel S, Wood WG, Igbavboa U, et al.
Impaired geranylgeranyltransferase-I regulation reduces membrane-associated Rho protein levels in aged mouse brain.
J Neurochem. 2014; 129(4):732-42 [PubMed] Article available free on PMC after 01/05/2015 Related Publications
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho-GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho-GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase-I. We examined age-related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase-I in brain tissue of 3- and 23-month-old C57BL/6 mice. We report a shift in the cellular localization of Rho-GTPases toward reduced levels of membrane-associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age-related reduction in membrane-associated Rho proteins was associated with a reduction in GGTase-Iβ levels that regulates binding of GGPP to Rho-GTPases. Proteins prenylated by GGTase-II were not reduced in aged brain indicating a specific targeting of GGTase-I in the aged brain. Inhibition of GGTase-I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane-associated Rho proteins in aged brain in association with down-regulation of GGTase-Iβ. This down-regulation could be one of the mechanisms causing age-related weakening of synaptic plasticity.

Kagawa Y, Matsumoto S, Kamioka Y, et al.
Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.
PLoS One. 2013; 8(12):e83629 [PubMed] Article available free on PMC after 01/05/2015 Related Publications
The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAC1, Cancer Genetics Web: http://www.cancer-genetics.org/RAC1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999