VIM

Gene Summary

Gene:VIM; vimentin
Aliases: HEL113, CTRCT30
Location:10p13
Summary:This gene encodes a member of the intermediate filament family. Intermediate filamentents, along with microtubules and actin microfilaments, make up the cytoskeleton. The protein encoded by this gene is responsible for maintaining cell shape, integrity of the cytoplasm, and stabilizing cytoskeletal interactions. It is also involved in the immune response, and controls the transport of low-density lipoprotein (LDL)-derived cholesterol from a lysosome to the site of esterification. It functions as an organizer of a number of critical proteins involved in attachment, migration, and cell signaling. Mutations in this gene causes a dominant, pulverulent cataract.[provided by RefSeq, Jun 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:vimentin
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (27)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: VIM (cancer-related)

Boque-Sastre R, Soler M, Oliveira-Mateos C, et al.
Head-to-head antisense transcription and R-loop formation promotes transcriptional activation.
Proc Natl Acad Sci U S A. 2015; 112(18):5785-90 [PubMed] Free Access to Full Article Related Publications
The mechanisms used by antisense transcripts to regulate their corresponding sense mRNAs are not fully understood. Herein, we have addressed this issue for the vimentin (VIM) gene, a member of the intermediate filament family involved in cell and tissue integrity that is deregulated in different types of cancer. VIM mRNA levels are positively correlated with the expression of a previously uncharacterized head-to-head antisense transcript, both transcripts being silenced in colon primary tumors concomitant with promoter hypermethylation. Furthermore, antisense transcription promotes formation of an R-loop structure that can be disfavored in vitro and in vivo by ribonuclease H1 overexpression, resulting in VIM down-regulation. Antisense knockdown and R-loop destabilization both result in chromatin compaction around the VIM promoter and a reduction in the binding of transcriptional activators of the NF-κB pathway. These results are the first examples to our knowledge of R-loop-mediated enhancement of gene expression involving head-to-head antisense transcription at a cancer-related locus.

Person RJ, Ngalame NN, Makia NL, et al.
Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells.
Toxicol Appl Pharmacol. 2015; 286(1):36-43 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer.

Andresen K, Boberg KM, Vedeld HM, et al.
Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma.
Hepatology. 2015; 61(5):1651-9 [PubMed] Related Publications
UNLABELLED: Early detection of the highly aggressive malignancy cholangiocarcinoma (CCA) remains a challenge but has the potential to render the tumor curable by surgical removal. This study evaluates a biomarker panel for the diagnosis of CCA by DNA methylation analyses of biliary brush samples. The methylation status of 13 candidate genes (CDO1, CNRIP1, DCLK1, FBN1, INA, MAL, SEPT9, SFRP1, SNCA, SPG20, TMEFF2, VIM, and ZSCAN18) was investigated in 93 tissue samples (39 CCAs and 54 nonmalignant controls) using quantitative methylation-specific polymerase chain reaction. The 13 genes were further analyzed in a test series of biliary brush samples (15 CCAs and 20 nonmalignant primary sclerosing cholangitis controls), and the methylation status of the four best performing markers was validated (34 CCAs and 34 primary sclerosing cholangitis controls). Receiver operating characteristic curve analyses were used to evaluate the performance of individual biomarkers and the combination of biomarkers. The 13 candidate genes displayed a methylation frequency of 26%-82% in tissue samples. The four best-performing genes (CDO1, CNRIP1, SEPT9, and VIM) displayed individual methylation frequencies of 45%-77% in biliary brushes from CCA patients. Across the test and validation biliary brush series, this four-gene biomarker panel achieved a sensitivity of 85% and a specificity of 98%, with an area under the receiver operating characteristic curve of 0.944.
CONCLUSION: We report a straightforward biomarker assay with high sensitivity and specificity for CCA, outperforming standard brush cytology, and suggest that the biomarker panel, potentially in combination with cytological evaluation, may improve CCA detection, particularly among primary sclerosing cholangitis patients.

Huang JW, Guan BZ, Yin LH, et al.
Effects of estrogen-related receptor alpha (ERRα) on proliferation and metastasis of human lung cancer A549 cells.
J Huazhong Univ Sci Technolog Med Sci. 2014; 34(6):875-81 [PubMed] Related Publications
Estrogen-related receptor alpha (ERRα) plays an important role in the development of hormone-dependent cancers, but its roles in lung cancer remain elusive. The present study was aimed to investigate the effects of ERRα on the proliferation and metastasis of lung cancer A549 cells. The mRNA and protein levels of ERRα were detected in lung cancer A549 and MCF-7 cells and bronchial epithelial BEAS-2B cells by qRT-PCR and Western blotting, respectively. ERRα plasmid transfection and XCT-790 (an inverse agonist of ERRα) were used to up-regulate or down-regulate ERRα expression in A549 cells, respectively. The viability of A549 cells was measured by cell counting kit-8 (CCK-8) and the motility of A549 cells by wound healing assay and Transwell migration/invasion assay. The epithelial markers E-cadherin (E-Cad) and zona occludin-1 (ZO-1), the mesenchymal markers fibronectin (FN) and vimentin (Vim) and the transcription factors (Snail, Zeb1 Twist and Slug) were further detected at mRNA and protein levels by qRT-PCR and Western blotting, respectively. The results showed that ERRα promoted the growth of lung cancer A549 cells in vitro. XCT-790 significantly inhibited the migration and invasion of A549 cells. Over-expression of ERRα promoted the epithelial-to-mesenchymal transition (EMT) of A549 cells, down-regulated the epithelial makers E-Cad and ZO-1, and up-regulated the mesenchymal makers FN and Vim. Silencing of Slug, but not other transcription factors, significantly abolished the ERRα-induced EMT of A549 cells. It was suggested that ERRα promoted the migration and invasion of A549 cells by inducing EMT, and Slug was involved in the process. Targeting ERRα might be an efficient approach for lung cancer treatment.

Galván JA, García-Martínez J, Vázquez-Villa F, et al.
Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma.
BMC Cancer. 2014; 14:867 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
BACKGROUND: The human COL11A1 gene has been shown to be up-regulated in stromal cells of colorectal tumours, but, so far, the immunodetection of procollagen 11A1, the primary protein product of COL11A1, has not been studied in detail in human colon adenocarcinomas. Some cancer-associated stromal cells seem to be derived from bone marrow mesenchymal cells; the expression of the COL11A1 gene and the parallel immunodetection of procollagen 11A1 have not been evaluated in these latter cells, either.
METHODS: We used quantitative RT-PCR and/or immunocytochemistry to study the expression of DES/desmin, VIM/vimentin, ACTA2/αSMA (alpha smooth muscle actin) and COL11A1/procollagen 11A1 in HCT 116 human colorectal adenocarcinoma cells, in immortalised human bone marrow mesenchymal cells and in human colon adenocarcinoma-derived cultured stromal cells. The immunodetection of procollagen 11A1 was performed with the new recently described DMTX1/1E8.33 mouse monoclonal antibody. Human colon adenocarcinomas and non-malignant colon tissues were evaluated by immunohistochemistry as well. Statistical associations were sought between anti-procollagen 11A1 immunoscoring and patient clinicopathological features.
RESULTS: Procollagen 11A1 was immunodetected in human bone marrow mesenchymal cells and in human colon adenocarcinoma-associated spindle-shaped stromal cells but not in colon epithelial or stromal cells of the normal colon. This immunodetection paralleled, in both kinds of cells, that of the other mesenchymal-related biomarkers studied: vimentin and alpha smooth muscle actin, but not desmin. Thus, procollagen 11A1(+) adenocarcinoma-associated stromal cells are similar to "activated myofibroblasts". In the series of human colon adenocarcinomas here studied, a high procollagen 11A1 expression was associated with nodal involvement (p = 0.05), the development of distant metastases (p = 0.017), and advanced Dukes stages (p = 0.047).
CONCLUSION: The immunodetection of procollagen 11A1 in cancer-associated stromal cells could be a useful biomarker for human colon adenocarcinoma characterisation.

Suh SS, Yoo JY, Cui R, et al.
FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs.
PLoS Genet. 2014; 10(10):e1004652 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
Metastasis is the principal cause of cancer death and occurs through multiple, complex processes that involve the concerted action of many genes. A number of studies have indicated that the Fragile Histidine Triad (FHIT) gene product, FHIT, functions as a tumor suppressor in a variety of common human cancers. Although there are suggestions of a role for FHIT loss in progression of various cancers, a role for such loss in metastasis has not been defined. Here, via in vivo and in vitro assays, we reveal that the enforced expression of FHIT significantly suppresses metastasis, accompanied by inhibition of the epithelial-mesenchymal transition (EMT), a process involved in metastasis through coordinate modulation of EMT-related genes. Specifically, miR-30c, a FHIT-upregulated microRNA, contributes to FHIT function in suppression of EMT and metastasis by directly targeting metastasis genes Metadherin (MTDH), High-mobility group AT-hook 2 (HMGA2), and the mesenchymal markers, Vimentin (VIM) and Fibronectin (FN1), in human lung cancer. Finally, we demonstrate that the expression pattern of FHIT and miR-30c is inversely correlated with that of MTDH and HMGA2 in normal tissue, non-metastatic and metastatic tumors, serving as a potential biomarker for metastasis in lung cancer.

Ziegler E, Hansen MT, Haase M, et al.
Generation of MCF-7 cells with aggressive metastatic potential in vitro and in vivo.
Breast Cancer Res Treat. 2014; 148(2):269-77 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) is a cellular development program characterized by loss of cell adhesion and increased cell mobility. It is essential for numerous processes including metastasis. In this study we have generated "aggressive" MCF-7 breast cancer cells (MCF-7-EMT), which show significantly increased invasion in contrast to wild type MCF-7 (MCF-7 WT) cells. In addition, we have analyzed, whether these cell lines differ in their metastatic behavior in vivo and in expression of invasion and/or EMT-relevant genes. Invasive behavior of different human breast cancer cell lines was tested. "Aggressive" MCF-7 cells (MCF-7-EMT) were generated using coculture and mammosphere culture techniques. To analyze whether or not MCF-7-EMT cells in contrast to MCF-7 WT cells form metastases in vivo, we assessed metastases in a nude mouse model. mRNA expression profiles of MCF-7 WT cells and MCF-7-EMT cells were compared using the Affymetrix micro array technique. Expression of selected genes was validated using real-time PCR. In addition, protein expression of epithelial marker E-cadherin (CDH1) and mesenchymal markers N-cadherin (CDH2), Vimentin (VIM), and TWIST was compared. The breast cancer cell lines showed different invasive behavior from hardly any invasion to a stronger cell movement. Coculture with osteoblast-like MG63 cells led to significantly increased cell invasion rates. The highest increase was shown using MCF-7 WT cells. Generated MCF-7-EMT cells showed significantly increased invasion as compared to MCF-7 WT cells. In 8 of 10 mice bearing orthotopically growing MCF-7-EMT tumors, we could detect metastases in liver and lung. In mice bearing MCF-7 WT tumors (n = 10), no metastases were found. MCF-7 WT cells and MCF-7-EMT cells were different in expression of 325 genes. Forty-four of the most regulated 50 invasion and/or EMT-related genes were upregulated and 6 genes were downregulated in MCF-7-EMT cells. Protein expression of mesenchymal markers CDH2, VIM, and TWIST was clearly increased in MCF-7-EMT cells. Protein expression of epithelial marker CDH1 was clearly decreased. With the breast cancer cell lines, MCF-7-EMT and MCF-7 WT cells, we have an excellent model of cells for further studies of EMT and invasion in vitro and in vivo.

Falcão AS, Kataoka MS, Ribeiro NA, et al.
A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.
PLoS One. 2014; 9(8):e105231 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1) derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1). Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG). Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

Liszka L
Ductal adenocarcinoma of the pancreas usually retained SMAD4 and p53 protein status as well as expression of epithelial-to-mesenchymal transition markers and cell cycle regulators at the stage of liver metastasis.
Pol J Pathol. 2014; 65(2):100-12 [PubMed] Related Publications
There are limited data on the biology of metastatic pancreatic ductal adenocarcinoma (PDAC). The aim of the present study was to compare the expression of immunohistochemical markers that may be involved in the development of metastatic disease in primary PDAC and in synchronous liver metastatic tissues. Thirty-two stains (corresponding to proteins encoded by 31 genes: SMAD4, TP53, ACTA2, CDH1, CDKN1A, CLDN1, CLDN4, CLDN7, CTNNB1, EGFR, ERBB2, FN1, KRT19, MAPK1/MAPK3, MAPK14, MKI67, MMP2, MMP9, MUC1 (3 antibodies), MUC5AC, MUC6, MTOR, MYC, NES, PTGS2, RPS6, RPS6KB1, TGFB1, TGFBR1, VIM) were evaluated using tissue microarray of 26 pairs of primary PDACs and their liver metastases. There were no significant differences in expression levels of examined proteins between primary and secondary lesions. In particular, metastatic PDAC retained the primary tumour's SMAD4 protein status in all and p53 protein status in all but one case. This surprising homogeneity also involved expression levels of markers of epithelial-to-mesenchymal transition as well as cell cycle regulators studied. In conclusion, the biological profiles of primary PDACs and their liver metastases seemed to be similar. Molecular alterations of PDAC related to a set of immunohistochemical markers examined in the present study were already present at the stage of localized disease.

Lee MK, Jeong EM, Kim JH, et al.
Aberrant methylation of the VIM promoter in uterine cervical squamous cell carcinoma.
Oncology. 2014; 86(5-6):359-68 [PubMed] Related Publications
OBJECTIVES: To identify prognosis-associated methylation markers of uterine cervical squamous cell carcinoma (SCC) and to verify potential clinical correlations.
METHODS: A genome-wide methylation array was performed using tissue samples of stage Ib1 (n = 9) and IIa (n = 5) tumors. Methylation levels were quantitatively evaluated by pyrosequencing for 54 tissue samples from SCC patients and 22 samples from normal controls. Clinicopathologic findings were obtained from medical records. Correlation or t test statistics were used to analyze the relationships between methylation levels and clinical features. Survival data were estimated using the Kaplan-Meier method and compared to the log-rank test.
RESULTS: The methylation array identified 32 genes with distinct differences (p < 0.01) between stage Ib1 and IIa disease, and VIM was selected for further evaluation. Pyrosequencing analysis revealed that 40.7% of carcinoma samples had a higher methylation level in the VIM gene compared to the normal controls. VIM methylation status, low FIGO stage, and lack of parametrial involvement were significantly associated with longer disease-free survival (p = 0.036, p = 0.028, and p = 0.001, respectively).
CONCLUSIONS: We profiled 32 genes that might be associated with prognosis in cervical cancer. We further revealed that the VIM gene is frequently methylated in cervical SCC and that its methylation might predict a favorable prognosis.

Sahlberg SH, Spiegelberg D, Glimelius B, et al.
Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.
PLoS One. 2014; 9(4):e94621 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms) expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1) expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high) were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low). The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2) did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

Chen S, Cai J, Zhang W, et al.
Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells.
Int J Oncol. 2014; 45(1):448-58 [PubMed] Related Publications
Methotrexate (MTX), as a chemotherapeutic drug, is widely used in the therapy of several cancer types. The efficiency of drug treatment is compromised by the appearance of multidrug resistance (MDR), and the underlying molecular mechanisms remain incompletely understood. We investigated the mechanism of MDR in the MTX-induced breast cancer MCF-7 cells (MCF-7/MTX) using proteomic analysis. MCF-7 drug-sensitive cells (MCF-7/S) were exposed in progressively increasing concentrations of MTX to establish the drug-resistant cell line MCF-7/MTX. The biological characteristics of the cells were analyzed by MTT, flow cytometry, quantitative PCR, western blotting and the global protein profiles of MCF-7/MTX and MCF-7/S were compared using a proteomic approach. The resistance factor of MCF-7/MTX cells was 64, and it possessed significant MDR. Seventeen differentially expressed proteins between MCF-7/MTX and MCF-7/S cells were identified, seven proteins were upregulated and 10 proteins were downregulated in MCF-7/MTX cells. We verified that the protein levels of nucleophosmin (NPM), α-enolase (ENO1) and vimentin (VIM) were upregulated, and heterogeneous nuclear ribonucleoprotein (hnRNP C1/C2), phosphoglycerate mutase 1 (PGAM1) and proteasome subunit α type-2 (PSMA2) were downregulated in MCF-7/MTX cells. The mRNA levels of NPM, VIM, hnRNP C1/C2, PGAM1 and PSMA2 were consistent with the protein expressions, but the gene expression of ENO1 was slightly downregulated. Surprisingly, knockdown of NPM by siRNA sensitized MCF-7/MTX cells to MTX and attenuated the multidrug resistance. The proteins identified, particularly NPM provides new insights into the mechanism of MDR and is expected to become a crucial molecular target for breast cancer treatment.

Tanabe S, Aoyagi K, Yokozaki H, Sasaki H
Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition.
Int J Oncol. 2014; 44(6):1955-70 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy. The hedgehog-EMT pathway is preferentially activated in diffuse-type gastric cancer (GC) compared with intestinal-type GC; however, histological typing is currently the only method for distinguishing these two major types of GC. We compared the gene expression profiles of 12 bone marrow-derived mesenchymal stem cell cultures and 5 diffuse-type GC tissue samples. Numerous upregulated or downregulated genes were identified in diffuse-type GC, including CDH1, CDH2, VIM, WNT4 and WNT5. Among these genes, the mRNA ratio of CDH2 to CDH1 could distinguish the 15 diffuse-type GC samples from the 17 intestinal-type GC samples. Our results suggested that the mesenchymal features were more prominent in diffuse-type GC than in intestinal-type GC, but were weaker in diffuse-type GC than in mesenchymal stem cells. Diffuse-type GC that has undergone extensive EMT, which has a poor prognosis, can be identified by quantitative PCR analysis of only two genes.

Zafer MM, Al-Agamy MH, El-Mahallawy HA, et al.
Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients.
Biomed Res Int. 2014; 2014:101635 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
This study was designed to investigate the prevalence of metallo-β-lactamases (MBL) and extended-spectrum β -lactamases (ESBL) in P. aeruginosa isolates collected from two different hospitals in Cairo, Egypt. Antibiotic susceptibility testing and phenotypic screening for ESBLs and MBLs were performed on 122 P. aeruginosa isolates collected in the period from January 2011 to March 2012. MICs were determined. ESBLs and MBLs genes were sought by PCR. The resistant rate to imipenem was 39.34%. The resistance rates for P. aeruginosa to cefuroxime, cefoperazone, ceftazidime, aztreonam, and piperacillin/tazobactam were 87.7%, 80.3%, 60.6%, 45.1%, and 25.4%, respectively. Out of 122 P. aeruginosa, 27% and 7.4% were MBL and ESBL, respectively. The prevalence of bla(VIM-2), bla(OXA-10(-)), bla(VEB-1), bla(NDM(-)), and bla(IMP-1)-like genes were found in 58.3%, 41.7%, 10.4%, 4.2%, and 2.1%, respectively. GIM-, SPM-, SIM-, and OXA-2-like genes were not detected in this study. OXA-10-like gene was concomitant with VIM-2 and/or VEB. Twelve isolates harbored both OXA-10 and VIM-2; two isolates carried both OXA-10 and VEB. Only one strain contained OXA-10, VIM-2, and VEB. In conclusion, bla(VIM-2)- and bla(OXA-10)-like genes were the most prevalent genes in P. aeruginosa in Egypt. To our knowledge, this is the first report of bla(VIM-2), bla(IMP-1), bla(NDM), and bla(OXA-10) in P. aeruginosa in Egypt.

Li C, Ma H, Wang Y, et al.
Excess PLAC8 promotes an unconventional ERK2-dependent EMT in colon cancer.
J Clin Invest. 2014; 124(5):2172-87 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
The epithelial-to-mesenchymal transition (EMT) transcriptional program is characterized by repression of E-cadherin (CDH1) and induction of N-cadherin (CDH2), and mesenchymal genes like vimentin (VIM). Placenta-specific 8 (PLAC8) has been implicated in colon cancer; however, how PLAC8 contributes to disease is unknown, and endogenous PLAC8 protein has not been studied. We analyzed zebrafish and human tissues and found that endogenous PLAC8 localizes to the apical domain of differentiated intestinal epithelium. Colon cancer cells with elevated PLAC8 levels exhibited EMT features, including increased expression of VIM and zinc finger E-box binding homeobox 1 (ZEB1), aberrant cell motility, and increased invasiveness. In contrast to classical EMT, PLAC8 overexpression reduced cell surface CDH1 and upregulated P-cadherin (CDH3) without affecting CDH2 expression. PLAC8-induced EMT was linked to increased phosphorylated ERK2 (p-ERK2), and ERK2 knockdown restored cell surface CDH1 and suppressed CDH3, VIM, and ZEB1 upregulation. In vitro, PLAC8 directly bound and inactivated the ERK2 phosphatase DUSP6, thereby increasing p-ERK2. In a murine xenograft model, knockdown of endogenous PLAC8 in colon cancer cells resulted in smaller tumors, reduced local invasion, and decreased p-ERK2. Using MultiOmyx, a multiplex immunofluorescence-based methodology, we observed coexpression of cytosolic PLAC8, CDH3, and VIM at the leading edge of a human colorectal tumor, supporting a role for PLAC8 in cancer invasion in vivo.

Marín-Aguilera M, Codony-Servat J, Reig Ò, et al.
Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer.
Mol Cancer Ther. 2014; 13(5):1270-84 [PubMed] Related Publications
Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel + androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-κB transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44(+) subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44(+) subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evidence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

Fahrenbach JP, Andrade J, McNally EM
The CO-Regulation Database (CORD): a tool to identify coordinately expressed genes.
PLoS One. 2014; 9(3):e90408 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
BACKGROUND: Meta-analysis of gene expression array databases has the potential to reveal information about gene function. The identification of gene-gene interactions may be inferred from gene expression information but such meta-analysis is often limited to a single microarray platform. To address this limitation, we developed a gene-centered approach to analyze differential expression across thousands of gene expression experiments and created the CO-Regulation Database (CORD) to determine which genes are correlated with a queried gene.
RESULTS: Using the GEO and ArrayExpress database, we analyzed over 120,000 group by group experiments from gene microarrays to determine the correlating genes for over 30,000 different genes or hypothesized genes. CORD output data is presented for sample queries with focus on genes with well-known interaction networks including p16 (CDKN2A), vimentin (VIM), MyoD (MYOD1). CDKN2A, VIM, and MYOD1 all displayed gene correlations consistent with known interacting genes.
CONCLUSIONS: We developed a facile, web-enabled program to determine gene-gene correlations across different gene expression microarray platforms. Using well-characterized genes, we illustrate how CORD's identification of co-expressed genes contributes to a better understanding a gene's potential function. The website is found at http://cord-db.org.

Christgen M, Geffers R, Kreipe H, Lehmann U
IPH-926 lobular breast cancer cells are triple-negative but their microarray profile uncovers a luminal subtype.
Cancer Sci. 2013; 104(12):1726-30 [PubMed] Related Publications
Human primary breast cancers and breast cancer cell lines are classified by microarray-defined molecular subtypes, which reflect differentiation characteristics. Estrogen receptor (ER) expression is indicative of the luminal molecular subtype. We have previously established IPH-926, the first well-characterized cell line from infiltrating lobular breast cancer. IPH-926 displays an ER/PR/ErbB2 triple-negative immunophenotype, which is due to a loss of ER expression in its in vivo clonal ancestry. Loss of ER might indicate a fundamental change of cellular differentiation and it is unclear whether a luminal subtype is preserved beyond ER conversion. Using Affymetrix microarray analysis, seven different classifier gene lists (PAM305, DISC256, TN1288, PAM50, UNC1300, LAB704, INT500) and a background population of 50 common mammary carcinoma cell lines, we have now determined the molecular subtype of IPH-926. Strikingly, the IPH-926 expression profile is highly consistent with a luminal subtype. It is nearest to luminal/ER-positive breast cancer cell lines and far apart from basal breast cancer cell lines. Quantitative real-time RT-PCR confirmed enhanced expression of luminal marker genes (AGR2, CLU, CA12, EMP2, CLDN3) and low or absent expression of basal marker genes (KRT5, CD44, CAV1, VIM). Moreover, IPH-926 lacked androgen receptor (AR) expression, a transcription factor previously associated with luminal-like gene expression in a subset of triple-negative or molecular apocrine breast cancers. In conclusion, IPH-926 is triple-negative but belongs to the luminal subtype. Luminal differentiation characteristics can be preserved beyond ER conversion and might not require a compensatory expression of AR.

Shi SS, Shen Q, Xia QY, et al.
Clear cell papillary renal cell carcinoma: a clinicopathological study emphasizing ultrastructural features and cytogenetic heterogeneity.
Int J Clin Exp Pathol. 2013; 6(12):2936-42 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
Clear cell papillary renal cell carcinoma (CCPRCC) is a recently recognized renal neoplasm, which was initially described in end-stage renal disease (ESRD), but some cases have been reported in otherwise normal kidneys. We report a series of 11 CCPRCC (age range, 33-72 years; male-to-female ratio, 8:3). Follow-up was available for 8 patients. No patients developed local recurrence, distant or lymph-node metastasis, or cancer death. Histologically, all tumors exhibit morphologic features typical of CCPRCC including a mixture of cystic and papillary components, covered by small to medium-sized cuboidal cells with abundant clear cytoplasm. All 11 cases exhibited moderate to strong positivity for CK7, CA9, Vim, and HIF-1α, coupled with negative reactions for CD10, P504S, and RCC. We did not find any VHL gene mutations in all 11 cases. Losses of chromosomes 3 (monoploid chromosome 3) was detected in 3 cases. Ultrastructurally, the tumor cells composed of numerous glycogens with scanty cell organelles, reminiscent of clear cell renal cell carcinoma (CCRCC). In conclusion, the coexpression of CA9 and HIF-1α in the absence of VHL gene abnormalities in CCPRCC suggests activation of the HIF pathway by mechanisms independent of VHL gene mutation. Losses of chromosomes 3 (monosomies chromosome 3) was detected in 3 cases suggesting that at least some of these lesions have demonstrated abnormalities of chromosomes 3. Ultrastructurally, CCPRCC composed of numerous glycogens with scanty cell organelles, reminiscent of CCRCC suggesting the close pathogenesis relationship of CCPRCC with CCRCC.

Monteiro-Reis S, Leça L, Almeida M, et al.
Accurate detection of upper tract urothelial carcinoma in tissue and urine by means of quantitative GDF15, TMEFF2 and VIM promoter methylation.
Eur J Cancer. 2014; 50(1):226-33 [PubMed] Related Publications
AIM OF THE STUDY: Upper tract urothelial carcinoma (UTUC) accounts for 5-10% of all urothelial tumours. It is mostly diagnosed at advanced stages, entailing a worse prognosis, owing to the lack of early and specific symptoms as well as of effective diagnostic tools. We previously identified a panel of epigenetic biomarkers (GDF15, TMEFF2 and VIM promoter methylation) that accurately identifies bladder cancer in urine. Herein, we assessed the performance of the same panel for UTUC detection and prognosis, in tissue and urine.
MATERIAL AND METHODS: Methylation levels of reference and target genes were determined using real-time quantitative methylation-specific polymerase chain reaction (MSP) in bisulphite-modified DNA of 57 UTUC tissues, 36 normal upper tract urothelium (NUTUs), 22 urines from UTUC suspects and 20 urines from controls. Receiver operator characteristics (ROC)-curve analysis was performed to determine the performance of the biomarker panel and survival analyses were conducted to evaluate their prognostic value.
RESULTS: Methylation levels of GDF15, TMEFF2 and VIM were significantly higher in UTUC compared to NUTUs (P=0.022; P<0.001; P<0.001, respectively). The panel accurately identified UTUC with 100% and 91% sensitivity, corresponding to an area under the curve of 1.000 and 0.923 in tissue and urines, respectively, with 100% specificity. Low VIM promoter methylation levels independently predicted poor disease-specific survival.
CONCLUSIONS: GDF15, TMEFF2 and VIM promoter methylation allows for accurate identification of UTUC, in tissue and urine and VIM methylation provides relevant prognostic information, especially in high-stage disease. This assay may improve the clinical management of UTUC patients.

Chen D, Gassenmaier M, Maruschke M, et al.
Expression and prognostic significance of a comprehensive epithelial-mesenchymal transition gene set in renal cell carcinoma.
J Urol. 2014; 191(2):479-86 [PubMed] Related Publications
PURPOSE: Epithelial-mesenchymal transition enhances tumor cell motility and has a critical role in invasion and metastasis in a number of carcinomas. A set of transcription factors acts as a master regulator of the epithelial-mesenchymal transition process. To our knowledge it is unknown whether epithelial-mesenchymal transition is important for clear cell renal cell carcinoma progression. Therefore, we comprehensively assessed mRNA levels of epithelial-mesenchymal transition associated genes in renal cell carcinoma as well as their prognostic relevance.
MATERIALS AND METHODS: We determined the expression of a set of 46 epithelial-mesenchymal transition related genes by oligonucleotide microarray and gene set enrichment analyses using RNA from 14 samples each of normal kidneys, and G1 and G3 primary renal cell carcinomas. Expression of select epithelial-mesenchymal transition genes was validated by real-time polymerase chain reaction in normal kidneys, primary renal cell carcinomas and metastases in an independent cohort of 112 patients. Results were combined with followup data for survival analysis.
RESULTS: The epithelial-mesenchymal transition gene set was preferentially expressed in primary renal cell carcinoma compared to normal tissue (false discovery rate 0.01). No difference was found between G1 and G3 tumors. Quantitative reverse transcriptase-polymerase chain reaction revealed down-regulation of critical epithelial-mesenchymal transition genes such as CDH2 and ZEB1 in metastases, suggesting epithelial-mesenchymal transition reversal during metastasis. Kaplan-Meier analysis demonstrated a better outcome in patients with low CXCR4, vimentin, fibronectin and TWIST1 mRNA levels. Multivariate analyses revealed that CXCR4 and VIM up-regulation represents an independent prognostic marker for poor cancer specific survival in patients with renal cell carcinoma.
CONCLUSIONS: Taken together, our data provide strong evidence that epithelial-mesenchymal transition occurs in renal cell carcinoma. Thus, interference with epithelial-mesenchymal transition in renal cell carcinoma might represent a future therapeutic option.

Zheng X, Naiditch J, Czurylo M, et al.
Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics.
Cell Death Dis. 2013; 4:e740 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients.

Fisher KE, Yin-Goen Q, Alexis D, et al.
Gene expression profiling of clear cell papillary renal cell carcinoma: comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma.
Mod Pathol. 2014; 27(2):222-30 [PubMed] Related Publications
Clear cell papillary renal cell carcinoma is a distinct variant of renal cell carcinoma that shares some overlapping histological and immunohistochemical features of clear cell renal cell carcinoma and papillary renal cell carcinoma. Although the clear cell papillary renal cell carcinoma immunohistochemical profile is well described, clear cell papillary renal cell carcinoma mRNA expression has not been well characterized. We investigated the clear cell papillary renal cell carcinoma gene expression profile using previously identified candidate genes. We selected 17 clear cell papillary renal cell carcinoma, 15 clear cell renal cell carcinoma, and 13 papillary renal cell carcinoma cases for molecular analysis following histological review. cDNA from formalin-fixed paraffin-embedded tissue was prepared. Quantitative real-time PCR targeting alpha-methylacyl coenzyme-A racemase (AMACR), BMP and activin membrane-bound inhibitor homolog (BAMBI), carbonic anhydrase IX (CA9), ceruloplasmin (CP), nicotinamide N-methyltransferase (NNMT), schwannomin-interacting protein 1 (SCHIP1), solute carrier family 34 (sodium phosphate) member 2 (SLC34A2), and vimentin (VIM) was performed. Gene expression data were normalized relative to 28S ribosomal RNA. Clear cell papillary renal cell carcinoma expressed all eight genes at variable levels. Compared with papillary renal cell carcinoma, clear cell papillary renal cell carcinoma expressed more CA9, CP, NNMT, and VIM, less AMACR, BAMBI, and SLC34A2, and similar levels of SCHIP1. Compared with clear cell renal cell carcinoma, clear cell papillary renal cell carcinoma expressed slightly less NNMT, but similar levels of the other seven genes. Although clear cell papillary renal cell carcinoma exhibits a unique molecular signature, it expresses several genes at comparable levels to clear cell renal cell carcinoma relative to papillary renal cell carcinoma. Understanding the molecular pathogenesis of clear cell papillary renal cell carcinoma will have a key role in future sub-classifications of this unique tumor.

Ma X, Wehland M, Aleshcheva G, et al.
Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells.
PLoS One. 2013; 8(7):e68140 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.

Fang ZQ, Zang WD, Chen R, et al.
Gene expression profile and enrichment pathways in different stages of bladder cancer.
Genet Mol Res. 2013; 12(2):1479-89 [PubMed] Related Publications
Bladder cancer is a highly heterogeneous neoplasm. We examined the gene expression profile in 3 bladder cancer stages (Ta, T1, T2) using expression microarray analysis of 40 bladder tumors. Differentially expressed genes were found by the t-test, with <0.005 as the significance threshold. KEGG pathway-enrichment analysis was used to study the signaling pathways of the genes. We found 36 genes that could be used as molecular markers for predicting the transition from Ta-T1 to T1-T2. Among these, 11 overlapped between Ta-T1 and T1-T2 stages. Six genes were down-regulated at the Ta-T1 stage, but were up-regulated at the T1-T2 stage (ANXA5, ATP6V1B2, CTGF, GEM, IL13RA1, and LCP1); 5 genes were up-regulated at the Ta-T1 stage, but down-regulated at the T1-T2 stage (ACPP, GNL1, RIPK1, RAPGEF3, and ZER1). Another 25 genes changed relative expression levels at the T1-T2 stage. These genes (including COL1A1, COL1A2, FN1, ITGA5, LGALS1, SPP1, VIM, POSTN, and COL18A1) may be involved in bladder cancer progression by affecting extracellular matrix-receptor interaction and focal adhesion. The cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and calcium-signaling pathway were associated with bladder cancer progression at both the Ta-T1 and T1-T2 stages.

Jackstadt R, Röh S, Neumann J, et al.
AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer.
J Exp Med. 2013; 210(7):1331-50 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
The basic helix-loop-helix transcription factor AP4/TFAP4/AP-4 is encoded by a c-MYC target gene and displays up-regulation concomitantly with c-MYC in colorectal cancer (CRC) and numerous other tumor types. Here a genome-wide characterization of AP4 DNA binding and mRNA expression was performed using a combination of microarray, genome-wide chromatin immunoprecipitation, next-generation sequencing, and bioinformatic analyses. Thereby, hundreds of induced and repressed AP4 target genes were identified. Besides many genes involved in the control of proliferation, the AP4 target genes included markers of stemness (LGR5 and CD44) and epithelial-mesenchymal transition (EMT) such as SNAIL, E-cadherin/CDH1, OCLN, VIM, FN1, and the Claudins 1, 4, and 7. Accordingly, activation of AP4 induced EMT and enhanced migration and invasion of CRC cells. Conversely, down-regulation of AP4 resulted in mesenchymal-epithelial transition and inhibited migration and invasion. In addition, AP4 induction was required for EMT, migration, and invasion caused by ectopic expression of c-MYC. Inhibition of AP4 in CRC cells resulted in decreased lung metastasis in mice. Elevated AP4 expression in primary CRC significantly correlated with liver metastasis and poor patient survival. These findings imply AP4 as a new regulator of EMT that contributes to metastatic processes in CRC and presumably other carcinomas.

Carmona FJ, Azuara D, Berenguer-Llergo A, et al.
DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer.
Cancer Prev Res (Phila). 2013; 6(7):656-65 [PubMed] Related Publications
DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer (CRC) and precursor lesions have been extensively studied. Different panels have been reported attempting to improve current protocols in clinical practice, although no definite biomarkers have been established. In the present study, we have examined patient biopsies starting from a comprehensive analysis of DNA methylation differences between paired normal and tumor samples in known cancer-related genes aiming to select the best performing candidates informative for CRC diagnosis in stool samples. Five selected markers were considered for subsequent analyses in independent biologic cohorts and in silico data sets. Among the five selected genes, three of them (AGTR1, WNT2 and SLIT2) were validated in stool DNA of affected patients with a detection sensitivity of 78% [95% confidence interval (CI), 56%-89%]. As a reference, DNA methylation of VIM and SEPT9 was evaluated in a subset of stool samples yielding sensitivities of 55% and 20%, respectively. Moreover, our panel may complement histologic and endoscopic diagnosis of inflammatory bowel disease (IBD)-associated neoplasia, as it was also efficient detecting aberrant DNA methylation in non-neoplastic tissue samples from affected patients. This novel panel of specific methylation markers can be useful for early diagnosis of CRC using stool DNA and may help in the follow-up of high-risk patients with IBD.

Xu Y, Tokar EJ, Person RJ, et al.
Recruitment of normal stem cells to an oncogenic phenotype by noncontiguous carcinogen-transformed epithelia depends on the transforming carcinogen.
Environ Health Perspect. 2013; 121(8):944-50 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
BACKGROUND: Cancer stem cells (CSCs) drive tumor initiation, progression, and metastasis. The microenvironment is critical to the fate of CSCs. We have found that a normal stem cell (NSC) line from human prostate (WPE-stem) is recruited into CSC-like cells by nearby, but noncontiguous, arsenic-transformed isogenic malignant epithelial cells (MECs).
OBJECTIVE: It is unknown whether this recruitment of NSCs into CSCs by noncontact co-culture is specific to arsenic-transformed MECs. Thus, we used co-culture to examine the effects of neighboring noncontiguous cadmium-transformed MECs (Cd-MECs) and N-methyl-N-nitrosourea-transformed MECs (MNU-MECs) on NSCs.
RESULTS: After 2 weeks of noncontact Cd-MEC co-culture, NSCs showed elevated metalloproteinase-9 (MMP-9) and MMP-2 secretion, increased invasiveness, increased colony formation, decreased PTEN expression, and formation of aggressive, highly branched duct-like structures from single cells in Matrigel, all characteristics typical of cancer cells. These oncogenic characteristics did not occur in NSCs co-cultured with MNU-MECs. The NSCs co-cultured with Cd-MECs retained self-renewal capacity, as evidenced by multiple passages (> 3) of structures formed in Matrigel. Cd-MEC-co-cultured NSCs also showed molecular (increased VIM, SNAIL1, and TWIST1 expression; decreased E-CAD expression) and morphologic evidence of epithelial-to-mesenchymal transition typical for conversion to CSCs. Dysregulated expression of SC-renewal genes, including ABCG2, OCT-4, and WNT-3, also occurred in NSCs during oncogenic transformation induced by noncontact co-culture with Cd-MECs.
CONCLUSIONS: These data indicate that Cd-MECs can recruit nearby NSCs into a CSC-like phenotype, but MNU-MECs do not. Thus, the recruitment of NSCs into CSCs by nearby MECs is dependent on the carcinogen originally used to malignantly transform the MECs.

Sun Z, Han Q, Zhou N, et al.
MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma.
Mol Oncol. 2013; 7(5):884-94 [PubMed] Related Publications
Metastasis is one of the hallmarks of cancer malignancy that usually causes more detrimental effects than a primary tumor. Many microRNAs were reported to be involved in the process of tumor metastasis. Hep11 and Hep12 cells were derived from primary and recurrence (intrahepatic metastatic) sites of hepatocellular carcinoma (HCC), respectively. Hep12 exhibited a higher invasive and migratory potential than Hep11. There was also a significantly higher expression of miR-9 in Hep12 cells than in Hep11 cells. Further studies in HCC cell lines demonstrated that miR-9 could promote tumor cell migration and invasion. In addition, miR-9 downregulated KLF17 protein expression by targeting the 3'UTR region of the KLF17 gene directly. As a transcription factor, KLF17 directly acted on the promoters of EMT-related genes (ZO-1, Vimentin and Fibronectin (FN)) in HCC cell lines. Therefore, we conclude that miR-9 may possibly promote HCC migration and invasion through regulation of KLF17.

Keysar SB, Le PN, Anderson RT, et al.
Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer.
Cancer Res. 2013; 73(11):3381-92 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
The EGF receptor (EGFR)-directed monoclonal antibody cetuximab is the only targeted therapy approved for the treatment of squamous cell carcinoma of the head and neck (HNSCC) but is only effective in a minority of patients. Epithelial-to-mesenchymal transition (EMT) has been implicated as a drug resistance mechanism in multiple cancers, and the EGFR and Hedgehog pathways (HhP) are relevant to this process, but the interplay between the two pathways has not been defined in HNSCC. Here, we show that HNSCC cells that were naturally sensitive to EGFR inhibition over time developed increased expression of the HhP transcription factor GLI1 as they became resistant after long-term EGFR inhibitor exposure. This robustly correlated with an increase in vimentin expression. Conversely, the HhP negatively regulated an EGFR-dependent, EMT-like state in HNSCC cells, and pharmacologic or genetic inhibition of HhP signaling pushed cells further into an EGFR-dependent phenotype, increasing expression of ZEB1 and VIM. In vivo treatment with cetuximab resulted in tumor shrinkage in four of six HNSCC patient-derived xenografts; however, they eventually regrew. Cetuximab in combination with the HhP inhibitor IPI-926 eliminated tumors in two cases and significantly delayed regrowth in the other two cases. Expression of EMT genes TWIST and ZEB2 was increased in sensitive xenografts, suggesting a possible resistant mesenchymal population. In summary, we report that EGFR-dependent HNSCC cells can undergo both EGFR-dependent and -independent EMT and HhP signaling is a regulator in both processes. Cetuximab plus IPI-926 forces tumor cells into an EGFR-dependent state, delaying or completely blocking tumor recurrence.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. VIM, Cancer Genetics Web: http://www.cancer-genetics.org/VIM.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999