Gene Summary

Gene:CASP1; caspase 1, apoptosis-related cysteine peptidase
Aliases: ICE, P45, IL1BC
Summary:This gene encodes a protein which is a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce 2 subunits, large and small, that dimerize to form the active enzyme. This gene was identified by its ability to proteolytically cleave and activate the inactive precursor of interleukin-1, a cytokine involved in the processes such as inflammation, septic shock, and wound healing. This gene has been shown to induce cell apoptosis and may function in various developmental stages. Studies of a similar gene in mouse suggest a role in the pathogenesis of Huntington disease. Alternative splicing results in transcript variants encoding distinct isoforms. [provided by RefSeq, Mar 2012]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (38)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CASP1 (cancer-related)

Namani A, Li Y, Wang XJ, Tang X
Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer.
Biochim Biophys Acta. 2014; 1843(9):1875-85 [PubMed] Related Publications
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.

Chian S, Li YY, Wang XJ, Tang XW
Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway.
Asian Pac J Cancer Prev. 2014; 15(6):2911-6 [PubMed] Related Publications
Oxaliplatin is a first-line therapy for colorectal cancer, but cancer cell resistance to the drug compromises its efficacy. To explore mechanisms of drug resistance, we treated colorectal cancer cells (HCT116 and SW620) long-term with oxaliplatin and established stable oxaliplatin-resistant lines (HCT116-OX and SW620-OX). Compared with parental cell lines, IC50s for various chemotherapeutic agents (oxaliplatin, cisplatin and doxorubicin) were increased in oxaliplatin-resistant cell lines and this was accompanied by activation of nuclear factor erythroid-2 p45-related factor 2 (Nrf2) and NADPH quinone oxidoreductase 1 (NQO1). Furthermore, luteolin inhibited the Nrf2 pathway in oxaliplatin-resistant cell lines in a dose-dependent manner. Luteolin also inhibited Nrf2 target gene [NQO1, heme oxygenase-1 (HO-1) and GSTα1/2] expression and decreased reduced glutathione in wild type mouse small intestinal cells. There was no apparent effect in Nrf2-/- mice. Luteolin combined with other chemotherapeutics had greater anti-cancer activity in resistant cell lines (combined index values below 1), indicating a synergistic effect. Therefore, adaptive activation of Nrf2 may contribute to the development of acquired drug-resistance and luteolin could restore sensitivity of oxaliplatin-resistant cell lines to chemotherapeutic drugs. Inhibition of the Nrf2 pathway may be the mechanism for this restored therapeutic response.

Lertpiriyapong K, Handt L, Feng Y, et al.
Pathogenic properties of enterohepatic Helicobacter spp. isolated from rhesus macaques with intestinal adenocarcinoma.
J Med Microbiol. 2014; 63(Pt 7):1004-16 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Considerable progress has been made in understanding the roles of Helicobacter pylori in inflammation and gastric cancer; however, far less is known about the roles of enterohepatic Helicobacter species (EHS) in carcinogenesis and their zoonotic or pathogenic potential. We determined the prevalence of EHS infection in a cohort of geriatric rhesus monkeys in which intestinal adenocarcinoma (IAC) is common and investigated the association between EHS infection and IAC. The cohort consisted of 36 animals, 14 of which (age 26-35 years) had IAC. Of the 36 rhesus, 35 (97%) were positive for EHS using PCR or bacterial isolation from faeces, colonic or tumour tissues. Only a single rhesus, which had IAC, was negative for EHS by all detection methods. The EHS identified by 16S rRNA sequencing in this study were from three Helicobacter taxa: Helicobacter macacae (previously rhesus monkey taxon 1), Helicobacter sp. rhesus monkey taxon 2, previously described from strain MIT 99-5507, and Helicobacter sp. rhesus monkey taxon 4, related to Helicobacter fennelliae. Thirteen of 14 monkeys with IAC were positive for either H. macacae (7/13, 54%), EHS rhesus monkey taxon 4 (4/13, 31%) or a mixture of the two EHS (2/13, 15%). These results indicate that EHS are prevalent among aged rhesus macaques with IAC. Using Helicobacter genus-specific florescent in situ hybridization, EHS were detected on the surface of colonic epithelia of infected monkeys. All Helicobacter isolates, including H. macacae, effectively adhered to, invaded, and significantly induced proinflammatory genes, including IL-8, IL-6, TNF-α and iNOS, while downregulating genes involved in the function of inflammasomes, particularly IL-1β, CASPASE-1, NRLP3, NLRP6 and NLRC4 in the human colonic T84 cell line (P<0.0001). These results suggest that EHS may represent an aetiological agent mediating diarrhoea, chronic inflammation, and possibly intestinal cancer in non-human primates, and may play a role in similar disease syndromes in humans. Downregulation of inflammasome function may represent an EHS strategy for long-term persistence in the host and play a role in inducing pathological changes in the host's lower bowel.

Monsma DJ, Cherba DM, Richardson PJ, et al.
Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance.
Pediatr Blood Cancer. 2014; 61(9):1570-7 [PubMed] Related Publications
BACKGROUND: Precision (Personalized) medicine has the potential to revolutionize patient health care especially for many cancers where the fundamental disease etiology remains either elusive or has no available therapy. Here we outline a study in alveolar rhabdomyosarcoma, in which we use gene expression profiling and a series of drug prediction algorithms combined with a matched patient-derived xenograft (PDX) model to test bioinformatically predicted therapies.
PROCEDURE: A PDX model was developed from a patient biopsy and a number of drugs identified using gene expression analysis in combination with drug prediction algorithms. Drugs chosen from each of the predictive methodologies, along with the patient's standard-of-care therapy (ICE-T), were tested in vivo in the PDX tumor. A second study was initiated using the tumors that re-grew following the ICE-T treatment. Further expression analysis identified additional therapies with potential anti-tumor efficacy.
RESULTS: A number of the predicted therapies were found to be active against the tumors in particular BGJ398 (FGFR2) and ICE-T. Re-transplanted ICE-T treated tumorgrafts demonstrated a decreased response to ICE-T recapitulating the patient's refractory disease. Gene expression profiling of the ICE-T treated tumorgrafts identified cytarabine (SLC29A1) as a potential therapy, which was shown, along with BGJ398, to be highly active in vivo.
CONCLUSIONS: This study illustrates that PDX models are suitable surrogates for testing potential therapeutic strategies based on gene expression analysis, modeling clinical drug resistance and hold the potential to assist in guiding prospective patient care.

Glembotsky AC, Bluteau D, Espasandin YR, et al.
Mechanisms underlying platelet function defect in a pedigree with familial platelet disorder with a predisposition to acute myelogenous leukemia: potential role for candidate RUNX1 targets.
J Thromb Haemost. 2014; 12(5):761-72 [PubMed] Related Publications
BACKGROUND: Familial platelet disorder with a predisposition to acute myelogenous leukemia (FPD/AML) is an inherited platelet disorder caused by a germline RUNX1 mutation and characterized by thrombocytopenia, a platelet function defect, and leukemia predisposition. The mechanisms underlying FPD/AML platelet dysfunction remain incompletely clarified. We aimed to determine the contribution of platelet structural abnormalities and defective activation pathways to the platelet phenotype. In addition, by using a candidate gene approach, we sought to identify potential RUNX1-regulated genes involved in these defects.
METHODS: Lumiaggregometry, α-granule and dense granule content and release, platelet ultrastructure, αIIb β3 integrin activation and outside-in signaling were assessed in members of one FPD/AML pedigree. Expression levels of candidate genes were measured and luciferase reporter assays and chromatin immunoprecipitation were performed to study NF-E2 regulation by RUNX1.
RESULTS: A severe decrease in platelet aggregation, defective αIIb β3 integrin activation and combined αδ storage pool deficiency were found. However, whereas the number of dense granules was markedly reduced, α-granule content was heterogeneous. A trend towards decreased platelet spreading was found, and β3 integrin phosphorylation was impaired, reflecting altered outside-in signaling. A decrease in the level of transcription factor p45 NF-E2 was shown in platelet RNA and lysates, and other deregulated genes included RAB27B and MYL9. RUNX1 was shown to bind to the NF-E2 promoter in primary megakaryocytes, and wild-type RUNX1, but not FPD/AML mutants, was able to activate NF-E2 expression.
CONCLUSIONS: The FPD/AML platelet function defect represents a complex trait, and RUNX1 orchestrates platelet function by regulating diverse aspects of this process. This study highlights the RUNX1 target NF-E2 as part of the molecular network by which RUNX1 regulates platelet biogenesis and function.

Gialeli Ch, Viola M, Barbouri D, et al.
Dynamic interplay between breast cancer cells and normal endothelium mediates the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells.
Biochim Biophys Acta. 2014; 1840(8):2549-59 [PubMed] Related Publications
BACKGROUND: Breast cancer-endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells.
METHODS: To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties.
RESULTS: BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome β5 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC.
CONCLUSIONS AND GENERAL SIGNIFICANCE: BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.

Wang XJ, Li Y, Luo L, et al.
Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs.
Free Radic Biol Med. 2014; 70:68-77 [PubMed] Related Publications
Oxaliplatin is an important drug in the treatment of advanced metastatic colorectal cancer. NF-E2 p45-related factor 2 (Nrf2) is a key transcription factor that controls genes encoding cytoprotective and detoxifying enzymes through antioxidant-response elements (AREs) in their regulatory regions. Here, we report that oxaliplatin is an activator of the Nrf2 signaling pathway, with upregulation of ARE-driven genes and glutathione elevation. An injection of oxaliplatin into mice enhanced the expression of glutathione transferases and antioxidant enzymes in the small and large intestines of wild-type (WT) mice but not Nrf2(-/-) mice, indicating that oxaliplatin activates Nrf2 in vivo. Oxaliplatin failed to increase Nrf2 accumulation in non-small-cell lung cancer A549 cells, which harbor a dysfunctional somatic mutation of KEAP1. However, forced expression of WT mKeap1 restored the ability of oxaliplatin to activate the transcription factor. Cys(151) in Keap1 was required for the response stimulated by oxaliplatin. In addition, dichloro(1,2-diaminocyclohexane) platinum, a metabolite of oxaliplatin, was found to have the same effect in activating the ARE-gene battery as its parent drug, whereas another metabolite, oxalate, was ineffective. Moreover, two other platinum derivatives, cisplatin and carboplatin, had no effect on the Keap1/Nrf2 system. Furthermore, activation of Nrf2 by oxaliplatin reduced the sensitivity of colon cancer cells to therapeutic drugs. Conversely, knockdown of Nrf2 by Nrf2 siRNA reduced oxaliplatin-induced chemoresistance. Our study showed that oxaliplatin exerts protection against the cytotoxicity of anticancer drugs via Nrf2, indicating an important role of Nrf2 in oxaliplatin-based chemotherapy.

Miller JM, Thompson JK, MacPherson MB, et al.
Curcumin: a double hit on malignant mesothelioma.
Cancer Prev Res (Phila). 2014; 7(3):330-40 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Inflammation is a key mediator in the development of malignant mesothelioma, which has a dismal prognosis and poor therapeutic strategies. Curcumin, a naturally occurring polyphenol in turmeric, has been shown to possess anticarcinogenic properties through its anti-inflammatory effects. Inflammasomes, a component of inflammation, control the activation of caspase-1 leading to pyroptosis and processing of proinflammatory cytokines, interleukin (IL)-1β and IL-18. In the present study, we investigate the role of curcumin in pyroptotic cell death of malignant mesothelioma cells. Using in vitro models with mouse and human malignant mesothelioma cells, curcumin is shown to induce pyroptosis through activation of caspase-1 and increased release of high-mobility group box 1 (HMGB1) without processing of IL-1β and IL-18. Absence of IL-1β processing in response to curcumin-mediated caspase-1 activation is attributed to blockade of pro-IL-1β priming through inhibition of the NF-κB pathway. Furthermore, curcumin's cytotoxicity in malignant mesothelioma cells is demonstrated to be dependent on pyroptosis as inhibition of caspase-1 resulted in protection against curcumin-induced cell death. We also demonstrate that curcumin-mediated caspase-1 activation is oxidant dependent by using N-acetyl-L-cysteine (NAC) to inhibit pyroptosis. PCR array analysis using the human inflammasome template revealed that curcumin significantly downregulated levels of inflammasome-related gene expression involved in inflammation, e.g., NF-κB, toll-like receptors (TLR), and IL-1β. Our data indicate that curcumin has a double effect on malignant mesothelioma cells through induction of pyroptosis while subsequently protecting against inflammation.

Ribeiro IP, Marques F, Caramelo F, et al.
Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management.
Cell Oncol (Dordr). 2014; 37(1):29-39 [PubMed] Related Publications
PURPOSE: The identification of genetic markers associated with oral cancer is considered essential to improve the diagnosis, prognosis, early tumor and relapse detection and, ultimately, to delineate individualized therapeutic approaches. Here, we aimed at identifying such markers.
METHODS: Multiplex Ligation-dependent Probe Amplification (MLPA) analyses encompassing 133 cancer-related genes were performed on a panel of primary oral tumor samples and its corresponding resection margins (macroscopically tumor-free tissue) allowing, in both types of tissue, the detection of a wide arrange of copy number imbalances on various human chromosomes.
RESULTS: We found that in tumor tissue, from the 133 cancer-related genes included in this study, those that most frequently exhibited copy number gains were located on chromosomal arms 3q, 6p, 8q, 11q, 16p, 16q, 17p, 17q and 19q, whereas those most frequently exhibiting copy number losses were located on chromosomal arms 2q, 3p, 4q, 5q, 8p, 9p, 11q and 18q. Several imbalances were highlighted, i.e., losses of ERBB4, CTNNB1, NFKB1, IL2, IL12B, TUSC3, CDKN2A, CASP1, and gains of MME, BCL6, VEGF, PTK2, PTP4A3, RNF139, CCND1, FGF3, CTTN, MVP, CDH1, BRCA1, CDKN2D, BAX, as well as exon 4 of TP53. Comparisons between tumor and matched macroscopically tumor-free tissues allowed us to build a logistic regression model to predict the tissue type (benign versus malignant). In this model, the TUSC3 gene showed statistical significance, indicating that loss of this gene may serve as a good indicator of malignancy.
CONCLUSIONS: Our results point towards relevance of the above mentioned cancer-related genes as putative genetic markers for oral cancer. For practical clinical purposes, these genetic markers should be validated in additional studies.

Sugiyama R, Agematsu K, Migita K, et al.
Defect of suppression of inflammasome-independent interleukin-8 secretion from SW982 synovial sarcoma cells by familial Mediterranean fever-derived pyrin mutations.
Mol Biol Rep. 2014; 41(1):545-53 [PubMed] Related Publications
Familial Mediterranean fever (FMF) is a recessive inherited autoinflammatory syndrome. Patients with FMF have symptoms such as recurrent fever and abdominal pain, sometimes accompanied by arthralgia. Biopsy specimens have revealed substantial neutrophil infiltration into synovia. FMF patients have a mutation in the Mediterranean fever gene, encoding pyrin, which is known to regulate the inflammasome, a platform for processing interleukin (IL)-1β. FMF patients heterozygous for E148Q mutation, heterozygous for M694I mutation, or combined heterozygous for E148Q and M694I mutations, which were found to be major mutations in an FMF study group in Japan, suffer from arthritis, the severity of which is likely to be lower than in FMF patients with M694V mutations. Expression plasmids of wild-type (WT) pyrin and mutated pyrin, such as E148Q, M694I, M694V, and E148Q+M694I, were constructed, and SW982 synovial sarcoma cells were transfected with these expression plasmids. IL-8 and IL-6 were spontaneously secreted from the culture supernatant of SW982 cells without any stimulation, whereas IL-1β and TNF-α could not be detected even when stimulated with lipopolysaccharide. Notably, two inflammasome components, ASC and caspase-1, could not be detected in SW982 cells by Western blotting. IL-8 but not IL-6 secretion from SW982 cells was largely suppressed by WT pyrin, but less suppressed by mutated pyrin, which appeared to become weaker in the order of E148Q, M694I, E148Q+M694I, and M694V mutations. As for IL-8 and IL-6, similar results were obtained using stable THP-1 cells expressing the WT pyrin or mutated pyrins, such as M694V or E148Q, when stimulated by LPS. In addition, IL-8 secretion from mononuclear cells of FMF patients was significantly higher than that of healthy volunteers when incubated on a culture plate. Thus, our results suggest that IL-8 secretion from SW982 synovial sarcoma cells suppressed by pyrin independently of inflammasome is affected by pyrin mutations, which may reflect the activity in FMF arthritis.

Joosten LA, Netea MG, Dinarello CA
Interleukin-1β in innate inflammation, autophagy and immunity.
Semin Immunol. 2013; 25(6):416-24 [PubMed] Related Publications
Although IL-1β is the master inflammatory cytokine in the IL-1 family, after more than ten years of continuous breeding, mice deficient in IL-1β exhibit no spontaneous disease. Therefore, one concludes that IL-1β is not needed for homeostasis. However, IL-1β-deficient mice are protected against local and systemic inflammation due to live infections, autoimmune processes, tumor metastasis and even chemical carcinogenesis. Based on a large number of preclinical studies, blocking IL-1β activity in humans with a broad spectrum of inflammatory conditions has reduced disease severity and for many, has lifted the burden of disease. Rare and common diseases are controlled by blocking IL-1β. Immunologically, IL-1β is a natural adjuvant for responses to antigen. Alone, IL-1β is not a growth factor for lymphocytes; rather in antigen activated immunocompetent cells, blocking IL-1 reduces IL-17 production. IL-1β markedly increases in the expansion of naive and memory CD4T cells in response to challenge with their cognate antigen. The response occurs when only specific CD4T cells respond to IL-1β and not to IL-6 or CD-28. A role for autophagy in production of IL-1β has emerged with deletion of the autophagy gene ATG16L1. Macrophages from ATG16L1-deficient mice produce higher levels of IL-1β after stimulation with TLR4 ligands via a mechanism of caspase-1 activation. The implications for increased IL-1β release in persons with defective autophagy may have clinical importance for disease.

Villalobos X, Rodríguez L, Prévot J, et al.
Stability and immunogenicity properties of the gene-silencing polypurine reverse Hoogsteen hairpins.
Mol Pharm. 2014; 11(1):254-64 [PubMed] Related Publications
Gene silencing by either small-interference RNAs (siRNA) or antisense oligodeoxynucleotides (aODN) is widely used in biomedical research. However, their use as therapeutic agents is hindered by two important limitations: their low stability and the activation of the innate immune response. Recently, we developed a new type of molecule to decrease gene expression named polypurine reverse Hoogsteen hairpins (PPRHs) that bind to polypyrimidine targets in the DNA. Herein, stability experiments performed in mouse, human, and fetal calf serum and in PC3 cells revealed that the half-life of PPRHs is much longer than that of siRNAs in all cases. Usage of PPRHs with a nicked-circular structure increased the binding affinity to their target sequence and their half-life in FCS when bound to the target. Regarding the innate immune response, we determined that the levels of the transcription factors IRF3 and its phosphorylated form, as well as NF-κB were increased by siRNAs and not by PPRHs; that the expression levels of several proinflammatory cytokines including IL-6, TNF-α, IFN-α, IFN-ß, IL-1ß, and IL-18 were not significantly increased by PPRHs; and that the cleavage and activation of the proteolytic enzyme caspase-1 was not triggered by PPRHs. These determinations indicated that PPRHs, unlike siRNAs, do not activate the innate inflammatory response.

Charbel C, Fontaine RH, Malouf GG, et al.
NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi.
J Invest Dermatol. 2014; 134(4):1067-74 [PubMed] Related Publications
Congenital melanocytic nevus (CMN) is a particular melanocytic in utero proliferation characterized by an increased risk of melanoma transformation during infancy or adulthood. NRAS and BRAF mutations have consistently been reported in CMN samples, but until recently results have been contradictory. We therefore studied a series of large and giant CMNs and compared them with small and medium CMNs using Sanger sequencing, pyrosequencing, high-resolution melting analysis, and mutation enrichment by an enhanced version of ice-COLD-PCR. Large-giant CMNs displayed NRAS mutations in 94.7% of cases (18/19). At that point, the role of additional mutations in CMN pathogenesis had to be investigated. We therefore performed exome sequencing on five specimens of large-giant nevi. The results showed that NRAS mutation was the sole recurrent somatic event found in such melanocytic proliferations. The genetic profile of small-medium CMNs was significantly different, with 70% of cases bearing NRAS mutations and 30% showing BRAF mutations. These findings strongly suggest that NRAS mutations are sufficient to drive melanocytic benign proliferations in utero.

Ip BC, Hu KQ, Liu C, et al.
Lycopene metabolite, apo-10'-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice.
Cancer Prev Res (Phila). 2013; 6(12):1304-16 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Obesity is associated with increased risk in hepatocellular carcinoma (HCC) development and mortality. An important disease control strategy is the prevention of obesity-related hepatic inflammation and tumorigenesis by dietary means. Here, we report that apo-10'-lycopenoic acid (APO10LA), a cleavage metabolite of lycopene at its 9',10'-double bond by carotene-9',10'-oxygenase, functions as an effective chemopreventative agent against hepatic tumorigenesis and inflammation. APO10LA treatment on human liver THLE-2 and HuH7 cells dose dependently inhibited cell growth and upregulated sirtuin 1 (SIRT1), a NAD(+)-dependent protein deacetylase that may suppress hepatic carcinogenesis. This observed SIRT1 induction was associated with decreased cyclin D1 protein, increased cyclin-dependent kinase inhibitor p21 protein expression, and induced apoptosis. APO10LA supplementation (10 mg/kg diet) for 24 weeks significantly reduced diethylnitrosamine-initiated, high fat diet (HFD)-promoted hepatic tumorigenesis (50% reduction in tumor multiplicity; 65% in volume) and lung tumor incidence (85% reduction) in C57Bl/6J mice. The chemopreventative effects of APO10LA were associated with increased hepatic SIRT1 protein and deacetylation of SIRT1 targets, as well as with decreased caspase-1 activation and SIRT1 protein cleavage. APO10LA supplementation in diet improved glucose intolerance and reduced hepatic inflammation [decreased inflammatory foci, TNFα, interleukin (IL)-6, NF-κB p65 protein expression, and STAT3 activation] in HFD-fed mice. Furthermore, APO10LA suppressed Akt activation, cyclin D1 gene, and protein expression and promoted PARP protein cleavage in transformed cells within liver tumors. Taken together, these data indicate that APO10LA can effectively inhibit HFD-promoted hepatic tumorigenesis by stimulating SIRT1 signaling while reducing hepatic inflammation.

Dey P, Barros RP, Warner M, et al.
Insight into the mechanisms of action of estrogen receptor β in the breast, prostate, colon, and CNS.
J Mol Endocrinol. 2013; 51(3):T61-74 [PubMed] Related Publications
Estrogen and its receptors (ERs) influence many biological processes in physiology and pathology in men and women. ERs are involved in the etiology and/or progression of cancers of the prostate, breast, uterus, ovary, colon, lung, stomach, and malignancies of the immune system. In estrogen-sensitive malignancies, ERβ usually is a tumor suppressor and ERα is an oncogene. ERβ regulates genes in several key pathways including tumor suppression (p53, PTEN); metabolism (PI3K); survival (Akt); proliferation pathways (p45(Skp2), cMyc, and cyclin E); cell-cycle arresting factors (p21(WAF1), cyclin-dependent kinase inhibitor 1 (CDKN1A)), p27(Kip1), and cyclin-dependent kinases (CDKs); protection from reactive oxygen species, glutathione peroxidase. Because they are activated by small molecules, ERs are excellent targets for pharmaceuticals. ERα antagonists have been used for many years in the treatment of breast cancer and more recently pharmaceutical companies have produced agonists which are very selective for ERα or ERβ. ERβ agonists are being considered for preventing progression of cancer, treatment of anxiety and depression, as anti-inflammatory agents and as agents, which prevent or reduce the severity of neurodegenerative diseases.

Gan FF, Ling H, Ang X, et al.
A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways.
Toxicol Appl Pharmacol. 2013; 272(3):852-62 [PubMed] Related Publications
Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E2 (PGE2) in RAW 264.7 macrophage-like cells. Inhibition of cancer cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies.

Ponomareva L, Liu H, Duan X, et al.
AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer.
Mol Cancer Res. 2013; 11(10):1193-202 [PubMed] Related Publications
UNLABELLED: Close links have been noted between chronic inflammation of the prostate and the development of human prostatic diseases such as benign prostate hyperplasia (BPH) and prostate cancer. However, the molecular mechanisms that contribute to prostatic inflammation remain largely unexplored. Recent studies have indicated that the IFN-inducible AIM2 protein is a cytosolic DNA sensor in macrophages and keratinocytes. Upon sensing DNA, AIM2 recruits the adaptor ASC and pro-CASP1 to assemble the AIM2 inflammasome. Activation of the AIM2 inflammasome cleaves pro-interleukin (IL)-1β and pro-IL-18 and promotes the secretion of IL-1β and IL-18 proinflammatory cytokines. Given that human prostatic infections are associated with chronic inflammation, the development of BPH is associated with an accumulation of senescent cells with a proinflammatory phenotype, and the development of prostate cancer is associated with the loss of IFN signaling, the role of AIM2 in mediating the formation of prostatic diseases was investigated. It was determined that IFNs (α, β, or γ) induced AIM2 expression in human prostate epithelial cells and cytosolic DNA activated the AIM2 inflammasome. Steady-state levels of the AIM2 mRNA were higher in BPH than in normal prostate tissue. However, the levels of AIM2 mRNA were significantly lower in clinical tumor specimens. Accordingly, constitutive levels of AIM2 mRNA and protein were lower in a subset of prostate cancer cells as compared with BPH cells. Further, the cytosolic DNA activated the AIM2 inflammasome in the androgen receptor-negative PC3 prostate cancer cell line, suggesting that AIM2-mediated events are independent of androgen receptor status.
IMPLICATIONS: The AIM2 inflammasome has a fundamental role in the generation of human prostatic diseases.

Alsafadi S, Even C, Falet C, et al.
Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers.
Clin Breast Cancer. 2013; 13(5):401-8 [PubMed] Related Publications
BACKGROUND: Molecular segmentation of breast cancer allows identification of small groups of patients who present high sensitivity to targeted agents. A patient, with chemo- and trastuzumab-resistant HER2-overexpressing breast cancer, who presented concomitant acute promyelocytic leukemia, showed a response in her breast lesions to retinoic acid, arsenic, and aracytin. We therefore investigated whether RARA gene amplification could be associated with sensitivity to retinoic acid derivatives in breast cancers.
MATERIALS AND METHODS: Array comparative genomic hybridization and gene expression arrays were used to characterize RARA amplifications and expression in 103 breast cancer samples. In vitro activity of ATRA was characterized in T47D, SKBR3, and BT474 cell lines.
RESULTS: Retinoic acid receptor alpha was gained or amplified in 27% of HER2-positive and 13% of HER2-negative breast cancer samples. Retinoic acid receptor alpha can be coamplified with HER2. Retinoic acid receptor alpha copy number changes could be correlated with messenger RNA expression. All-trans-retinoic acid reduced cell viability of RARA-amplified, but not RARA-normal, cell lines through apoptosis. Gene expression arrays showed that ATRA-induced apoptosis in RARA-amplified cell lines was related to an increase in CASP1 and IRF1.
CONCLUSION: The results of this study suggest that breast cancers exhibiting RARA amplifications could be sensitive to retinoic acid. A phase II trial will evaluate this hypothesis in the clinical setting.

Kawamata N, Moreilhon C, Saitoh T, et al.
Genetic differences between Asian and Caucasian chronic lymphocytic leukemia.
Int J Oncol. 2013; 43(2):561-5 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Chronic lymphocytic leukemia (CLL) is a common hematological malignancy in Western countries. However, this disease is very rare in Asian countries. It is not clear whether the mechanisms of development of CLL in Caucasians and Asians are the same. We compared genetic abnormalities in Asian and Caucasian CLL using 250k GeneChip arrays. Both Asian and Caucasian CLL had four common genetic abnormalities: deletion of 13q14.3, trisomy 12, abnormalities of ATM (11q) and abnormalities of 17p. Interestingly, trisomy 12 and deletion of 13q14.3 were mutually exclusive in both groups. We also found that deletions of miR 34b/34c (11q), caspase 1/4/5 (11q), Rb1 (13q) and DLC1 (8p) are common in both ethnic groups. Asian CLL more frequently had gain of 3q and 18q. These suggest that classic genomic changes in the Asian and Caucasina CLL are same. Further, we found amplification of IRF4 and deletion of the SP140/SP100 genes; these genes have been reported as CLL-associated genes by previous genome-wide-association study. We have found classic genomic abnormalities in Asian CLL as well as novel genomic alteration in CLL.

Rubis B, Holysz H, Gladych M, et al.
Telomerase downregulation induces proapoptotic genes expression and initializes breast cancer cells apoptosis followed by DNA fragmentation in a cell type dependent manner.
Mol Biol Rep. 2013; 40(8):4995-5004 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The aim of the study was to analyze the consequence of silencing genes coding for the key subunits of the telomerase complex, i.e. TERT, TERC and TP1 in human breast cancer MCF7 and MDA-MB-231cells. The transfection was performed using Lipofectamine2000 and pooled siRNAs. The cytotoxic and/or antiproliferative effect of siRNA was measured by the SRB assay, the cell cycle was analysed by flow cytometry and DNA fragmentation by TUNEL analysis. Telomerase activity was assessed by TRAP, followed by PAGE and ELISA assays. Telomerase downregulation was also assessed using qPCR in order to estimate the changes in the expression profile of genes engaged in apoptosis. It was revealed that treatment of breast cancer cells with different siRNAs (100 nM) resulted in a cell type and time-dependent effects. The downregulation of telomerase subunits was followed by reduction of telomerase activity down to almost 60% compared to control cells. However, a significant effect was only observed when the TERT subunit was downregulated. Its silencing resulted in a significant (p<0.05) increase of apoptosis (over 10% in MCF7 and about 5% in MDA-MB-231 cells, corresponding to the Annexin V assay) and DNA fragmentation (almost 30% in MCF7 and over 25% in MDA-MB-231 cells). Interestingly, also several proapoptotic genes were induced after the downregulation of the key telomerase subunit, including Bax, Bik or caspase-1 and caspase-14, as well as NGFR and TNFSF10 which were upregulated twice and more.

Thai P, Statt S, Chen CH, et al.
Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines.
Am J Respir Cell Mol Biol. 2013; 49(2):204-11 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The incidence of lung diseases and cancer caused by cigarette smoke is increasing. The molecular mechanisms of gene regulation induced by cigarette smoke that ultimately lead to cancer remain unclear. This report describes a novel long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) both in vitro and in vivo and is elevated in numerous lung cancer cell lines. We have termed this lncRNA the smoke and cancer-associated lncRNA-1 (SCAL1). This lncRNA is located in chromosome 5, and initial sequencing analysis reveals a transcript with four exons and three introns. The expression of SCAL1 is regulated transcriptionally by nuclear factor erythroid 2-related factor (NRF2), as determined by the small, interfering RNA (siRNA) knockdown of NRF2 and kelch-like ECH-associated protein 1 (KEAP1). A nuclear factor erythroid-derived 2 (NF-E2) motif was identified in the promoter region that shows binding to NRF2 after its activation. Functionally, the siRNA knockdown of SCAL1 in human bronchial epithelial cells shows a significant potentiation of cytotoxicity induced by CSE in vitro. Altogether, these results identify a novel and intriguing new noncoding RNA that may act downstream of NRF2 to regulate gene expression and mediate oxidative stress protection in airway epithelial cells.

Jutzi JS, Bogeska R, Nikoloski G, et al.
MPN patients harbor recurrent truncating mutations in transcription factor NF-E2.
J Exp Med. 2013; 210(5):1003-19 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The molecular etiology of myeloproliferative neoplasms (MPNs) remains incompletely understood, despite recent advances incurred through the discovery of several different mutations in MPN patients. We have recently described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels in vivo cause an MPN phenotype and predispose to leukemic transformation in transgenic mice. We report the presence of acquired insertion and deletion mutations in the NF-E2 gene in MPN patients. These result in truncated NF-E2 proteins that enhance wild-type (WT) NF-E2 function and cause erythrocytosis and thrombocytosis in a murine model. NF-E2 mutant cells acquire a proliferative advantage, witnessed by clonal dominance over WT NF-E2 cells in MPN patients. Our data underscore the role of increased NF-E2 activity in the pathophysiology of MPNs.

Ice RJ, McLaughlin SL, Livengood RH, et al.
NEDD9 depletion destabilizes Aurora A kinase and heightens the efficacy of Aurora A inhibitors: implications for treatment of metastatic solid tumors.
Cancer Res. 2013; 73(10):3168-80 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Aurora A kinase (AURKA) is overexpressed in 96% of human cancers and is considered an independent marker of poor prognosis. While the majority of tumors have elevated levels of AURKA protein, few have AURKA gene amplification, implying that posttranscriptional mechanisms regulating AURKA protein levels are significant. Here, we show that NEDD9, a known activator of AURKA, is directly involved in AURKA stability. Analysis of a comprehensive breast cancer tissue microarray revealed a tight correlation between the expression of both proteins, significantly corresponding with increased prognostic value. A decrease in AURKA, concomitant with increased ubiquitination and proteasome-dependent degradation, occurs due to depletion or knockout of NEDD9. Reexpression of wild-type NEDD9 was sufficient to rescue the observed phenomenon. Binding of NEDD9 to AURKA is critical for AURKA stabilization, as mutation of S296E was sufficient to disrupt binding and led to reduced AURKA protein levels. NEDD9 confers AURKA stability by limiting the binding of the cdh1-substrate recognition subunit of APC/C ubiquitin ligase to AURKA. Depletion of NEDD9 in tumor cells increases sensitivity to AURKA inhibitors. Combination therapy with NEDD9 short hairpin RNAs and AURKA inhibitors impairs tumor growth and distant metastasis in mice harboring xenografts of breast tumors. Collectively, our findings provide rationale for the use of AURKA inhibitors in treatment of metastatic tumors and predict the sensitivity of the patients to AURKA inhibitors based on NEDD9 expression.

Gisselbrecht C
Is there any role for transplantation in the rituximab era for diffuse large B-cell lymphoma?
Hematology Am Soc Hematol Educ Program. 2012; 2012:410-6 [PubMed] Related Publications
Salvage chemotherapy followed by high-dose therapy and autologous stem cell transplantation is the standard of treatment for chemosensitive relapses in diffuse large B-cell lymphoma. The addition of rituximab to chemotherapy has improved the response rate and failure-free survival after first-line treatment and relapses. Fewer relapses are expected, although there is no consensus on the best salvage regimen. The intergroup Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) set the limits for this standard of treatment after first comparing 2 salvage regimens: rituximab, ifosfamide, etoposide, and carboplatin (R-ICE) and rituximab, dexamethasone, aracytine, and cisplatin (R-DHAP). There was no difference in response rates or survivals between these salvage regimens. Several factors affected survival: prior treatment with rituximab, early relapse (< 12 months), and a secondary International Prognostic Index score of 2-3. For patients with 2 factors, the response rate to salvage was only 46%, which identified easily a group with poor outcome. Moreover, patients with an ABC subtype or c-MYC translocation responded poorly to treatment. More than 70% of patients will not benefit from standard salvage therapy, and continued progress is needed. Studies evaluating immunotherapy after transplantation, including allotransplantation, new conditioning regimens with radioimmunotherapy and other combinations of chemotherapy based on diffuse large B-cell lymphoma subtype, are discussed herein. Early relapses and/or patients refractory to upfront rituximab-based chemotherapy have a poor response rate and prognosis. A better biological understanding of these patients and new approaches are warranted.

Kim D, Suh Y, Lee H, Lee Y
Immune activation and antitumor response of ar-turmerone on P388D1 lymphoblast cell implanted tumors.
Int J Mol Med. 2013; 31(2):386-92 [PubMed] Related Publications
Aromatic turmerone (ar-turmerone) has been reported to have a cytotoxic effect on L-1210 and HL-60 cells. In the present study, we investigated the anticancer responses and immune activities in implanted tumor cells. Our study found that ar-turmerone inhibited the increase in the number of white blood cells, which normally increase by the injection of lymphoblast cells, or P388D1, and ar-turmerone increased lymphocyte percentage compared to the control. Tumor inhibition rate in the ar-turmerone-treated group was 11.79%, and the apoptosis indexes of the control, ar-turmerone and Glivec groups were 4.22±1.02, 5.45±1.46 and 10.01±2.01, respectively, in which only the Glivec-treated group showed a significance. The positive rates of Bcl-2 and Bax proteins which were treated by ar-turmerone did not show marked differences compared to the control group, but the Bax protein in the Glivec-treated group increased compared to the control group. The density of caspase-1, -3, -6, -9, Bcl-2, Bax, p21 and p53 mRNA in the control, ar-turmerone and Glivec groups did not change considerably, but the Bax mRNA of the Glivec-treated group increased compared to the control group. The ar-turmerone-treated group increased T-lymphocyte and B-lymphocyte proliferation activities compared to the control group, which was more significant in T-lymphocyte than in B-lymphocyte proliferation activity. The interleukin-2 (IL2) production activity of the ar-turmerone group increased compared to the control group. These findings suggest that ar-turmerone does not have a chemotherapeutic effect on tumor incidence, but it has a repressive effect on P388D1 lymphocytic leukemia. Furthermore, this protective effect of ar-turmerone from P388D1 lymphocytic leukemia resulted from the increased activity of tumor immunogenicity through increased T-lymphokine production and increased percentage of lymphocytes.

Reiman A, Lu X, Seabra L, et al.
Gene expression and protein array studies of folliculin-regulated pathways.
Anticancer Res. 2012; 32(11):4663-70 [PubMed] Related Publications
The familial cancer syndrome Birt-Hogg-Dube syndrome is characterised by the development of skin (fibrofolliculomas) and renal tumours (and lung cysts) and is caused by mutations in the FLCN tumour suppressor gene. Though the FLCN gene product (folliculin) has been linked to the regulation of a variety of signalling pathways (e.g. the mTOR, AMPK, TGFbeta and hyoxia-responsive genes) the precise function of the folliculin protein is not well-defined. In order to identify potential novel pathways linked to folliculin function we analysed paired isogenic folliculin-deficient and folliculin-expressing cell lines by gene expression and protein (Kinexus) arrays. Gene expression microarray analysis in the folliculin +/- non-renal cancer line (FTC133), revealed 708 differentially expressed targets (fold change >2 and p<0.001) with enrichment of genes in the cadherin and Wnt signalling pathways. Comparison of the differentially expressed genes in the FTC133 datasets and previously reported gene expression data for a folliculin-deficient renal tumour and the UOK257 renal cell carcinoma cell line, revealed that RAB27B was dysregulated in all three datasets (increased expression in folliculin-deficient cells). The Kinexus protein array analysis suggested 73 candidate, differentially expressed, proteins and further investigation by western blot analysis of 5 candidates that were also differentially expressed in the FTC133 gene expression microarray data, revealed that EIF2AK2 (PKR) and CASP1 were reduced and PLCG2 was increased in folliculin-deficient FTC133 cells and in a BHD renal tumour. In view of the role of CASP1 in apoptosis we investigated whether other apoptosis-related proteins might be regulated by folliculin and found increased levels of SMAC/Diablo and HtrA2 in folliculin-expressing FTC133 cells. These findings identify novel pathways and targets linked to folliculin tumour suppressor activity.

Prabhakar S, Taherian M, Gianni D, et al.
Regression of schwannomas induced by adeno-associated virus-mediated delivery of caspase-1.
Hum Gene Ther. 2013; 24(2):152-62 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Schwannomas are tumors formed by proliferation of dedifferentiated Schwann cells. Patients with neurofibromatosis 2 (NF2) and schwannomatosis develop multiple schwannomas in peripheral and cranial nerves. Although benign, these tumors can cause extreme pain and compromise sensory/motor functions, including hearing and vision. At present, surgical resection is the main treatment modality, but it can be problematic because of tumor inaccessibility and risk of nerve damage. We have explored gene therapy for schwannomas, using a model in which immortalized human NF2 schwannoma cells expressing a fluorescent protein and luciferase are implanted in the sciatic nerve of nude mice. Direct injection of an adeno-associated virus (AAV) serotype 1 vector encoding caspase-1 (ICE) under the Schwann-cell specific promoter, P0, leads to regression of these tumors with essentially no vector-mediated neuropathology, and no changes in sensory or motor function. In a related NF2 xenograft model designed to cause measurable pain behavior, the same gene therapy leads to tumor regression and concordant resolution of tumor-associated pain. This AAV1-P0-ICE vector holds promise for clinical treatment of schwannomas by direct intratumoral injection to achieve reduction in tumor size and normalization of neuronal function.

Drexler SK, Bonsignore L, Masin M, et al.
Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis.
Proc Natl Acad Sci U S A. 2012; 109(45):18384-9 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.

Boonyanugomol W, Chomvarin C, Sripa B, et al.
Molecular analysis of Helicobacter pylori virulent-associated genes in hepatobiliary patients.
HPB (Oxford). 2012; 14(11):754-63 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
OBJECTIVES: The Helicobacter pylori virulence-associated genes in hepatobiliary patients, including vacA, iceA, babA2, cagA and cagE, have not been reported. The aim of this study was to investigate these genes and the association of those and the clinical outcomes in hepatobiliary diseases.
METHODS: Eighty H. pylori-PCR-positive cases were obtained from hepatobiliary patients, representing both cholangiocarcinoma (CCA) (n= 58) and cholelithiasis (n= 22). The diversity of virulence genes was examined by polymerase chain reaction and DNA sequencing. Phylogenetic analysis of cagA was determined using the maximum parsimony method.
RESULTS: The vacAs1a + c/m1, iceA1 and babA2 genes were the most predominant genotypes in both CCA and cholelithiasis patients. The cagA and cagE genes were found significantly more frequently in patients with CCA than those with cholelithiasis (P < 0.05). The cagA positive samples were the Western-type cagA and showed that almost all of the detected sequences in Thai hepatobiliary and Thai gastric cancer patients were classified in the same cluster but separated from the cluster of Japan and other countries.
CONCLUSIONS: The cagA and cagE genes may be associated in the pathogenesis of hepatobiliary diseases, especially of CCA. Besides the bacterial variation, other host factors may be involved in the pathogenesis of hepatobiliary cancer.

Margalef P, Fernández-Majada V, Villanueva A, et al.
A truncated form of IKKα is responsible for specific nuclear IKK activity in colorectal cancer.
Cell Rep. 2012; 2(4):840-54 [PubMed] Related Publications
Nuclear IKKα regulates gene transcription by phosphorylating specific substrates and has been linked to cancer progression and metastasis. However, the mechanistic connection between tumorigenesis and IKKα activity remains poorly understood. We have now analyzed 288 human colorectal cancer samples and found a significant association between the presence of nuclear IKK and malignancy. Importantly, the nucleus of tumor cells contains an active IKKα isoform with a predicted molecular weight of 45 kDa (p45-IKKα) that includes the kinase domain but lacks several regulatory regions. Active nuclear p45-IKKα forms a complex with nonactive IKKα and NEMO that mediates phosphorylation of SMRT and histone H3. Proteolytic cleavage of FL-IKKα into p45-IKKα is required for preventing the apoptosis of CRC cells in vitro and sustaining tumor growth in vivo. Our findings identify a potentially druggable target for treating patients with advance refractory CRC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CASP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999