Gene Summary

Gene:PCNA; proliferating cell nuclear antigen
Aliases: ATLD2
Summary:The protein encoded by this gene is found in the nucleus and is a cofactor of DNA polymerase delta. The encoded protein acts as a homotrimer and helps increase the processivity of leading strand synthesis during DNA replication. In response to DNA damage, this protein is ubiquitinated and is involved in the RAD6-dependent DNA repair pathway. Two transcript variants encoding the same protein have been found for this gene. Pseudogenes of this gene have been described on chromosome 4 and on the X chromosome. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:proliferating cell nuclear antigen
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (39)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PCNA (cancer-related)

Chai L, Yang G
MiR-216a-5p targets TCTN1 to inhibit cell proliferation and induce apoptosis in esophageal squamous cell carcinoma.
Cell Mol Biol Lett. 2019; 24:46 [PubMed] Free Access to Full Article Related Publications
Background: MiR-216a-5p has been reported to be associated with several tumors, including prostate cancer and melanoma. However, its expression level and potential role in esophageal squamous cell carcinoma (ESCC) remain uncertain.
Results: Here, we found that miR-216a-5p expression was significantly down-regulated in clinical ESCC tissues and cells. Functional assays were performed to evaluate the biological effects of miR-216a-5p on cell proliferation and cell apoptosis by CCK-8 assay and flow cytometry in ESCC cell lines, EC9706 and TE-9. The results showed that miR-216a-5p overexpression repressed cell proliferation and induced cell apoptosis. Through bioinformatics prediction and luciferase reporter assay, we revealed that miR-216a-5p could directly target tectonic family member 1 (TCTN1). Moreover, TCTN1 was obviously suppressed by miR-216a-5p overexpression. In addition, TCTN1 expression was significantly increased and inversely correlated with the levels of miR-216a-5p in ESCC tissues. More importantly, down-regulation of TCTN1 imitated, while restoration of TCTN reversed the effects of miR-216a-5p on cell proliferation and apoptosis. At the molecular level, we further found that TCTN1 overexpression reversed the effects of miR-216a-5p transfection on the expression of PCNA, Bcl-2 and Bad.
Conclusions: Our results demonstrate that miR-216a-5p might serve as a tumor suppressor in ESCC cells through negatively regulating TCTN1 expression, indicating the possibility that miR-216a-5p and TCTN1 might be attractive targets for ESCC therapeutic intervention.

Zhong X, Huang G, Ma Q, et al.
Identification of crucial miRNAs and genes in esophageal squamous cell carcinoma by miRNA-mRNA integrated analysis.
Medicine (Baltimore). 2019; 98(27):e16269 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) is a malignancy that severely threatens human health and carries a high incidence rate and a low 5-year survival rate. MicroRNAs (miRNAs) are commonly accepted as a key regulatory function in human cancer, but the potential regulatory mechanisms of miRNA-mRNA related to ESCC remain poorly understood.The GSE55857, GSE43732, and GSE6188 miRNA microarray datasets and the gene expression microarray datasets GSE70409, GSE29001, and GSE20347 were downloaded from Gene Expression Omnibus databases. The differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using GEO2R. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). A protein-protein interaction (PPI) network and functional modules were established using the STRING database and were visualized by Cytoscape. Kaplan-Meier analysis was constructed based on The Cancer Genome Atlas (TCGA) database.In total, 26 DEMs and 280 DEGs that consisted of 96 upregulated and 184 downregulated genes were screened out. A functional enrichment analysis showed that the DEGs were mainly enriched in the ECM-receptor interaction and cytochrome P450 metabolic pathways. In addition, MMP9, PCNA, TOP2A, MMP1, AURKA, MCM2, IVL, CYP2E1, SPRR3, FOS, FLG, TGM1, and CYP2C9 were considered to be hub genes owing to high degrees in the PPI network. MiR-183-5p was with the highest connectivity target genes in hub genes. FOS was predicted to be a common target gene of the significant DEMs. Hsa-miR-9-3p, hsa-miR-34c-3p and FOS were related to patient prognosis and higher expression of the transcripts were associated with a poor OS in patients with ESCC.Our study revealed the miRNA-mediated hub genes regulatory network as a model for predicting the molecular mechanism of ESCC. This may provide novel insights for unraveling the pathogenesis of ESCC.

Dusek J, Skoda J, Holas O, et al.
Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver.
Toxicol Lett. 2019; 313:1-10 [PubMed] Related Publications
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.

Mu X, Li H, Zhou L, Xu W
TRIM52 regulates the proliferation and invasiveness of lung cancer cells via the Wnt/β‑catenin pathway.
Oncol Rep. 2019; 41(6):3325-3334 [PubMed] Related Publications
As a major cause of cancer‑associated mortalities, lung cancer is frequently diagnosed in males and females with an incidence ratio of 2.1:1. Tripartite motif 52 (TRIM52), an E3 ubiquitin ligase, has been reported to be involved in various biological functions, including cell proliferation and invasiveness. In the present study, an elevated TRIM52 level was observed in tumor tissues of patients with lung cancer and in lung cancer cell lines. The downregulation of TRIM52 in lung cancer cells significantly suppressed the proliferation of lung cancer cells, arrested the cell cycle at the G1 phase and was accompanied by a decrease in the levels of β‑catenin, proliferating cell nuclear antigen, c‑Myc and Cyclin D1 proteins. Additionally, TRIM52‑induced cell proliferation and invasiveness, as well as the levels of cell cycle‑associated proteins, were completely counteracted by the Wnt/β‑catenin inhibitor XAV939. Based on these data, it was speculated that TRIM52 is critical for lung cancer progression and that downregulation of TRIM52 could inhibit cell proliferation by blocking cell cycle progression. It was also speculated that TRIM52 upregulation promotes proliferation and invasiveness through activation of the Wnt/β‑catenin pathway. Thus, TRIM52 has the potential to be a therapeutic target for lung cancer.

Yuan Y, Wang Y, Liu Z, et al.
MAT2B promotes proliferation and inhibits apoptosis in osteosarcoma by targeting epidermal growth factor receptor and proliferating cell nuclear antigen.
Int J Oncol. 2019; 54(6):2019-2029 [PubMed] Free Access to Full Article Related Publications
Osteosarcoma (OS) is the most commonly diagnosed bone tumor in young people with poor prognosis. At present, the mechanisms underlying tumorigenesis in OS are not well understood. The methionine adnosyltransferase 2B (MAT2B) gene encodes the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies demonstrated that it is highly expressed in a number of human malignancies; however, is undefined in OS. In the present study, MAT2B expression was investigated in tumor samples and cell lines. In vivo and in vitro, lentivirus‑mediated small hairpin RNA was constructed to target the MAT2B gene and examine the role of MAT2B in OS proliferation. Microarray analysis was performed to examine the possible downstream molecular target of MAT2B in OS. MAT2B was markedly increased in OS specimens compared with the normal bone tissues, and it was additionally abundantly expressed in OS cell lines. Inhibition of MAT2B expression caused a marked decrease in proliferation and significant increase in apoptosis. In vivo, MAT2B silencing significantly inhibited OS cell growth. Microarray analysis suggested that epidermal growth factor receptor (EGFR) and proliferating cell nuclear antigen (PCNA) may function as downstream targets of MAT2B in OS, as confirmed by reverse transcription‑quantitative polymerase chain reaction assays and western blotting. Collectively, these results suggested that MAT2B serves a critical role in the proliferation of OS by regulating EGFR and PCNA and that it may be a potential therapeutic target and prognostic factor of OS.

Hu F, He Z, Sun C, Rong D
Knockdown of GRHL2 inhibited proliferation and induced apoptosis of colorectal cancer by suppressing the PI3K/Akt pathway.
Gene. 2019; 700:96-104 [PubMed] Related Publications
Grainyhead-like 2 (GRHL2) transcription factor is implicated in many types of cancers. However, the role of GRHL2 in colorectal cancer (CRC) has not been fully understood. The present study aimed to evaluate the expression and functional roles of GRHL2 in CRC. The expression of GRHL2 in normal human intestinal epithelial cells and colorectal cancer cells was measured by qRT-PCR and western blot. For knockdown of GRHL2, two small interfere RNAs (siRNAs) targeting GRHL2 or control siRNA was transfected into CRC cell lines (HCT116 and HT29). For GRHL2 overexpression, the GRHL2-overexpressing vector or empty lentiviral vector was infected into HCT116 and HT29 cells. Cell proliferation was measured by MTT assay. Cell apoptosis rate was analyzed by flow cytometry. The expression of proliferating cell nuclear antigen (PCNA), Bax, and Bcl-2 was detected by western blot. We found that GRHL2 was upregulated in CRC cells compared to normal human intestinal epithelial cells. Knockdown of GRHL2 inactivated the PI3K/Akt pathway in HCT116 and HT29 cells. Knockdown of GRHL2 inhibited cell viability, elevated the apoptosis rates, suppressed the expression of PCNA and Bcl-2, and induced the expression of Bax in HCT116 and HT29 cells, and these effects were reversed by activation of the PI3K/Akt pathway. Inhibition of PI3K/Akt pathway blocked the effects of GRHL2 overexpression on cell proliferation and apoptosis. In conclusion, GRHL2 acted as an oncoprotein through regulating cell proliferation and apoptosis in CRC cells. The PI3K/Akt pathway was closely involved in the effects of GRHL2. Therefore, GRHL2 might be a therapeutic target for the CRC treatment.

Shen Z, Liao X, Shao Z, et al.
Short-term stimulation with histone deacetylase inhibitor trichostatin a induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells without increasing cell invasion ability.
BMC Cancer. 2019; 19(1):262 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial-mesenchymal transition (EMT) may be one of the reasons for the failure in some clinical trials regarding histone deacetylase inhibitors (HDACIs)-treated solid tumors. We investigated the effects of a pan-HDACI trichostatin A (TSA) on the proliferation and EMT of nasopharyngeal carcinoma (NPC) cells.
METHODS: Poorly-differentiated NPC cell line CNE2 and undifferentiated C666-1 were treated with various concentrations of TSA, the cell viability was assessed by CCK-8 assay, the morphology was photographed, and the mRNA level of HDACs was assessed by semiquantitative PCR. After determination the cell cycle distributions, cells were subjected to western blotting analysis of cell cycle and EMT-associated genes expression. And the changes in migration ability were assessed by transwell migration assay and scratch wound healing assay. Finally, histone deacetylases activator ITSA-1 was used to assess the reverse of TSA-induced changes in NPC cells.
RESULTS: TSA inhibited the proliferation of CNE2 and C666-1 cells in a concentration-dependent manner and arrested the cell cycle at G1 phases. TSA reduced PCNA, cyclin D1, cyclin E1, CDK2, p16 and p21 expressions and stimulated CDK6 levels. TSA stimulation for 48 h could effectively induce the EMT in CNE2 and C666-1 cells, which showed an increase of spindle-like cells and promoted expression of Vimentin and Snail1 expression in a concentration-dependent manner. Surprisingly, this short period of TSA treatment that induced EMT also impeded the migration ability of CNE2 and C666-1 cells. Interestingly, ITSA-1 rescued TSA-impeded CNE2 and C666-1 cells' proliferation, migration and HDACs expression, also re-induced the cells to turn into epithelial cell phenotypes.
CONCLUSIONS: These results indicate that short-term stimulation of TSA effectively inhibits cell proliferation and induce EMT-like changes in NPC cells but not increase its invasion ability.

He F, Fang L, Yin Q
miR-363 acts as a tumor suppressor in osteosarcoma cells by inhibiting PDZD2.
Oncol Rep. 2019; 41(5):2729-2738 [PubMed] Free Access to Full Article Related Publications
PDZ domain containing 2 (PDZD2) is a multi-PDZ domain protein that promotes the proliferation of insulinoma cells, and is upregulated during prostate tumorigenesis. However, the function of PDZD2 in other cancers, including osteosarcoma (OS), remains unclear. Dysregulation of microRNAs (miRNAs) contributes to tumor initiation, proliferation and metastasis, via the regulation of their target genes. The present study investigated the functions of miR-363 and PDZD2 in MG-63 OS cells. The results revealed that MG-63 cells contained low levels of miR-363, and that overexpression of miR-363 in MG-63 cells significantly inhibited the vitality, proliferation, and colony formation ability of the cells, but promoted their apoptosis and G1/S arrest by regulating proliferating cell nuclear antigen (PCNA) and caspase-3 expression. Additionally, miR-363 impaired the migration and invasion of MG-63 cells by regulating the epithelial-mesenchymal transition (EMT) phenotype. Notably, a bioinformatics analysis and luciferase reporter assay indicated that PDZD2 was a direct target of miR-363. miR-363 overexpression reduced PDZD2 protein levels and knockdown of PDZD2 suppressed the colony formation, migration and invasion of MG-63 cells, but promoted their apoptosis by regulating expression of PCNA, caspase-3, and the EMT phenotype. In vivo studies further confirmed that miR-363 functioned as tumor suppressor, by inhibiting tumor growth, promoting cell apoptosis, and reducing PDZD2 and PCNA levels and the prevalence of the EMT phenotype in tumor tissues. The present data demonstrated that downregulation of the tumor suppressor miR-363 may be involved in the development of osteosarcoma via regulation of PDZD2.

Xiao L, Luo Y, Tai R, Zhang N
Estrogen receptor β suppresses inflammation and the progression of prostate cancer.
Mol Med Rep. 2019; 19(5):3555-3563 [PubMed] Free Access to Full Article Related Publications
Previous studies demonstrated that estrogen receptor β (ERβ) signaling alleviates systemic inflammation in animal models, and suggested that ERβ‑selective agonists may deactivate microglia and suppress T cell activity via downregulation of nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB). In the present study, the role of ERβ in lipopolysaccharide (LPS)‑induced inflammation and association with NF‑κB activity were investigated in PC‑3 and DU145 prostate cancer cell lines. Cells were treated with LPS to induce inflammation, and ELISA was performed to determine the expression levels of inflammatory cytokines, including tumor necrosis factor‑α (TNF‑α), monocyte chemoattractant protein 1 (MCP‑1), interleukin (IL)‑1β and IL‑6. MTT and Transwell assays, and Annexin V/propidium iodide staining were conducted to measure cell viability, apoptosis and migration, respectively. Protein expression was determined via western blot analysis. LPS‑induced inflammation resulted in elevated expression levels of TNF‑α, IL‑1β, MCP‑1 and IL‑6 compared with controls. ERβ overexpression significantly inhibited the LPS‑induced production of TNF‑α, IL‑1β, MCP‑1 and IL‑6. In addition, the results indicated that ERβ suppressed viability and migration, and induced apoptosis in prostate cancer cells, which was further demonstrated by altered expression of proliferating cell nuclear antigen, B‑cell lymphoma 2‑associated X protein, caspase‑3, E‑cadherin and matrix metalloproteinase‑2. These effects were reversed by treatment with the ERβ antagonist PHTPP or ERβ‑specific short interfering RNA. ERβ overexpression reduced the expression levels of p65 and phosphorylated NF‑κB inhibitor α (IκBα), but not total IκBα expression in LPS‑treated cells. In conclusion, ERβ suppressed the viability and migration of the PC‑3 and DU145 prostate cancer cell lines and induced apoptosis. Furthermore, it reduced inflammation and suppressed the activation of the NF‑κB pathway, suggesting that ERβ may serve roles as an anti‑inflammatory and anticancer agent in prostate cancer.

Xiong H, Cheng J, Jiang S, et al.
The antitumor effect of resveratrol on nasopharyngeal carcinoma cells.
Front Biosci (Landmark Ed). 2019; 24:961-970 [PubMed] Related Publications
The anti-tumor effect of resveratrol has been observed in many cancers. Here, we examined the anti-tumor activity of resveratrol in human nasopharyngeal carcinoma (NPC) cells. Resveratrol, in a dose-dependent manner, inhibited proliferation related proteins (Ki67, PCNA), and cell proliferation, and reduced apoptosis related proteins (cleaved caspase-3, cleaved caspase-9) and apoptosis in nasopharyngeal carcinoma cells. Resveratrol treatment inhibited the increased-expression of Survivin in NPC cells, while the overexpressed Survivin counteracted the effect of resveratrol on cell proliferation and apoptosis in NPC cells, thus establishing Resveratrol-induced reduction in increased-survivin in NPC cells as the underlying mechanism. These findings show that resveratrol can be used to modify the cell growth and death in NPC cells.

Fan HW, Ni Q, Fan YN, et al.
C-type lectin domain family 5, member A (CLEC5A, MDL-1) promotes brain glioblastoma tumorigenesis by regulating PI3K/Akt signalling.
Cell Prolif. 2019; 52(3):e12584 [PubMed] Related Publications
OBJECTIVES: Glioblastoma is the most common malignant glioma of all brain tumours. It is difficult to treat because of its poor response to chemotherapy and radiotherapy and high recurrence rate after treatment. The aetiology of glioblastoma is a result of disorders of multiple factors. Depending on cell signal transduction, these glioblastoma-associated factors lead to cell proliferation, differentiation and apoptosis. Therefore, investigation of the potential factors which involved in the development of glioblastoma could provide a new target for the treatment of glioblastoma.
MATERIALS AND METHODS: We analysed the transcript expression of CLEC5A in glioblastoma by accessing The Cancer Genome Atlas (TCGA). qRT-PCR was performed to detect the RNA expression of genes in cells and tissues, and Western blot was used to measure the protein levels (Cyclin D1, Bcl-2, BAX, PCNA, MMP2, MMP9, Akt and Akt phosphorylation) in tissues and cells. Cell proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8, transwell and flow cytometry assays, respectively. Ki67 level and lung metastasis were determined by immunochemistry and H&E staining.
RESULTS: In this study, we found that CLEC5A was highly upregulated in glioblastoma compared to normal brain tissues, which had an opposite relation with the overall patient survival. Downregulation of CLEC5A could inhibit cell proliferation, migration and invasion via promoting apoptosis and G1 arrest. In contrast, overexpression of CLEC5A stimulated cell proliferation, migration and invasion. In addition, we found that CLEC5A level was positively correlated with Akt phosphorylation level. Akt inhibitor or agonist could reverse the modulation effects of CLEC5A in glioblastoma. Moreover, In vivo results suggested that inhibition of CLEC5A significantly reduced tumour size, weight, cell proliferation ability and lung metastasis via inhibition of phosphorylation Akt.
CONCLUSION: Both in vitro and in vivo evidences supported that CLEC5A was involved in glioblastoma pathogenesis via regulation of PI3K/Akt pathway. Thus, CLEC5A might serve as a potential therapeutic target in the treatment of glioblastoma in the future.

Wen SY, Chen YY, Deng CM, et al.
Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway.
Phytomedicine. 2019; 57:352-363 [PubMed] Related Publications
BACKGROUND: Nerigoside (NG), a cardenolide isolated from a commonfolk medicine, Nerium oleander Linn. (Apocynaceae), has not been explored for its biological effects. To date, cardenolides have received considerable attention in pharmacology studies due to their direct effects of apoptosis-induction or growth-inhibitory against tumor in vitro and in vivo. Whether and how NG exerts anticancer effects against colorectal cancer remains to be elucidated.
PURPOSE: The aim of this study was to investigate the anticancer effect of NG in human colorectal cancer cells.
METHODS: To test anticancer effect, we compared potency of NG in two colorectal cancer cell lines, HT29 and SW620 by WST-1 and colony proliferation assays. And we investigated mechanism of anticancer activities by analyzing players in apoptotic and ERK/GSK3β/β-catenin signaling pathways in HT29 and SW620 cells treated with NG.
RESULTS: In this study, we showed that NG markedly suppressed the cell viability and colony formation of colorectal cancer cells HT29 and SW620, with no significant toxic effect on non-cancer cells NCM460. Annexin V-FITC/PI and CFSE labeling results revealed that NG suppressed cell proliferation in low concentration, along with reducing expression of PCNA, while NG induced apoptosis in high concentration,. Meanwhile, NG significantly arrested cell migration by reversal of EMT and cell cycle on G2/M. Then, we found that the ERK and GSK3β/β-catenin signaling pathway were noticeably blocked in CRC cells after treatment with NG. According to western blot, NG upregulated the expression of p-GSK3β/GSK3β and decreased especially the expression of β-catenin in nuclear. In addition, Wnt signaling and its target genes were suppressed in response to NG. Then, the Ser9 phosphorylation of GSK3β can be reduced / raised by GÖ 6983 / LiCl, respectively. Thus, we further confirmed that the GSK3β/β-catenin axis is involved in NG-prevented cell proliferation.
CONCLUSION: NG inhibited the growth of colorectal cancer cells by suppressing ERK/GSK3β/β-catenin signaling pathway. And the GSK3β/β-catenin axis is involved in preventing cell proliferation and migration by NG-treatment. These results suggest that NG may be used to treat colorectal cancer, with better outcome by combining with GSK3β inhibitor to block Wnt pathway.

Jin Q, Dai Y, Wang Y, et al.
High kinesin family member 11 expression predicts poor prognosis in patients with clear cell renal cell carcinoma.
J Clin Pathol. 2019; 72(5):354-362 [PubMed] Free Access to Full Article Related Publications
AIMS: Kinesin family member 11 (Kif11) is a member of the kinesin family motor proteins, which is associated with spindle formation and tumour genesis. In this study, we investigated the relationship between Kif11 expression and clear cell renal cell carcinoma (CCRCC) development.
METHODS: The relationship between Kif11 expression and CCRCC development was analysed by quantitative real-time (qRT)-PCR analyses, and tissue immunohistochemistry. The prognostic significance of Kif11 expression was explored by univariable and multivariable survival analyses of 143 included patients. Furthermore, SB743921 was used as a specific Kif11 inhibitor to treat 786-O cells with the epithelial to mesenchymal transition (EMT) process analysed by qRT-PCR, and cell survival rates analysed with Annexin V-FITC/PI staining followed by flow cytometric analyses. Disease-free survival curves of Kif11 with different cancers and the relationships between Kif11 and the von Hippel-Lindau disease tumour suppressor gene (
RESULTS: The levels of
CONCLUSIONS: These results combined with bioinformation analyses suggest that high Kif11 expression was associated with unfavourable prognosis in CCRCC and could be used as a potential prognostic marker in the clinical diagnosis of CCRCC.

Yang Q, Yu W, Han X
Overexpression of microRNA‑101 causes anti‑tumor effects by targeting CREB1 in colon cancer.
Mol Med Rep. 2019; 19(4):3159-3167 [PubMed] Free Access to Full Article Related Publications
Accumulating evidence has demonstrated that aberrantly expressed microRNAs (miRNAs) are involved in the initiation and progression of numerous types of human cancer. Although a number of miRNAs have been demonstrated to be associated with the diagnosis, progression and prognosis of colon cancer, the function of miRNA‑101 (miR‑101) in colon cancer remains unclear, and the molecular mechanisms underlying the effects of miR‑101 in colon cancer require further investigation. The present study investigated the role of miR‑101 in colon cancer, and the results suggested that miR‑101 expression levels were significantly decreased in colorectal carcinoma tissues and in three types of colorectal cancer cell lines. Furthermore, overexpression of miR‑101 inhibited cell proliferation and migration in HT29 cells. The transcription factor cAMP responsive element binding protein 1 (CREB1) was identified to be a direct target of miR‑101 using a luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction analysis and western blot assay. miR‑101 overexpression in tumor xenografts in vivo decreased the expression levels of proliferating cell nuclear antigen and CREB1, and suppressed tumor growth. The present results suggested that miR‑101 may serve a role in colon cancer by directly targeting CREB1. Collectively, the present study may contribute to the development of improved diagnosis and prognostics for colon cancer.

Sun L, Sun C, Sun J, Yang W
Downregulation of ENDOCAN in myeloid leukemia cells inhibits proliferation and promotes apoptosis by suppressing nuclear factor‑κB activity.
Mol Med Rep. 2019; 19(4):3247-3254 [PubMed] Related Publications
Previous studies have demonstrated that ENDOCAN is elevated in leukemia, and it has been reported to be associated with poor prognosis. However, the functional role of ENDOCAN in the development of leukemia remains to be fully elucidated. In the present study, the expression levels of ENDOCAN were detected in THP‑1, U937, HL‑60 and K562 cells, and it was found that ENDOCAN was increased in U937 and K562 cells, compared with the other two cell lines. Subsequently, ENDOCAN was knocked down in U937 and K562 cells via lentiviral infection. It was found that cell proliferation and the expression of proliferating cell nuclear antigen were inhibited in myeloid leukemia cells following the silencing of ENDOCAN. ENDOCAN knockdown induced G0/G1‑phase cell cycle arrest in myeloid leukemia cells with a decreased expression of cyclin D1. Furthermore, cell apoptosis was increased in response to ENDOCAN silencing, which was accompanied by the downregulation of B‑cell lymphoma (BCL2) and the upregulation of BCL2‑associated X protein, cleaved caspases 3 and 9, and cleaved poly (ADP‑ribose) polymerase. Furthermore, it was demonstrated that the knockdown of ENDOCAN inhibited nuclear factor‑κB (NF‑κB) activity, as evidenced by the increased expression of NF‑κB inhibitor α (IκBα), decreased expression of phosphorylated (p‑)IκBα, p‑P65 and nuclear P65, and reduced NF‑κB DNA‑binding activity. In combination, the present findings suggested that ENDOCAN may serve as a potential therapeutic target in the treatment of leukemia.

Chen YN, Ren CC, Yang L, et al.
MicroRNA let‑7d‑5p rescues ovarian cancer cell apoptosis and restores chemosensitivity by regulating the p53 signaling pathway via HMGA1.
Int J Oncol. 2019; 54(5):1771-1784 [PubMed] Related Publications
Ovarian cancer (OC) is the gynecological malignancy type with the highest mortality rate in females. The regulatory effect of microRNAs (miRs) on their target genes serves a key role in tumor development. Therefore, in the present study, whether miR let‑7d‑5p targeting high mobility group A1 (HMGA1) regulated biological characteristics and chemosensitivity of OC cells by mediating the p53 signaling pathway was investigated. The let‑7d‑5p level was detected in OC tissues and adjacent normal tissues, followed by detection in OC cell lines SKOV3, A2780, OVCAR‑3 and CaOV3, and human normal ovarian epithelial cell line (IOSE‑80), in order to select the OC cell line for the following experiments. Subsequently, OC cells were treated with the let‑7d‑5p mimic, siHMGA1 and Tenovin‑1. The targeting association between let‑7d‑5p and HMGA1 was then examined, and the OC cell viability, migration, cycle and apoptosis were evaluated. Subsequently, the chemosensitivity of OC cells to cisplatin was verified. Finally, expression levels of let‑7d‑5p, HMGA1, p21, B‑cell lymphoma‑2 (Bcl‑2)‑associated X (Bax), p27, p53 wild‑type (p53wt), p53 mutated (p53mut), proliferating cell nuclear antigen (PCNA), cyclin‑dependent kinase 2 (CDK2), matrix metallopeptidase (MMP)2, MMP9 and Bcl‑2 were determined. As demonstrated in the results, let‑7d‑5p expression was low in OC tissues and had an increased reduction in the OVCAR‑3 cell line. HMGA1 was confirmed as a target of let‑7d‑5p, and its expression was also silenced by let‑7d‑5p. let‑7d‑5p repressed OC cell viability, migration, cell cycle progression and apoptosis, while it promoted the chemosensitivity of OC cells to cisplatin by targeting HMGA1. The expression of let‑7d‑5p, p21, Bax, p27 and p53wt was increased, while that of HMGA1, p53mut, PCNA, CDK2, MMP2, MMP9 and Bcl‑2 was reduced following cell transfection. The results in the present study provided evidence that let‑7d‑5p may suppress proliferation, and facilitate apoptosis and cisplatin chemosensitivity of OC cells by silencing HMGA1 via the p53 signaling pathway.

Zhang F, Liang D, Lin X, et al.
NDRG1 facilitates the replication and persistence of Kaposi's sarcoma-associated herpesvirus by interacting with the DNA polymerase clamp PCNA.
PLoS Pathog. 2019; 15(2):e1007628 [PubMed] Free Access to Full Article Related Publications
Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects host cells and establishes lifelong persistence as an extra-chromosomal episome in the nucleus. To persist in proliferating cells, the viral genome typically replicates once per cell cycle and is distributed into daughter cells. This process involves host machinery utilized by KSHV, however the underlying mechanisms are not fully elucidated. In present study, we found that N-Myc downstream regulated gene 1 (NDRG1), a cellular gene known to be non-detectable in primary B cells and endothelial cells which are the major cell types for KSHV infection in vivo, was highly upregulated by KSHV in these cells. We further demonstrated that the high expression of NDRG1 was regulated by latency-associated nuclear antigen (LANA), the major viral latent protein which tethers the viral genome to host chromosome and plays an essential role in viral genome maintenance. Surprisingly, knockdown of NDRG1 in KSHV latently infected cells resulted in a significant decrease of viral genome copy number in these cells. Interestingly, NDRG1 can directly interact with proliferating cell nuclear antigen (PCNA), a cellular protein which functions as a DNA polymerase clamp during DNA replication. Intriguingly, we found that NDRG1 forms a complex with LANA and PCNA and serves as a scaffold protein bridging these two proteins. We further demonstrated that NDRG1 is critical for mediating LANA to recruit PCNA onto terminal repeat (TR) of KSHV genome, and facilitates viral DNA replication and episome persistence. Taken together, our findings suggest that NDRG1 plays an important role in KSHV viral genome replication, and provide new clues for understanding of KSHV persistence.

Niotis A, Tsiambas E, Fotiades PP, et al.
ki-67 and Topoisomerase IIa proliferation markers in colon adenocarcinoma.
J BUON. 2018; 23(7):24-27 [PubMed] Related Publications
Aberrant cell proliferation is a major cause in the development and progression of carcinogenic process. Epithelia characterized by increased mitotic rates accumulate easily gross numerical and structural chromosomes (polysomy/aneuploidy) and specific gene (deletions, amplifications, point mutations, translocations) deregulations that lead to their progressive neoplastic and finally malignant transformation. Molecules that are critical for evaluating the proliferation status of the corresponding tissues include mainly ki-67 (cytogenetic band: 10q26.2), and also Topoisomerase IIa/Topo IIa (cytogenetic band: 17q21.2). Both of them demonstrate different expression patterns in every cell cycle phase and their estimated expression as Nuclear Labeling Index (NLI) is a very useful tool for assessing the aggressiveness of the examined pre- and malignant tissues. In fact, ki-67 expression increases as a cell progresses through the cell cycle, with highest expression being seen in G2/M phase cell, whereas Topo IIa is expressed in proliferating cells in the late S phase with a peak in G2-M phases. Concerning colon adenocarcinoma, high expression levels of them seem to correlate with advanced disease and also with modified response rates to specific chemotherapeutic agents, such as doxorubicin, an inhibitor of Topo IIa. In the current molecular review we explored the role of these proliferative markers in colon adenocarcinoma and their influence in the tumor biological behavior.

Xu J, Liu H, Yang Y, et al.
Genome-Wide Profiling of Cervical RNA-Binding Proteins Identifies Human Papillomavirus Regulation of RNASEH2A Expression by Viral E7 and E2F1.
MBio. 2019; 10(1) [PubMed] Free Access to Full Article Related Publications
RNA-binding proteins (RBPs) control mRNA processing, stability, transport, editing, and translation. We recently conducted transcriptome analyses comparing normal (i.e., healthy) cervical tissue samples with human papillomavirus (HPV)-positive cervical cancer tissue samples and identified 614 differentially expressed protein-coding transcripts which are enriched in cancer-related pathways and consist of 95 known RBPs. We verified the altered expression of 26 genes with a cohort of 72 cervical samples, including 24 normal cervical samples, 25 cervical intraepithelial neoplasia grade 2 (CIN2) and CIN3 samples, and 23 cervical cancer tissue samples. LY6K (lymphocyte antigen 6 complex locus K), FAM83A (family member with sequence similarity 83), CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A were identified as novel candidate genes associated with cervical lesion progression and carcinogenesis. HPV16 or HPV18 infection was found to alter the expression of 8 RBP genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) in human vaginal and foreskin keratinocytes. Both viral E6 and E7 decreased NOVA1 expression, but only E7 increased the expression of RNASEH2A in an E2F1-dependent manner. Proliferating cell nuclear antigen (PCNA) directs RNASEH2 activity with respect to DNA replication by removing the RNA primers to promote Okazaki fragment maturation, and two factors are closely associated with neoplasia progression. Therefore, we predict that the induction of expression of RNASEH2A via viral E7 and E2F1 may promote DNA replication and cancer cell proliferation.

Zhou X, Liu S, Lin X, et al.
Metformin Inhibit Lung Cancer Cell Growth and Invasion in Vitro as Well as Tumor Formation in Vivo Partially by Activating PP2A.
Med Sci Monit. 2019; 25:836-846 [PubMed] Free Access to Full Article Related Publications
BACKGROUND The aim of this study was to investigate whether PP2A activation is involved in the anti-cancer activity of metformin. MATERIAL AND METHODS A549 and H1651 human lung cancer cells were constructed with stable a4 overexpression (O/E α4) or knockdown of PP2A catalytic subunit A/B(sh-PP2Ac). Influences of okadaic acid (OA) treatment, O/E α4 or sh-PP2Ac on metformin treated cells were investigated by cell viability, proliferation, apoptosis, and Transwell invasion assay in vitro. Protein expression levels of Bax, Bcl-2, Myc, and Akt as well as serine phosphorylation level of Bax, Myc, and Akt were examined by western blot. For in vivo assays, wild type (WT) or modified A549 cells were subcutaneously injected in nude mice, and metformin treatment on these xenografted tumors were assayed by tumor formation assay and western blot detecting cell proliferation marker PCNA (proliferating cell nuclear antigen) as well as protein expression level and serine phosphorylation level of Akt and Myc. RESULTS Metformin treatment significantly reduced A549 or H1651 cell growth and invasive capacity in vitro as well as Ser184 phosphorylation of Bax, Ser62 phosphorylation of Myc, and Ser473 phosphorylation of Akt, all of which could be partially attenuated by OA treatment, O/E α4 or sh-PP2Ac. Metformin treatment also significantly reduced tumor formation in vivo as well as protein expression of PCNA, Akt, Myc, and serine phosphorylation of the latter 2, which can be partially blocked by O/E α4 or sh-PP2Ac. CONCLUSIONS Metformin reduced lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A.

Mengwasser KE, Adeyemi RO, Leng Y, et al.
Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal Targets.
Mol Cell. 2019; 73(5):885-899.e6 [PubMed] Related Publications
BRCA1 or BRCA2 inactivation drives breast and ovarian cancer but also creates vulnerability to poly(ADP-ribose) polymerase (PARP) inhibitors. To search for additional targets whose inhibition is synthetically lethal in BRCA2-deficient backgrounds, we screened two pairs of BRCA2 isogenic cell lines with DNA-repair-focused small hairpin RNA (shRNA) and CRISPR (clustered regularly interspaced short palindromic repeats)-based libraries. We found that BRCA2-deficient cells are selectively dependent on multiple pathways including base excision repair, ATR signaling, and splicing. We identified APEX2 and FEN1 as synthetic lethal genes with both BRCA1 and BRCA2 loss of function. BRCA2-deficient cells require the apurinic endonuclease activity and the PCNA-binding domain of Ape2 (APEX2), but not Ape1 (APEX1). Furthermore, BRCA2-deficient cells require the 5' flap endonuclease but not the 5'-3' exonuclease activity of Fen1, and chemically inhibiting Fen1 selectively targets BRCA-deficient cells. Finally, we developed a microhomology-mediated end-joining (MMEJ) reporter and showed that Fen1 participates in MMEJ, underscoring the importance of MMEJ as a collateral repair pathway in the context of homologous recombination (HR) deficiency.

Li ZY, Wang ZX, Li CC
Kinesin family member 20B regulates tongue cancer progression by promoting cell proliferation.
Mol Med Rep. 2019; 19(3):2202-2210 [PubMed] Free Access to Full Article Related Publications
Oral cancer refers to the malignant tumors that occur in the oral cavity, of which 80% are squamous cell carcinomas. The incidence of oral cancer accounts for ~5% of the incidence of systemic malignancies, with rapid progression, extensive infiltration and poor prognosis. In the present study, Kinesin family member (KIF)20B, a member of Kinesin‑6 family, was identified as a potential biomarker which could promote cancer progression. A total of 82 patients were recruited and KIF20B expression levels were investigated by immunohistochemistry, and were divided into high and low groups based on the median of KIF20B expression levels. The clinicopathological features and survival‑associated data of the two groups were analyzed and the results were provided as a table and by a Kaplan‑Meier plot, respectively. Additionally, KIF20B was successfully silenced in two tongue cancer cell lines, CAL‑27 and TCA‑8113. MTT and colony formation assay were performed to determine the changes of cell proliferation in knocked down‑KIF20B cell lines. In addition, proliferation‑associated proteins Ki67 and PCNA were investigated, by western blotting. In animal experiments, subcutaneous tumor formation was performed with control cells and cells with knocked down KIF20B, to determine the inhibitory effect of KIF20B in vivo. Firstly, it was found that there was significantly high expression levels of KIF20B in tongue cancer patients (P<0.05). Patients with high expression of KIF20B had poorer clinicopathological results including tumor differentiation level, lymph node metastasis and clinical stages. The overall survival and relapse‑free survival of high‑expression group were also poor. Secondly, after successful establishment of cells with knocked down KIF20B, this resulted in a notable reduction in cell proliferation in vitro. Subsequent western blotting further confirmed that Ki67 and PCNA expression levels had a significant decline. Finally, it was demonstrated that knocking down KIF20B could inhibit tumor volume growth in vivo. In conclusion, the high level of KIF20B in oral squamous cell carcinoma was significantly associated with poor clinicopathological features and survival. KIF20B might promote cancer development through enhancing cell proliferation in vitro, and might be a potential biomarker of oral squamous cell carcinoma.

Wang F, Zhu W, Yang R, et al.
LncRNA ZEB2-AS1 contributes to the tumorigenesis of gastric cancer via activating the Wnt/β-catenin pathway.
Mol Cell Biochem. 2019; 456(1-2):73-83 [PubMed] Related Publications
Studies have shown that long noncoding RNA Zinc finger E-box-binding homeobox 2 antisense RNA 1 (ZEB2-AS1) is involved in the progression of lung cancer, bladder cancer, and hepatocellular carcinoma. However, its role in the pathogenesis of gastric cancer remains unknown. The Wnt/β-catenin pathway contributes to the development of gastric cancer. ZEB2-AS1 expression was firstly detected in the gastric carcinoma tissue samples as well as in gastric cancer cells. Knockdown of ZEB2-AS1 was performed by ZEB2-AS1-shRNA, and the viability, migration, invasion, and apoptosis of gastric cancer cells were determined by CCK-8, scratch assay, transwell, and flow cytometry, respectively. Furthermore, levels of Ki-67, PCNA, VEGF, MMP9, epithelial-mesenchymal transition (EMT) markers (E-cadherin, Vimentin and ZEB2), cleaved caspase 3/8/9 and PARP, active β-catenin, c-Myc, cyclinD1, and AXIN2 were assayed by Western blot or real-time PCR. Additionally, the role and mechanism of ZEB2-AS1 were confirmed in a xenograft nude mouse model. We found ZEB2-AS1 expression was increased in gastric carcinoma samples, and it was correlated with tumor progression. Also, its expression was elevated in gastric cancer cells. Knockdown of ZEB2-AS1 reduced the proliferation, migration, invasion, and EMT, but increased the apoptosis of gastric carcinoma cells. Furthermore, ZEB2-AS1 downregulation remarkably suppressed the expression of Ki-67, PCNA, VEGF and MMP9, and the activation of Wnt/β-catenin signaling, whereas elevated the levels of cleaved caspase 3/8/9 and PARP in gastric cancer cells. And ZEB2 overexpression reversed the effects of ZEB2-AS1 downregulation on the proliferation, EMT and inactivation of Wnt/β-catenin signaling. Additionally, ZEB2-AS1 knockdown inhibited tumor growth, Ki-67 staining, and the expression of VEGF, MMP9, active β-catenin, c-Myc, cyclinD1, and AXIN2 in mice. In conclusion, ZEB2-AS1 promotes the tumorigenesis of gastric carcinoma that is related to the upregulation of ZEB2 and the activation of the Wnt/β-catenin pathway.

Li Y, Zhang T, Qin S, et al.
Effects of UPF1 expression on EMT process by targeting E‑cadherin, N‑cadherin, Vimentin and Twist in a hepatocellular carcinoma cell line.
Mol Med Rep. 2019; 19(3):2137-2143 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It has been reported that HCC has a poor prognosis. In the majority of cases, once metastatic, HCC is incurable. To identify an effective treatment for HCC, it is important to understand the underlying molecular mechanisms of HCC‑associated occurrence, proliferation, metastasis and carcinogenesis. In the present study, the role of Up‑frameshift 1 (UPF1), a potential tumor suppressor, was investigated in the HCC cell lines. The expression levels of UPF1 in an HCC cell line were examined by reverse transcription‑quantitative polymerase chain reaction. The expression levels of 19 key proteins in numerous signaling pathways were detected via protein array analysis in the presence of UPF1 overexpression. The present study further investigated the effects of UPF1 expression levels on the epithelial‑mesenchymal transition (EMT) process by targeting E‑cadherin, N‑cadherin, Vimentin and Twist‑related protein 1 (Twist). The results of the present study revealed that UPF1 was significantly downregulated in an HCC cell line. The majority of the proteins exhibited upregulated expression levels in the presence of UPF1 overexpression in the HCC cell line, Huh‑7. Key proteins, including cluster of differentiation (CD)31 (platelet endothelial cell adhesion molecule‑1), Vimentin, CD44, PCNA, Ki‑67, N‑Cadherin, Survivin, P53, Met and retinoblastoma exhibited a significant association with UPF1. Furthermore, western blotting indicated that the expression levels of N‑cadherin, Vimentin and Twist were notably upregulated while UPF1 was overexpressed; however, E‑cadherin was downregulated and opposing observations were reported with protein array analysis. In summary, E‑cadherin expression levels were regulated by the manifold, and UPF1, a potential tumor suppressor, may promote the EMT process in Huh‑7 HCC cells. The findings of the present study suggested that UPF1 expression levels affected the EMT process by targeting E‑cadherin, N‑cadherin, Vimentin and Twist.

Zheng X, Liu M, Song Y, Feng C
Long Noncoding RNA-ATB Impairs the Function of Tumor Suppressor miR-126-Mediated Signals in Endometrial Cancer for Tumor Growth and Metastasis.
Cancer Biother Radiopharm. 2019; 34(1):47-55 [PubMed] Related Publications
OBJECTIVE: Long non-coding RNA-ATB (Lnc-ATB) have been reported to promote tumor proliferation and metastasis via regulation of tumor suppressive miRNA-related signals. Patients with endometrial cancer (EC) have advanced stage disease or metastasis have poor prognosis. We here investigated the role of Lnc-ATB in endometrial cancer.
METHODS: Endometrial cancer tissues and normal tissues (n = 35) were collected to determine the expression and clinical significance of Lnc-ATB, and bioinformatics analysis was used to predict the miRNA target. siRNA was used to estimate the function of Lnc-ATB in EC cell lines and in vivo.
RESULT: The expression of Lnc-ATB is up-regulated in tumor tissues and EC cell lines. Patients with high expressed Lnc-ATB have high FIGO stage and poor tumor differentiation. The tumor suppressor miR-126 interacted with Lnc-ATB. Down-regulated miR-126 negative correlated with FIGO stage and tumor differentiation. Knockdown of Lnc-ATB in RL95 and HEC1A cell lines increased the miR-126 level and impaired the cell vitality, induced caspase-3-related tumor apoptosis and G1/S arrest. However, abrogation of miR-126 by its inhibitors counteracted Lnc-ATB knockdown-induced tumor inhibition via regulation of miR-126 target gene PIK3R2 and Sox2-related apoptosis and cell cycle pathway. Meanwhile, Lnc-ATB knockdown also suppressed the migration and invasion and inhibited TGF-β-induced epithelial-mesenchymal transition (EMT) phenotype via miR-126. Knockdown of Lnc-ATB in vivo remarkably induced tumor regression via restoration of tumor suppressor miR-126, leading to deceased tumor volume, reduced expression of PCNA and PIK3R2/Sox2 signals and EMT phenotype in tumor tissues.
CONCLUSION: These data demonstrate the tumorigenic role of Lnc-ATBs in endometrial cancer via abrogation of tumor suppressor miR-126 signals.

Lin Z, Li S, Guo P, et al.
Columbamine suppresses hepatocellular carcinoma cells through down-regulation of PI3K/AKT, p38 and ERK1/2 MAPK signaling pathways.
Life Sci. 2019; 218:197-204 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) as primary liver cancer in adults is the most common cause led to internal cirrhosis responsible for patients' death, which resulted in nearly a million deaths worldwide on both males and females in the developing and developed countries. Unfortunately, up to date, there are no highly effective treatment of medicine on HCC as lack of comprehensive cellular and molecular mechanism. According to the sources of human ancient history of medicine, traditional medicine could provide unique treatment to discontinue the challenging HCC. In this study, we inspected the effect of Columbamine (Col; C20H21NO5), an alkaloid isolated from calumba, on HCC utilizing three HCC cell-lines i.e. SMMC7721, HepG2 and Hep3B. Our data collected from these cell-lines exhibit strong Col suppression on the cell growth accompanying the dosage-dependent suppression, and we further confirmed the suppression on the tumor-growth in animal model. Rational of the Col suppression presents cellular mechanism by limiting the proliferation and colony formation of the cells marked with decreased expression of PCNA. Meanwhile decreases of migration indicated with increasing expression of E-cadherin and decreasing expression of N-cadherin, and of invasion labelled with decreasing expressions of MMP2 and MMP9, are accompanying the Col suppression along with the Col promoted apoptosis of the tumor cells. This programmed cell death marketed with cleaved Caspase 3 plus PAPR proteins, up-regulation of BAD and down-regulation of BCL2 is linked the Col suppression to unique calcium-related pathways. Our results unveiled that the Columbamine suppression on HCC based on the traditional medicine are clearly associated with PI3K/AKT, p38 and ERK1/2 MAPKs signaling pathways and guide further research orientation for developing the Col medicine against hepatocellular carcinoma.

Lim KS, Li H, Roberts EA, et al.
USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors.
Mol Cell. 2018; 72(6):925-941.e4 [PubMed] Article available free on PMC after 20/12/2019 Related Publications
BRCA1-deficient tumor cells have defects in homologous-recombination repair and replication fork stability, resulting in PARP inhibitor sensitivity. Here, we demonstrate that a deubiquitinase, USP1, is upregulated in tumors with mutations in BRCA1. Knockdown or inhibition of USP1 resulted in replication fork destabilization and decreased viability of BRCA1-deficient cells, revealing a synthetic lethal relationship. USP1 binds to and is stimulated by fork DNA. A truncated form of USP1, lacking its DNA-binding region, was not stimulated by DNA and failed to localize and protect replication forks. Persistence of monoubiquitinated PCNA at the replication fork was the mechanism of cell death in the absence of USP1. Taken together, USP1 exhibits DNA-mediated activation at the replication fork, protects the fork, and promotes survival in BRCA1-deficient cells. Inhibition of USP1 may be a useful treatment for a subset of PARP-inhibitor-resistant BRCA1-deficient tumors with acquired replication fork stabilization.

Xie XW, Wang XY, Liao WJ, et al.
Effect of Upregulated DNA Replication and Sister Chromatid Cohesion 1 Expression on Proliferation and Prognosis in Hepatocellular Carcinoma.
Chin Med J (Engl). 2018; 131(23):2827-2835 [PubMed] Article available free on PMC after 20/12/2019 Related Publications
Background: DNA replication and sister chromatid cohesion 1 (DSCC1) (also called DCC1) is a component of an alternative replication factor C complex that loads proliferating cell nuclear antigen onto DNA during S phase of the cell cycle. It is located at 8q24 and frequently amplified in hepatocellular carcinoma (HCC). However, the role of DSCC1 in the carcinogenesis and progress of HCC has not been fully investigated. Here, we aimed to assert the importance of DSCC1 in the HCC.
Methods: In this study, copy number variation data and RNA sequencing data were used to calculate the DNA copy number and mRNA expression of DSCC1 in HCC. Quantitative polymerase chain reaction, Western blotting, and immunohistochemistry analysis were used to determine the mRNA and protein level of DSCC1 in HCC. The Kaplan-Meier analysis and univariate and multivariate Cox regression analysis were used to assess the association of DSCC1 with the overall survival (OS) of HCC patients. Moreover, lentiviral shRNA was used to knockdown DSCC1, and then, colony-forming assay, cell cycle assay, and cell proliferation assay were performed to evaluate the impact of DSCC1 silencing on HCC cell lines.
Results: We found that DSCC1 was amplified and highly expressed in HCC tumor tissues than in nontumor tissues. We then found that the overexpression of both mRNA and protein of DSCC1 was linked to the bad prognosis of HCC patients. Astonishingly, the protein level of DSCC1 was an independent prognostic factor for OS (hazard ratio, 1.79; 95% confidence interval, 1.17-2.74; P = 0.007). Furthermore, the clonogenic capacity of DSCC1-amplified HCC cell lines (MHCC-97H, MHCC-97L, and Hep3B) was significantly inhibited by transduction of a lentiviral shRNA that targets DSCC1. We also showed that knockdown of DSCC1 induced G0-G1 cell cycle arrest (increased from 60% to more than 80%) and greatly inhibited the proliferation of HCC cell lines.
Conclusion: These results suggest that DSCC1 is a putative HCC driver gene that promotes proliferation and is associated with poor prognosis in HCC.

Zhang W, Li W, Han X
Skullcapflavone I inhibits proliferation of human colorectal cancer cells via down-regulation of miR-107 expression.
Neoplasma. 2019; 66(2):203-210 [PubMed] Related Publications
Colorectal cancer (CRC) is a common malignant tumor with high global increase and mortality. While Skullcapflavone I has been reported to exert anti-tumor effect in several cancers, its role in CRC has not previously been investigated. Recent studies have also demonstrated that microRNA-107 (miR-107) and tropomyosin alpha-1 (TPM1) are important regulators of cancer cell proliferation, but it remains unclear if these are involved in regulating the effect of Skullcapflavone I on CRC cells. This study therefore assessed the effects of Skullcapflavone I on CRC cell proliferation and investigated miR-107 and TPM1 regulatory effects on this process. The results showed that Skullcapflavone I significantly suppressed cell proliferation and viability and down-regulated PCNA and Cyclin D1protein levels. It also down-regulated miR-107 expression which then promoted TPM1 expression, but miR-107 over-expression abolished Skullcapflavone I anti-proliferative effects. Furthermore, Skullcapflavone I inhibited the activations of MEK/ERK and NF-κB signal pathway activation by regulating TPM1 in HCT116 cells. These results demonstrated that Skullcapflavone I increased the expression of TPM1 by down-regulating miR-107 and inhibiting the MEK/ERK and NF-κB signal pathways. It then inhibited HCT116 cell proliferation, and therefore Skullcapflavone I may provide new methodology in colorectal cancer treatment.

Shi J, Zhong X, Song Y, et al.
Long non-coding RNA RUNX1-IT1 plays a tumour-suppressive role in colorectal cancer by inhibiting cell proliferation and migration.
Cell Biochem Funct. 2019; 37(1):11-20 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) have been demonstrated to be involved in the progression of various cancers. In this study, we aim to investigate the role of lncRNA RUNX1-IT1 in the development of colorectal cancer (CRC). The expression levels of lncRNA RUNX1-IT1 were measured using quantitative real-time Polymerase Chain Reaction(qRT-PCR). CCK8 proliferation assay, transwell assay, and flow cytometry were performed to evaluate the effect of lncRNA RUNX1-IT1 on CRC cell proliferation, migration, and apoptosis. The proliferation markers (PCNA, Ki67), apoptosis markers (cleaved-PARP, cleaved-caspase3), and MMP9 are detected by western blotting. Significant down regulation of lncRNA RUNX1-IT1 was measured in CRC tissues and three CRC cell lines (HCT116, HT29, and RKO) compared with paired nontumorous adjacent tissues (P < 0.01) or the normal colonic epithelial cell line FHC (P < 0.05), respectively. Moreover, the proliferative and migration potential of CRC cells were inhibited by overexpressing lncRNA RUNX1-IT1, which could be obviously improved by knocking down lncRNA RUNX1-IT1. The protein levels of PCNA, Ki67, and MMP9 were upregulated by overexpressing lncRNA RUNX1-IT1 and down regulated in si-RUNX1-IT1 cells. Besides, lncRNA RUNX1-IT1 could also promote the apoptosis of CRC cells. In conclusion, lncRNA RUNX1-IT1 is downregulated in CRC and plays a tumour-suppressive role due to the regulatory of cell proliferation, migration, and apoptosis. SIGNIFICANCE OF THE STUDY: We demonstrated that lncRNA RUNX1-IT1 was down regulated both in CRC tissues and cell lines. Besides, lncRNA RUNX1-IT1 could serve as a potential diagnostic biomarker and play a tumour-suppressive role owing to its good diagnostic efficacy and inhibition of CRC cell proliferation and migration.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PCNA: Proliferating cell nuclear antigen, Cancer Genetics Web: http://www.cancer-genetics.org/PCNA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999