Gene Summary

Gene:CASP1; caspase 1
Aliases: ICE, P45, IL1BC
Summary:This gene encodes a protein which is a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce 2 subunits, large and small, that dimerize to form the active enzyme. This gene was identified by its ability to proteolytically cleave and activate the inactive precursor of interleukin-1, a cytokine involved in the processes such as inflammation, septic shock, and wound healing. This gene has been shown to induce cell apoptosis and may function in various developmental stages. Studies of a similar gene in mouse suggest a role in the pathogenesis of Huntington disease. Alternative splicing results in transcript variants encoding distinct isoforms. [provided by RefSeq, Mar 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (38)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CASP1 (cancer-related)

Pradier MF, Reis B, Jukofsky L, et al.
Case-control Indian buffet process identifies biomarkers of response to Codrituzumab.
BMC Cancer. 2019; 19(1):278 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Codrituzumab, a humanized monoclonal antibody against Glypican-3 (GPC3), which is expressed in hepatocellular carcinoma (HCC), was tested in a randomized phase II trial in advanced HCC patients who had failed prior systemic therapy. Biomarker analysis was performed to identify a responder population that benefits from treatment.
METHODS: A novel statistical method based on the Indian buffet process (IBP) was used to identify biomarkers predictive of response to treatment with Codrituzumab. The IBP is a novel method that allows flexibility in analysis design, and which is sensitive to slight, but meaningful between-group differences in biomarkers in very complex datasets RESULTS: The IBP model identified several subpopulations of patients having defined biomarker values. Tumor necrosis and viable cell content in the tumor were identified as prognostic markers of disease progression, as were the well-known HCC prognostic markers of disease progression, alpha-fetoprotein and Glypican-3 expression. Predictive markers of treatment response included natural killer (NK) cell surface markers and parameters influencing NK cell activity, all related to the mechanism of action of this drug CONCLUSIONS: The Indian buffet process can be effectively used to detect statistically significant signals with high sensitivity in complex and noisy biological data TRIAL REGISTRATION: NCT01507168 , January 6, 2012.

Kim MK, Song JY, Koh DI, et al.
Reciprocal negative regulation between the tumor suppressor protein p53 and B cell CLL/lymphoma 6 (BCL6) via control of caspase-1 expression.
J Biol Chem. 2019; 294(1):299-313 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Even in the face of physiological DNA damage or expression of the tumor suppressor protein p53, B cell CLL/lymphoma 6 (BCL6) increases proliferation and antagonizes apoptotic responses in B cells. BCL6 represses

Chasapis CT
Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types.
Metallomics. 2018; 10(11):1678-1686 [PubMed] Related Publications
In this work, for the first time, the human heavy metal proteome was predicted. According to the results, aluminum, cadmium, mercury and lead metalloproteomes might constitute up to 8.9%, 18.4%, 15% and 4% of the entire human proteome, respectively. The abundance of the predicted heavy metal-binding proteins in various organ-specific proteomes was retrieved from the Human Protein Atlas database showing higher expression profiles for Cd- and Hg-binding proteins in all studied organs (especially in the prostate, heart and pancreas) compared with the other heavy metals. Possible perturbations in cellular trafficking and homeostasis of essential metals by heavy metal proteomes were highlighted. Furthermore, this study showed that molecular linkages between heavy metal proteomes and major neurological disorders or various types of cancer were more significant for Cd followed by Hg, Al and Pb. Interestingly, integrated gene network analysis revealed that Cd and Hg proteomes share so far unknown gene circuits with these two types of disorder.

Hosonaga M, Arima Y, Sampetrean O, et al.
HER2 Heterogeneity Is Associated with Poor Survival in HER2-Positive Breast Cancer.
Int J Mol Sci. 2018; 19(8) [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Intratumoral human epidermal growth factor receptor 2 (HER2) heterogeneity has been reported in 16⁻36% of HER2-positive breast cancer and its clinical impact is under discussion. We examined the biological effects of HER2-heterogeneity on mouse models and analyzed metastatic brains by RNA sequence analysis. A metastatic mouse model was developed using 231-Luc (triple negative cells) and 2 HER2-positive cell lines, namely, HER2-60 and HER2-90 which showed heterogeneous and monotonous HER2 expressions, respectively. Metastatic lesions developed in 3 weeks in all the mice injected with HER2-60 cells, and in 69% of the mice injected with HER2-90 and 87.5% of the mice injected with 231-Luc. The median survival days of mice injected with 231-Luc, HER2-60, and HER2-90 cells were 29 (

Hu Q, Qin Y, Xiang J, et al.
dCK negatively regulates the NRF2/ARE axis and ROS production in pancreatic cancer.
Cell Prolif. 2018; 51(4):e12456 [PubMed] Related Publications
OBJECTIVES: Decreased deoxycytidine kinase (dCK) expression is a reported indicator of gemcitabine efficacy in pancreatic cancer, due to the impact of this kinase on gemcitabine metabolism. The transcription factor NF-E2 p45-related factor 2 (NRF2, also called Nfe2l2), a master regulator of redox homoeostasis, has been reported to tightly control the expression of numerous ROS-detoxification genes and participates in drug resistance. However, the contribution of dCK to the NRF2 signalling axis has seldom been discussed and needs investigation.
MATERIALS AND METHODS: By overexpressing dCK in pancreatic cancer cells, we assessed the impact of dCK on NRF2 transcriptional activity. Furthermore, we measured the impact of dCK expression on the intracellular redox balance and reactive oxygen species (ROS) production. By utilizing immunohistochemical staining and tissues from pancreatic cancer patients, we assessed the correlation between dCK and NRF2 expression. Through proliferation and metastasis assays, we examined the impact of dCK expression on cell proliferation and metastasis.
RESULTS: dCK negatively regulates NRF2 transcriptional activity, leading to the decreased expression of ARE-driven antioxidant genes. In addition, dCK negatively regulates intracellular redox homoeostasis and ROS production. Negative correlations between dCK and NRF2 levels in pancreatic cancer cell lines and patient samples were observed. In vitro cell line studies suggested that dCK negatively regulated proliferation and metastasis.
CONCLUSION: Decreased dCK expression promotes NRF2-driven antioxidant transcription, which further enhances gemcitabine treatment resistance, forming a feedback loop.

Wang Z, Pan L, Yu H, Wang Y
The long non-coding RNA SNHG5 regulates gefitinib resistance in lung adenocarcinoma cells by targetting
Biosci Rep. 2018; 38(4) [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Gefitinib resistance is one of the major obstacles for the treatment of lung adenocarcinoma (LAD). The present study aimed to investigate the effects of the long non-coding RNA (lncRNA), small nucleolar RNA host gene 5SNHG5 on gefitinib resistance in LAD and explore the underlying mechanisms. The quantitative real-time PCR (qRT-PCR) results showed that SNHG5 expression was significantly down-regulated in LAD patients with acquired gefitinib resistance and gefitinib resistant LAD cell lines. SNHG5 overexpression sensitized gefitinib resistant LAD cells to gefitinib treatment, while knockdown of SNHG5 rendered gefitinib sensitive LAD cells to gefitinib treatment. Bioinformatics analysis showed that SNHG5 exerted its function through interaction with

Liu X, Liu Y, Zhao J, Liu Y
Screening of potential biomarkers in uterine leiomyomas disease via gene expression profiling analysis.
Mol Med Rep. 2018; 17(5):6985-6996 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The present study aimed to screen potential biomarkers for uterine leiomyomas disease, particularly target genes associated with the mediator of RNA polymerase II transcription subunit 12 (MED12) mutation. The microarray data of GSE30673, including 10 MED12 wild-type myometrium, 8 MED12 mutation leiomyoma and 2 MED12 wild-type leiomyoma samples, were downloaded from the Gene Expression Omnibus database. Compared with myometrium samples, differently-expressed genes (DEGs) in the MED12 mutation and wild-type leiomyoma samples were identified using the Limma package. The two sets of DEGs obtained were intersected to screen common DEGs. The DEGs in the MED12 mutation and wild-type leiomyoma samples, and common DEGs were defined as group A, B and C. Gene Ontology (GO) and pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery online tool. Based on the Kyoto Encyclopedia of Genes and Genomes database, pathway relation networks were constructed. DEGs in GO terms and pathways were intersected to screen important DEGs. Subsequently, a gene co‑expression network was constructed and visualized using Cytoscape software. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of important DEGs. A total of 1,258 DEGs in group A were screened, and enriched for extracellular matrix (ECM) organization and ECM‑receptor interaction. In addition, a total of 1,571 DEGs in group B were enriched for cell adhesion. Furthermore, 391 DEGs were involved in extracellular matrix organization. Pathway relation networks of group A, B and C were constructed with nodes of 48, 39, and 28, respectively. Finally, 135 important DEGs were obtained, including Acyl‑CoA synthetase medium‑chain family member 3, protein S (α) (PROS1) and F11 receptor. A gene co‑expression network with 68 nodes was constructed. The expression of caspase 1 (CASP1) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1) was significant higher in SK‑UT‑1 compared with that in PHM1‑31 cells, while the expression of PROS1 was significant lower in SK‑UT‑1 cells. These results that CASP1, ALDH1A1 and PROS1 may be potential biomarkers for uterine leiomyomas. Furthermore, hematopoietic prostaglandin D synthase and carbonyl reductase 3 (CBR3) may be particular genes associated with the MED12 mutation in this disease.

Peeken JC, Jutzi JS, Wehrle J, et al.
Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms.
Blood. 2018; 131(18):2065-2073 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The transcription factor "nuclear factor erythroid 2" (NFE2) is overexpressed in the majority of patients with myeloproliferative neoplasms (MPNs). In murine models, elevated NFE2 levels cause an MPN phenotype with spontaneous leukemic transformation. However, both the molecular mechanisms leading to NFE2 overexpression and its downstream targets remain incompletely understood. Here, we show that the histone demethylase

Qiu XY, Hu DX, Chen WQ, et al.
PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation.
Biochim Biophys Acta Mol Basis Dis. 2018; 1864(5 Pt A):1754-1769 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor due to the lack of effective therapeutic drugs. Cancer therapy targeting programmed cell death protein 1 (PD-1) or programmed death ligand-1 (PD-L1) is of revolutionary. However, the role of intrinsic PD-L1, which determines immune-therapy outcomes, remains largely unclear. Here we demonstrated an oncogenic role of PD-L1 via binding and activating Ras in GBM cells. RNA-sequencing transcriptome data revealed that PD-L1 significantly altered gene expression enriched in cell growth/migration/invasion pathways in human GBM cells. PD-L1 overexpression and knockout or knockdown demonstrated that PD-L1 promoted GBM cell proliferation and migration in vitro and in vivo. Mechanistically, PD-L1 prominently activated epithelial mesenchymal transition (EMT) process in a MEK/Erk- but not PI3K/Akt-dependent manner. Further, we identified intracellular interactions of PD-L1 and H-Ras, which led to Ras/Erk/EMT activation. Finally, we demonstrated that PD-L1 overexpression promoted while knockdown abolished GBM development and invasion in orthotopic GBM models of rodents. Taken together, we found that intracellular PD-L1 confers GBM cell malignancy and aggressiveness via binding Ras and activating the downstream Erk-EMT signaling. Thus, these results shed important insights in improving efficacy of immune therapy for GBM as well as other malignant tumors.

Yang JS, Lee CY, Cho HC, et al.
ITR‑284 modulates cell differentiation in human chronic myelogenous leukemia K562 cells.
Oncol Rep. 2018; 39(1):383-391 [PubMed] Related Publications
ITR‑284 is a carboxamide analog that can inhibit proliferation in human promyelocytic leukemia HL-60 cells. To understand the effects and molecular mechanisms of ITR‑284 in human erythromyeloblastoid leukemia, we treated K562 cells with different concentrations of ITR‑284 (0, 2, 4, 6, 8 and 10 nM) and all-trans retinoic acid (ATRA) (0, 0.1, 0.5, 1, 5 and 10 µM) for 24 h. The IC50 of ITR‑284 was ~10 nM in K562 cells treated for 24 h as determined by MTT assay. May-Grünwald-Giemsa staining and nitro blue tetrazolium (NBT) assays were used to determine cell morphology changes and differentiation after ITR‑284 and ATRA treatment. In addition, mRNA expression levels of hematopoietic factors, including GATA‑1, NF-E2 and GATA‑2, were elevated, while expression levels of BCR‑ABL were downregulated in K562 cells after 24 h of treatment with ITR‑284 as determined by quantitative reverse transcription polymerase chain reaction. In addition, western blot analyses showed that FOXM1, GLI 1 and c-MYC protein levels were decreased by ITR‑284. Taken together, our data show that ITR‑284 induced K562 cell differentiation, which led to decreased tumorigenesis. Our findings suggest that ITR‑284 could be a potential candidate for treating chronic myelogenous leukemia.

Dayalan Naidu S, Dikovskaya D, Gaurilcikaite E, et al.
Transcription factors NRF2 and HSF1 have opposing functions in autophagy.
Sci Rep. 2017; 7(1):11023 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Autophagy plays a critical role in the maintenance of cellular homeostasis by degrading proteins, lipids and organelles. Autophagy is activated in response to stress, but its regulation in the context of other stress response pathways, such as those mediated by heat shock factor 1 (HSF1) and nuclear factor-erythroid 2 p45-related factor 2 (NRF2), is not well understood. We found that the Michael acceptor bis(2-hydoxybenzylidene)acetone (HBB2), a dual activator of NRF2 and HSF1, protects against the development of UV irradiation-mediated cutaneous squamous cell carcinoma in mice. We further show that HBB2 is an inducer of autophagy. In cells, HBB2 increases the levels of the autophagy-cargo protein p62/sequestosome 1, and the lipidated form of microtubule-associated protein light chain 3 isoform B. Activation of autophagy by HBB2 is impaired in NRF2-deficient cells, which have reduced autophagic flux and low basal and induced levels of p62. Conversely, HSF1-deficient cells have increased autophagic flux under both basal as well as HBB2-induced conditions, accompanied by increased p62 levels. Our findings suggest that NRF2 and HSF1 have opposing roles during autophagy, and illustrate the existence of tight mechanistic links between the cellular stress responses.

Tsukamoto Y, Futani H, Yoshiya S, et al.
Primary undifferentiated small round cell sarcoma of the deep abdominal wall with a novel variant of t(10;19) CIC-DUX4 gene fusion.
Pathol Res Pract. 2017; 213(10):1315-1321 [PubMed] Related Publications
We experienced a 38-year-old Japanese male with t(10;19) CIC-DUX4 -positive undifferentiated small round cell sarcoma in the deep abdominal wall. Three months before his first visit to our hospital, he noticed a mass in his right abdominal wall. Computed tomography on admission revealed a solid abdominal tumor 70×53mm in size and multiple small tumors in both lungs. The biopsy of the abdominal tumor revealed undifferentiated small round cell sarcoma, suggestive of Ewing sarcoma. Under the clinical diagnosis of Ewing-like sarcoma of the abdominal wall with multiple lung metastases, several cycles of ICE (ifosfamide, carboplatin and etoposide) therapy were performed. After the chemotherapy, the lung metastases disappeared, while the primary lesion rapidly grew. Additional VDC (vincristine, doxorubicin and cyclophosphamide) therapy was carried out without apparent effect. Although the surgical removal of the primary lesion was done, peritoneal dissemination and a huge metastatic liver tumor appeared thereafter. The patient died of disease progression two months after the surgery. The total clinical course was approximately one year, showing that the tumor was extremely aggressive. The tumor cells of the surgical specimen were positive for CD99, WT1, calretinin, INI1, ERG and Fli1 by immunohistochemistry. Fusion gene analyses using the frozen surgical material revealed negativity for EWSR1-Fli1, EWSR1-ERG and t(4;19) CIC-DUX4 fusions, but positivity for t(10;19) CIC-DUX4 fusion. Thus, we made a final pathological diagnosis of t(10;19) CIC-DUX4-positive undifferentiated small round cell sarcoma. To our knowledge, this is the 13th case of t(10;19) CIC-DUX4 undifferentiated small round cell sarcoma with precise clinicopathological information. Especially in our case, two types of t(10;19) CIC-DUX4 fusion transcripts were observed, both of which are in-frame and novel.

Kallemeijn MJ, de Ridder D, Schilperoord-Vermeulen J, et al.
Dysregulated signaling, proliferation and apoptosis impact on the pathogenesis of TCRγδ+ T cell large granular lymphocyte leukemia.
PLoS One. 2017; 12(4):e0175670 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
TCRγδ+ T-LGL leukemia is a rare form of chronic mature T cell disorders in elderly, which is generally characterized by a persistently enlarged CD3+CD57+TCRγδ+ large granular lymphocyte population in the peripheral blood with a monoclonal phenotype. Clinically, the disease is heterogeneous, most patients being largely asymptomatic, although neutropenia, fatigue and B symptoms and underlying diseases such as autoimmune diseases or malignancies are also often observed. The etiology of TCRγδ+ T-LGL proliferations is largely unknown. Here, we aimed to investigate underlying molecular mechanisms of these rare proliferations by performing gene expression profiling of TCRγδ+ T-LGL versus normal TCRγδ+ T cell subsets. From our initial microarray dataset we observed that TCRγδ+ T-LGL leukemia forms a separate group when compared with different healthy control TCRγδ+ T cell subsets, correlating best with the healthy TemRA subset. The lowest correlation was seen with the naive subset. Based on specific comparison between healthy control cells and TCRγδ+ T-LGL leukemia cells we observed up-regulation of survival, proliferation and hematopoietic system related genes, with a remarkable down-regulation of apoptotic pathway genes. RQ-PCR validation of important genes representative for the dataset, including apoptosis (XIAP, CASP1, BCLAF1 and CFLAR), proliferation/development (ID3) and inflammation (CD28, CCR7, CX3CR1 and IFNG) processes largely confirmed the dysregulation in proliferation and apoptosis. Based on these expression data we conclude that TCRγδ+ T-LGL leukemia is likely the result of an underlying aberrant molecular mechanisms leading to increased proliferation and reduced apoptosis.

Chang I, Mitsui Y, Kim SK, et al.
Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation.
Oncotarget. 2017; 8(24):39087-39100 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Cytochrome P450 1B1 (CYP1B1) is recognized as a universal tumor biomarker and a feasible therapeutic target due to its specific overexpression in cancer tissues. Despite its up-regulation in prostate cancer (PCa), biological significance and clinicopathological features of CYP1B1 are still elusive. Here, we show that overexpression or hyperactivation of CYP1B1 stimulated proliferative, migratory and invasive potential of non-tumorigenic PCa cells. Attenuation of CYP1B1 with its specific small hairpin (sh) RNAs greatly reduced proliferation through apoptotic cell death and impaired migration and invasion in PCa cells. Intratumoral injection of CYP1B1 shRNA attenuated growth of pre-existing tumors. The antitumor effect of CYP1B1 shRNA was also observed in prostate tumor xenograft mouse models. Among the genes altered by CYP1B1 knockdown, reduction of caspase-1 (CASP1) activity attenuated the antitumor effect of CYP1B1 inhibition. Indeed, CYP1B1 regulates CASP1 expression or activity. Finally, CYP1B1 expression was increased in higher grades of PCa and overall survival was significantly reduced in patients with high levels of CYP1B1 protein. CYP1B1 expression was reversely associated with CASP1 expression in clinical tissue samples. Together, our results demonstrate that CYP1B1 regulates PCa tumorigenesis by inhibiting CASP1 activation. Thus, the CYP1B1-CASP1 axis may be useful as a potential biomarker and a therapeutic target for PCa.

Tremblay PG, Sirard MA
Transcriptomic analysis of gene cascades involved in protein kinase A and C signaling in the KGN line of human ovarian granulosa tumor cells†.
Biol Reprod. 2017; 96(4):855-865 [PubMed] Related Publications
The developmental competence of an oocyte is its capacity to resume maturation, undergo successful fertilization, and reach the blastocyst stage. This competence is acquired through interaction with somatic cells of the follicle. Cumulus and granulosa cells support oocyte development, while the oocyte influences follicular cell growth and differentiation. Studies suggest that follicle-stimulating hormone and luteinizing hormone play an essential role in oocyte competence acquisition through signaling initiated by protein kinases A and C (PKA and PKC) in granulosa cells. Using a microarray and RT-qPCR, the transcriptome of human granulosa-like tumor cells (KGN) treated for 24 h with forskolin (FSK) or phorbol 12-myristate 13-acetate (PMA) was analyzed to determine the effects of PKA and PKC stimulation on gene expression. Protein-kinase-driven signaling appeared to involve five major upstream regulators, namely epidermal growth factor (EGF), transforming growth factor beta 1 (TGFβ1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF2), and hepatocyte growth factor (HGF). Gene associations with seven major ovarian functions were identified: Prostaglandin- endoperoxide synthase 2 (PTGS2), interleukin 8 (IL8), and interleukin 6 (IL6) with inflammation; Steroidogenic acute regulatory protein (STAR), cytochrome P450scc (CYP11A1), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) with steroidogenesis; Vascular endothelial growth factor C (VEGFC), Vascular endothelial growth factor A (VEGFA), and C-X-C chemokine receptor type 4 (CXCR4) with angiogenesis; Amphiregulin (AREG), epidermal growth factor receptor (EGFR), and sprouty RTK signaling antagonist 2 (SPRY2) with differentiation, BCL2 associated X (BAX), BCL2 like 12 (BCL2L12), and caspase 1(CASP1) with apoptosis, Cyclin D1 (CCND1), cyclin B1 (CCNB1), and cyclin B2 (CCNB2) with division; and Matrix metalloproteinase-1 (MMP1), Matrix metallopeptidase 9 (MMP9), and TIMP metallopeptidase inhibitor 1 (TIMP1) with ovulation. Overall, these results indicate that signaling via both PKA and PKC potentiates gene regulation of functions such as inflammation and apoptosis, while functions such as differentiation, ovulation and angiogenesis are partial to one kinase or the other. These results improve understanding of the pathways underlying the most important changes that occur in the follicle prior to ovulation.

Li H, He Y, Hao P, Liu P
Identification of characteristic gene modules of osteosarcoma using bioinformatics analysis indicates the possible molecular pathogenesis.
Mol Med Rep. 2017; 15(4):2113-2119 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The aim of the present study was to investigate the possible pathogenesis of osteosarcoma using bioinformatics analysis to examine gene‑gene interactions. A total of three datasets associated with osteosarcoma were downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were identified using the significance analysis of microarrays method, which then were subjected to the Human Protein Reference Database to identify the protein‑protein interaction (PPI) pairs and to construct a PPI network of the DEGs. Subsequent multilevel community analysis was applied to mine the modules in the network, followed by screening of the differential expression module using the GlobalAncova package. The genes in the differential expression modules were verified in the valid datasets. The verified genes underwent functional and pathway enrichment analysis. A total of 616 DEGs were selected to construct the PPI network, which included 5,808 osteosarcoma‑specific interaction pairs and 8,012 normal‑specific pairs. Tumor protein p53 (TP53), mitogen-activated protein kinase 1 (MAPK1) and estrogen receptor 1 (ESR1) were identified the most important osteosarcoma‑associated genes, with the highest levels of topological properties. Neurogenic locus notch homolog protein 3 (NOTCH3) and caspase 1 (CASP1) were identified as the osteosarcoma‑specific interaction pairs. Among all 23 mined modules, three were identified as differential expression modules, which were verified in the other two datasets. The genes in these modules were predominantly enriched in the FGFR, MAPK and Notch signaling pathways. Therefore, TP53, MAPK1, ESR1, NOTCH3 and CASP1 may be important in the development of osteosarcoma, and provides valuable clues to investigate the pathogenesis of osteosarcoma using the three differential expression modules.

Montagne R, Baranzelli A, Muharram G, et al.
MET receptor variant R970C favors calpain-dependent generation of a fragment promoting epithelial cell scattering.
Oncotarget. 2017; 8(7):11268-11283 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The receptor tyrosine kinase MET and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas deregulation of MET signaling is associated with tumorigenesis leading to various cancers, including lung carcinoma. Mutations in the MET kinase domain lead to constitutive kinase activity and are associated with tumorigenesis. In lung cancer, however, some mutations are found in the juxtamembrane domain, and their functional consequences are unknown. Because the juxtamembrane domain of MET is targeted by several proteolytic cleavages, involved in its degradation during cell death or under steady-state conditions, we evaluated the influence of these mutations on the MET proteolytic cleavages. In stably transfected epithelial cells expressing MET, the juxtamembrane mutations R970C, P991S, and T992I were found not to modify the known caspase or presenilin-dependent regulated intramembrane proteolysis. Yet when overexpressed, the R970C variant caused generation of an as yet undescribed 45-kDa fragment (p45 MET). This fragment was found in the confluent lung cancer cell line NCI-H1437 carrying the R970C mutation and at a lesser extent in cell lines expressing WT MET, suggesting that R970C mutation favors this cleavage. Generation of p45 MET required the activity of the calpain proteases, confirming the involvement of proteolysis. Ectopic expression of reconstituted p45 MET in epithelial cell lines favored cell scattering and invasion indicating active role of this fragment in HGF/SF induced responses. Hence, although the juxtamembrane mutations of MET do not affect its known proteolytic cleavages, the R970C MET variant favors calpain dependent proteolytic cleavage in lung cancer cells.

Sonohara F, Inokawa Y, Kanda M, et al.
Association of Inflammasome Components in Background Liver with Poor Prognosis After Curatively-resected Hepatocellular Carcinoma.
Anticancer Res. 2017; 37(1):293-300 [PubMed] Related Publications
BACKGROUND/AIM: Inflammasomes are multiprotein complexes that evoke key inflammatory cascades. The present study evaluated the influence of inflammasome component expression in non-tumorous tissue on postsurgical hepatocellular carcinoma (HCC) prognosis.
MATERIALS AND METHODS: The expressions of candidate genes were investigated using real-time quantitative reverse-transcription polymerase chain reaction in resected HCC cases. In order to identify potential prognostic factors, statistical analyses were performed for each gene.
RESULTS: The expression of nod-like receptor family, pyrin domain containing 3 (NLRP3), nod-like receptor family, CARD domain containing 4 (NLRC4), and absent in melanoma 2 (AIM2) was significantly higher in corresponding normal tissue (CN) compared to those in HCC. High expression of NLRP3, NLRC4, and caspase 1 (CASP1) in CN was significantly correlated with worse overall survival. Furthermore, multivariate analysis revealed that NLRP3 expression in CN greater than the median was an independent prognostic factor for poorer overall survival.
CONCLUSION: High expression of NLRP3, NLRC4, and CASP1 in background non-tumorous liver is significantly correlated with poor prognosis of patients after resection of HCC.

Wang Z, Sun X, Feng Y, et al.
Dihydromyricetin reverses MRP2-mediated MDR and enhances anticancer activity induced by oxaliplatin in colorectal cancer cells.
Anticancer Drugs. 2017; 28(3):281-288 [PubMed] Related Publications
Dihydromyricetin (DMY), extracted from the Chinese herbal medicine Ampelopsis grossedentata, possesses antitumor potential in different types of human cancer cells. Hence, its effects on drug resistance and molecular mechanisms in colorectal cancer (CRC) are still unknown. In our present study, we observed that DMY enhanced the chemosensitivity to oxaliplatin (OXA). DMY increased OXA-induced apoptosis and reduced 5(6)-carboxy-2',7'-dichlorofluorescein accumulation in OXA-resistant CRC HCT116/L-OHP cells. Our mechanistic study suggested that DMY treatment inhibited multidrug resistance protein 2 (MRP2) expression levels and promoter activity, indicating that DMY reduced not only MRP2 transcriptional and translational levels but also its function. Additional experiments indicated that the nuclear translocation of nuclear factor-erythroid 2 p45 related factor 2, a MRP2 regulator, was also inhibited by DMY. In summary, our study provided the first direct evidence that the inhibitory effects of DMY on MRP2 expression in OXA-resistant CRC cells were closely associated with the inhibition of nuclear factor-erythroid 2 p45 related factor 2 signaling. DMY could be a potential candidate for CRC chemotherapy.

Ye P, Kong Y, Chen X, et al.
Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells.
Oncotarget. 2017; 8(7):11389-11399 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The key problem of cryoablation is that only freezing is often unable to kill the capillaries at tumor edges, leading to a high rate of recurrence. Here, we found that Fe3O4 nanoparticles were highly useful to improve the freezing capability of cryosurgery due to their ability to alter intracellular ice formation (IIF) and growth in tumor cells. The killing efficiency of cryoablation for MCF-7 breast cancer cells can be expected to be enhanced as the Fe3O4 nanoparticles concentration increased, it was mainly because that more IIF was induced by the participation of Fe3O4 nanoparticles during freezing, recrystallization and thawing. Furthermore, our results also showed that recrystallization contributed to the formation of extracellular embryonic crystals, which was capable of enhancing the efficiency of killing MCF-7 cells. This research is to develop an understanding of the mechanism of the cryoablation enhancing the killing efficiency in the presence of the Fe3O4 nanoparticles, and to promote their further application in tumor therapy.

Riz I, Hawley TS, Marsal JW, Hawley RG
Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming.
Oncotarget. 2016; 7(41):66360-66385 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its positive regulator, the autophagy receptor sequestosome 1 (SQSTM1)/p62. The eukaryotic translation initiation factor gene EIF4E3 was among the Nrf2 target genes upregulated in LP-1/Cfz cells, suggesting existence of a positive feedback loop. In line with this, we found that siRNA knockdown of eIF4E3 decreased Nrf2 protein levels. On the other hand, elevated SQSTM1/p62 levels were due at least in part to activation of the PERK-eIF2α pathway. LP-1/Cfz cells had decreased levels of reactive oxygen species as well as elevated levels of fatty acid oxidation and prosurvival autophagy. Genetic and pharmacologic inhibition of the Nrf2-EIF4E3 axis or the PERK-eIF2α pathway, disruption of redox homeostasis or inhibition of fatty acid oxidation or autophagy conferred sensitivity to carfilzomib. Our findings were supported by clinical data where increased EIF4E3 expression was predictive of Nrf2 target gene upregulation in a subgroup of patients with chemoresistant minimal residual disease and relapsed/refractory MM. Thus, our data offer a preclinical rationale for including inhibitors of the SQSTM1/p62-Nrf2 pathway to the treatment regimens for certain advanced stage MM patients.

Wu CS, Chang KP, OuYang CN, et al.
ASC contributes to metastasis of oral cavity squamous cell carcinoma.
Oncotarget. 2016; 7(31):50074-50085 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
ASC (Apoptosis-associated Speck-like protein containing a CARD) acts as a platform protein in the inflammasome cascade of some cancer types. However, its potential involvement in OSCC (oral cavity squamous cell carcinoma) has not yet been determined. Here, we investigated the potential role of ASC in OSCC. RT-qPCR analysis of 20 paired tumor and adjacent normal tissue samples revealed that the mRNA levels of ASC, along with IL-1β, CASP1, and NLRP3 in ASC-associated NLRP3 inflammasome were significantly elevated in OSCC tissues. Immunohistochemical staining of these four proteins in 111 clinical specimens revealed that high-level expression of ASC was significantly associated with tumor stage, node stage (p=0.001), overall stage (p<0.001), extracapsular spread (p<0.001), perineural invasion (p=0.004) and tumor depth (p<0.001). Kaplan-Meier survival analysis further revealed that high-level ASC expression was correlated with poorer overall survival (p=0.001), disease-specific survival (p<0.001) and disease-free survival (p<0.001). Studies using OSCC cell lines indicated that high-level ASC expression enhanced cell migration and invasion, and experiments using an orthotropic nude mouse model confirmed that ASC overexpression induced metastasis of OSCC cells. This is the first report to show that ASC contributes to OSCC metastasis, and that high-level ASC expression is a marker for poor prognosis in OSCC patients.

Laskowska J, Lewandowska-Bieniek J, Szczepanek J, et al.
Genomic and transcriptomic profiles and in vitro resistance to mitoxantrone and idarubicin in pediatric acute leukemias.
J Gene Med. 2016; 18(8):165-79 [PubMed] Related Publications
BACKGROUND: A major problem in the treatment of leukemia is the development of drug resistance to chemotherapeutic agents.
METHODS: To determine the ex vivo drug resistance profile to anthracyclines, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) cytotoxicity assay was performed on mononuclear cells obtained from 155 patients with acute lymphoblastic leukemia (ALL) or acute myeloblastic leukemia (AML). Gene expression profiles (for 51 patients with ALL and 16 with AML) were prepared on the basis of cRNA hybridization to oligonucleotide arrays of the human genome (Affymetrix). Hierarchical clustering, assignment location and biological function were investigated during the correlation analysis for identified probe sets. Comparative genomic hybridization (CGH) array profiles (34 patients with ALL and 12 with AML) were prepared on the basis of DNA hybridization to oligonucleotide arrays of the human genome (Agilent). The validation of the array results was performed by a quantitative reverse transcriptase polymerase chain reaction.
RESULTS: The collected expression and CGH microarray experiment results indicate that the ITGB2, SCL6A7, CASP1 and DUSP genes may comprise a resistance marker for acute leukemia cells correlated with anthracyclines. Moreover, there were also identified chromosome rearrangements associated with drug resistance, such as del5q32-35.3 and amp8p12-p11.21. Precise genes, as well as genome aberrations, might be classified as targets in therapy.
CONCLUSIONS: In AML, the resistance of blasts to idarubicin and mitoxantrone may reflect an impaired integrin pathway. In ALL, the development of resistance is caused by the inhibition of B and T cell activation. Copyright © 2016 John Wiley & Sons, Ltd.

Warfel NA, Sainz AG, Song JH, Kraft AS
PIM Kinase Inhibitors Kill Hypoxic Tumor Cells by Reducing Nrf2 Signaling and Increasing Reactive Oxygen Species.
Mol Cancer Ther. 2016; 15(7):1637-47 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Intratumoral hypoxia is a significant obstacle to the successful treatment of solid tumors, and it is highly correlated with metastasis, therapeutic resistance, and disease recurrence in cancer patients. As a result, there is an urgent need to develop effective therapies that target hypoxic cells within the tumor microenvironment. The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases represent a prosurvival pathway that is upregulated in response to hypoxia, in a HIF-1-independent manner. We demonstrate that pharmacologic or genetic inhibition of PIM kinases is significantly more toxic toward cancer cells in hypoxia as compared with normoxia. Xenograft studies confirm that PIM kinase inhibitors impede tumor growth and selectively kill hypoxic tumor cells in vivo Experiments show that PIM kinases enhance the ability of tumor cells to adapt to hypoxia-induced oxidative stress by increasing the nuclear localization and activity of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), which functions to increase the expression of antioxidant genes. Small molecule PIM kinase inhibitors prevent Nrf2 from accumulating in the nucleus, reducing the transcription of cytoprotective genes and leading to the build-up of intracellular reactive oxygen species (ROS) to toxic levels in hypoxic tumor cells. This toxic effect of PIM inhibitors can be successfully blocked by ROS scavengers, including N-acetyl cystine and superoxide dismutase. Thus, inhibition of PIM kinases has the potential to oppose hypoxia-mediated therapeutic resistance and induce cell death in the hypoxic tumor microenvironment. Mol Cancer Ther; 15(7); 1637-47. ©2016 AACR.

Foy JP, Tortereau A, Caulin C, et al.
The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.
Oncotarget. 2016; 7(24):35932-35945 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.

Zhang B, Xu J, Li C, et al.
MBD1 is an Epigenetic Regulator of KEAP1 in Pancreatic Cancer.
Curr Mol Med. 2016; 16(4):404-11 [PubMed] Related Publications
BACKGROUND: MBD1 (Methyl-CpG Binding Domain Protein 1) is highly expressed in pancreatic cancer. Nrf2 (NF-E2 p45-related factor 2) and the 'antioxidant response element' (ARE)-driven genes that NRF2 controls are frequently upregulated in pancreatic cancer and correlate with poor survival. Keap1 (Kelch-like ECH-associated protein 1) is a dominant negative regulator of NRF2 and is reported to be epigenetically regulated by promoter methylation. However, the role of MBD1 with antioxidant response and its association with KEAP1 has never been reported before and remains unclear.
OBJECTIVE: We investigated the role of MBD1 in antioxidant response and its regulatory function in KEAP1 transcription in pancreatic cancer cells.
METHOD: MBD1 was silenced to examine its role in antioxidant response. To explore the underlying mechanism, transcriptional and protein levels of KEAP1 was examined. The correlation between MBD1 and KEAP1 was confirmed in pancreatic cancer tissue samples by using immunohistochemistry (IHC). Dualluciferase reporter assay and Chromatin immunoprecipitation (ChIP) were used to elucidate he mechanism of MBD1 in KEAP1 transcriptional control. Moreover, co-immunoprecipitation (CoIP) assay was performed to uncover the regulatory role of MBD1 in KEAP1 transcription through its association with c-myc.
RESULTS: MBD1 silencing decreased antioxidant response and the related ARE target genes through epigenetic regulation of KEAP1. MBD1 negatively correlated with KEAP1 in pancreatic cancer tissue samples. Moreover, c-myc was a MBD1 interaction partner in KEAP1 epigenetic regulation.
CONCLUSION: MBD1 can induce antioxidant response in pancreatic cancer through down-regulation of KEAP1. c-myc plays a key role in MBD1 mediated epigenetic silencing of KEAP1.

Zhou C, Dai X, Chen Y, et al.
G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells.
Oncotarget. 2016; 7(11):12823-39 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
G protein-coupled receptors (GPCRs) represent the largest membrane protein family implicated in the therapeutic intervention of a variety of diseases including cancer. Exploration of biological actions of orphan GPCRs may lead to the identification of new targets for drug discovery. This study investigates potential roles of GPR160, an orphan GPCR, in the pathogenesis of prostate cancer. The transcription levels of GPR160 in the prostate cancer tissue samples and cell lines, such as PC-3, LNCaP, DU145 and 22Rv1 cells, were significantly higher than that seen in normal prostate tissue and cells. Knockdown of GPR160 by lentivirus-mediated short hairpin RNA constructs targeting human GPR160 gene (ShGPR160) resulted in prostate cancer cell apoptosis and growth arrest both in vitro and in athymic mice. Differential gene expression patterns in PC-3 cells infected with ShGPR160 or scramble lentivirus showed that 815 genes were activated and 1193 repressed. Functional annotation of differentially expressed genes (DEGs) revealed that microtubule cytoskeleton, cytokine activity, cell cycle phase and mitosis are the most evident functions enriched by the repressed genes, while regulation of programmed cell death, apoptosis and chemotaxis are enriched significantly by the activated genes. Treatment of cells with GPR160-targeting shRNA lentiviruses or duplex siRNA oligos increased the transcription of IL6 and CASP1 gene significantly. Our data suggest that the expression level of endogenous GPR160 is associated with the pathogenesis of prostate cancer.

Abend M, Badie C, Quintens R, et al.
Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study.
Radiat Res. 2016; 185(2):109-23 [PubMed] Related Publications
The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Union's Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min(-1) dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0-4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1-1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on one gene, ferredoxin reductase (FDXR), using qRT-PCR were as precise as dose estimates based on multiple genes using microarrays, but the precision decreased at doses ≥2 Gy. Binary dose categories comprising, for example, unexposed compared with exposed samples, could be completely discriminated with most of our methods. Exposed prostate cancer blood samples (n = 4) could be completely discriminated from unexposed blood samples (n = 4, P < 0.03, two-sided Fisher's exact test) without individual controls. This could be performed by introducing an in vitro-to-in vivo correction factor of FDXR, which varied among the laboratories. After that the in vitro-constructed calibration curves could be used for dose estimation of the in vivo exposed prostate cancer blood samples within an accuracy window of ±0.5 Gy in both contributing qRT-PCR laboratories. In conclusion, early and precise dose estimates can be performed, in particular at doses ≤2 Gy in vitro. Blood samples of prostate cancer patients exposed to 0.09-0.017 Gy could be completely discriminated from pre-exposure blood samples with the doses successfully estimated using adjusted in vitro-constructed calibration curves.

Tian Y, Tian X, Han X, et al.
ABCE1 plays an essential role in lung cancer progression and metastasis.
Tumour Biol. 2016; 37(6):8375-82 [PubMed] Related Publications
ATP-binding cassette E1 (ABCE1) is a member of the ATP-binding cassette transporters and regulates a broad range of biological functions including viral infection, cell proliferation, and anti-apoptosis. We have previously shown that ABCE1 is a prognostic indicator for lung cancer, although the underlying mechanisms remain unclear. To investigate whether the ABCE1 gene contributes to the malignancy of lung tumors, we introduced ABCE1 into LTEP-a-2 lung adenocarcinoma cells. Ectopic ABCE1 expression promoted clonogenicity and anchorage-independent growth of LTEP-a-2 cells, while in a mouse xenograft tumor model, it had an augmentative effect on tumor growth and metastasis and reduced the expression of the tumor-suppressor gene growth arrest and DNA damage-inducible 45α (GADD45α). Moreover, apoptosis was not significantly influenced by ABCE1 in vitro. In summary, we have provided evidence that ABCE1 plays an essential role in the progression and metastasis of lung cancers and may represent a valuable therapeutic target for the management of lung tumor.

Furfaro AL, Traverso N, Domenicotti C, et al.
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance.
Oxid Med Cell Longev. 2016; 2016:1958174 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CASP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999