SIN3A

Gene Summary

Gene:SIN3A; SIN3 transcription regulator family member A
Aliases: WITKOS
Location:15q24.2
Summary:The protein encoded by this gene is a transcriptional regulatory protein. It contains paired amphipathic helix (PAH) domains, which are important for protein-protein interactions and may mediate repression by the Mad-Max complex. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:paired amphipathic helix protein Sin3a
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (30)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • alpha-Fetoproteins
  • Down-Regulation
  • Protein Binding
  • Estrogen Receptor alpha
  • Repressor Proteins
  • Transcription Factors
  • Protein Structure, Tertiary
  • p53 Protein
  • Cell Movement
  • Nuclear Proteins
  • Chromatin
  • HEK293 Cells
  • MicroRNAs
  • Mutation
  • Histone Deacetylases
  • Neoplasm Invasiveness
  • Disease Progression
  • Cell Line
  • Transcriptome
  • Core Binding Factor Alpha 2 Subunit
  • Transcription
  • DNA-Binding Proteins
  • Transfection
  • Two-Hybrid System Techniques
  • Oligonucleotide Array Sequence Analysis
  • Translocation
  • Breast Cancer
  • Apoptosis
  • Proto-Oncogene Proteins
  • Gene Expression Profiling
  • Western Blotting
  • Epigenetics
  • Promoter Regions
  • Cell Differentiation
  • Histone Deacetylase 1
  • Chromosome 15
  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Oncogene Fusion Proteins
  • Zinc Fingers
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SIN3A (cancer-related)

Cuevas D, Valls J, Gatius S, et al.
Targeted sequencing with a customized panel to assess histological typing in endometrial carcinoma.
Virchows Arch. 2019; 474(5):585-598 [PubMed] Related Publications
The two most frequent types of endometrial cancer (EC) are endometrioid (EEC) and serous carcinomas (SC). Differential diagnosis between them is not always easy. A subset of endometrial cancers shows misleading microscopical features, which cause problems in differential diagnosis, and may be a good scenario for next-generation sequencing. Previous studies have assessed the usefulness of targeted sequencing with panels of generic cancer-associated genes in EC histological typing. Based on the analysis of TCGA (The Cancer Genome Atlas), EEC and SC have different mutational profiles. In this proof of principle study, we have performed targeted sequencing analysis with a customized panel, based on the TCGA mutational profile of EEC and SC, in a series of 24 tumors (16 EEC and 8 SC). Our panel comprised coding and non-coding sequences of the following genes: ABCC9, ARID1A, ARID5B, ATR, BCOR, CCND1, CDH19, CHD4, COL11A1, CSDE1, CSMD3, CTCF, CTNNB1, EP300, ERBB2, FBXW7, FGFR2, FOXA2, KLLN, KMT2B, KRAS, MAP3K4, MKI67, NRAS, PGAP3, PIK3CA, PIK3R1, PPP2R1A, PRPF18, PTEN, RPL22, SCARNA11, SIN3A, SMARCA4, SPOP, TAF1, TP53, TSPYL2, USP36, and WRAP53. Targeted sequencing validation by Sanger sequencing and immunohistochemistry was performed in a group of genes. POLE mutation status was assessed by Sanger sequencing. The most mutated genes were PTEN (93.7%), ARID1A (68.7%), PIK3CA (50%), and KMT2B (43.7%) for EEC, and TP53 (87.5%), PIK3CA (50%), and PPP2R1A (25%) for SC. Our panel allowed correct classification of all tumors in the two categories (EEC, SC). Coexistence of mutations in PTEN, ARID1A, and KMT2B was diagnostic of EEC. On the other hand, absence of PTEN, ARID1A, and KMT2B mutations in the presence of TP53 mutation was diagnostic of SC. This proof of concept study demonstrates the suitability of targeted sequencing with a customized endometrial cancer gene panel as an additional tool for confirming histological typing.

Gambi G, Di Simone E, Basso V, et al.
The Transcriptional Regulator Sin3A Contributes to the Oncogenic Potential of STAT3.
Cancer Res. 2019; 79(12):3076-3087 [PubMed] Related Publications
Epigenetic silencing of promoter and enhancer regions is a common phenomenon in malignant cells. The transcription factor STAT3 is aberrantly activated in several tumors, where its constitutive acetylation accounts for the transcriptional repression of a number of tumor suppressor genes (TSG) via molecular mechanisms that remain to be understood. Using nucleophosmin-anaplastic lymphoma kinase-positive (NPM-ALK

Min JW, Koh Y, Kim DY, et al.
Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients.
Mol Cells. 2018; 41(5):465-475 [PubMed] Free Access to Full Article Related Publications
The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.

Wang J, Tian Y, Chen H, et al.
Key signaling pathways, genes and transcription factors associated with hepatocellular carcinoma.
Mol Med Rep. 2018; 17(6):8153-8160 [PubMed] Free Access to Full Article Related Publications
The purpose of the present study was to investigate the underlying molecular mechanism of hepatocellular carcinoma (HCC) using bioinformatics approaches. The microarray dataset GSE64041 was downloaded from the Gene Expression Omnibus database, which included 60 tumor liver samples and 60 matched control samples. Differentially expressed genes (DEGs) between HCC and control groups were identified. Then functional enrichment analyses, protein‑protein interaction (PPI) network, sub‑network and integrated transcription factor (TF)‑microRNA (miRNA)‑target network analyses were performed for these DEGs. A total of 378 DEGs were obtained, including 101 upregulated and 277 downregulated DEGs. In addition, functional enrichment analysis for DEGs in the sub‑network revealed 'cell division' and 'cell cycle' as key Gene Ontology (GO) terms and pathways. Topoisomerase (DNA) IIα (TOP2A) and integrin subunit α2 (ITGA2) were hub nodes in the PPI network. TOP2A, cyclin dependent kinase 1 (CDK1) and polo like kinase 1 (PLK1) were revealed to be hub nodes in the sub‑network. Finally, 4 TFs including forkhead box M1 (FOXM1), E2F transcription factor 4 (E2F4), SIN3 transcription regulator family member A (SIN3A) and transcription factor 7 like 1 (TCF7L1) were obtained through integrated network analysis. TOP2A, ITGA2, PLK1 and CDK1 may be key genes involved in HCC development. 'Cell division' and 'cell cycle' were indicated to act as key GO terms and Kyoto Encyclopedia of Genes and Genomes pathways in HCC. In addition, FOXM1, TCF7L1, E2F4 and SIN3A were revealed to be key TFs associated with HCC.

Suzuki N, Vojnovic N, Lee KL, et al.
HIF-dependent and reversible nucleosome disassembly in hypoxia-inducible gene promoters.
Exp Cell Res. 2018; 366(2):181-191 [PubMed] Related Publications
Hypoxia causes dramatic changes in gene expression profiles, and the mechanism of hypoxia-inducible transcription has been analyzed for use as a model system of stress-inducible gene regulation. In this study, changes in chromatin organization in promoters of hypoxia-inducible genes were investigated during hypoxia-reoxygenation conditions. Most of the hypoxia-inducible gene promoters were hypersensitive to DNase I under both normal and hypoxic conditions, and our data indicate an immediate recruitment of transcription factors under hypoxic conditions. In some of the hypoxia-inducible promoters, nucleosome-free DNA regions (NFRs) were established in parallel with hypoxia-induced transcription. We also show that the hypoxia-inducible formation of NFRs requires that hypoxia-inducible transcription factors (HIFs) bind to the promoters together with the transcriptional coactivator CBP. Within 1 h after the hypoxia exposure was ended (reoxygenation), HIF complexes were dissociated from the promoter regions. Within 24 h of reoxygenation, the hypoxia-induced transcription returned to basal levels and the nucleosome structure was reassembled in the hypoxia-inducible NFRs. Nucleosome reassembly required the function of the transcriptional coregulator SIN3A. Thus, reversible changes in nucleosome organization mediated by transcription factors are notable features of stress-inducible gene regulation.

Li W, Zhang Z, Liu X, et al.
The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer.
J Clin Invest. 2017; 127(9):3421-3440 [PubMed] Free Access to Full Article Related Publications
The pathophysiological function of the forkhead transcription factor FOXN3 remains to be explored. Here we report that FOXN3 is a transcriptional repressor that is physically associated with the SIN3A repressor complex in estrogen receptor-positive (ER+) cells. RNA immunoprecipitation-coupled high-throughput sequencing identified that NEAT1, an estrogen-inducible long noncoding RNA, is required for FOXN3 interactions with the SIN3A complex. ChIP-Seq and deep sequencing of RNA genomic targets revealed that the FOXN3-NEAT1-SIN3A complex represses genes including GATA3 that are critically involved in epithelial-to-mesenchymal transition (EMT). We demonstrated that the FOXN3-NEAT1-SIN3A complex promotes EMT and invasion of breast cancer cells in vitro as well as dissemination and metastasis of breast cancer in vivo. Interestingly, the FOXN3-NEAT1-SIN3A complex transrepresses ER itself, forming a negative-feedback loop in transcription regulation. Elevation of both FOXN3 and NEAT1 expression during breast cancer progression corresponded to diminished GATA3 expression, and high levels of FOXN3 and NEAT1 strongly correlated with higher histological grades and poor prognosis. Our experiments uncovered that NEAT1 is a facultative component of the SIN3A complex, shedding light on the mechanistic actions of NEAT1 and the SIN3A complex. Further, our study identified the ERα-NEAT1-FOXN3/NEAT1/SIN3A-GATA3 axis that is implicated in breast cancer metastasis, providing a mechanistic insight into the pathophysiological function of FOXN3.

Lewis MJ, Liu J, Libby EF, et al.
SIN3A and SIN3B differentially regulate breast cancer metastasis.
Oncotarget. 2016; 7(48):78713-78725 [PubMed] Free Access to Full Article Related Publications
SIN3 corepressor complexes play important roles in both normal development and breast cancer. Mammalian cells have two paralogs of SIN3 (SIN3A and SIN3B) that are encoded by distinct genes and have unique functions in many developmental processes. However, specific roles for SIN3A and SIN3B in breast cancer progression have not been characterized. We generated stable knockdown cells of SIN3 paralogs individually and in combination using three non-overlapping shRNA. Stable knockdown of SIN3B caused a significant decrease in transwell invasion through Matrigel and decreased the number of invasive colonies when grown in a 3D extracellular matrix. Conversely, stable knockdown of SIN3A significantly increased transwell invasion and increased the number of invasive colonies. These results were corroborated in vivo in which SIN3B knockdown significantly decreased and SIN3A knockdown increased experimental lung metastases. RNA sequencing was used to identify unique targets and biological pathways that were altered upon knockdown of SIN3A compared to SIN3B. Additionally, we analyzed microarray data sets to identify correlations of SIN3A and SIN3B expression with survival in patients with breast cancer. These data sets indicated that high mRNA expression of SIN3A as well as low mRNA expression of SIN3B correlates with longer relapse free survival specifically in patients with triple negative breast cancer which corresponds with our in vitro and in vivo data. These results demonstrate key functional differences between SIN3 paralogs in regulating the process of breast cancer metastasis and suggest metastasis suppressive roles of SIN3A and metastasis promoting roles of SIN3B.

Shan L, Zhou X, Liu X, et al.
FOXK2 Elicits Massive Transcription Repression and Suppresses the Hypoxic Response and Breast Cancer Carcinogenesis.
Cancer Cell. 2016; 30(5):708-722 [PubMed] Related Publications
Although clinically associated with severe developmental defects, the biological function of FOXK2 remains poorly explored. Here we report that FOXK2 interacts with transcription corepressor complexes NCoR/SMRT, SIN3A, NuRD, and REST/CoREST to repress a cohort of genes including HIF1β and EZH2 and to regulate several signaling pathways including the hypoxic response. We show that FOXK2 inhibits the proliferation and invasion of breast cancer cells and suppresses the growth and metastasis of breast cancer. Interestingly, FOXK2 is transactivated by ERα and transrepressed via reciprocal successive feedback by HIF1β/EZH2. Significantly, the expression of FOXK2 is progressively lost during breast cancer progression, and low FOXK2 expression is strongly correlated with higher histologic grades, positive lymph nodes, and ERα

Kim M, Lu F, Zhang Y
Loss of HDAC-Mediated Repression and Gain of NF-κB Activation Underlie Cytokine Induction in ARID1A- and PIK3CA-Mutation-Driven Ovarian Cancer.
Cell Rep. 2016; 17(1):275-288 [PubMed] Related Publications
ARID1A is frequently mutated in ovarian clear cell carcinoma (OCCC) and often co-exists with activating mutations of PIK3CA. Although induction of pro-inflammatory cytokines has been observed in this cancer, the mechanism by which the two mutations synergistically activate cytokine genes remains elusive. Here, we established an in vitro model of OCCC by introducing ARID1A knockdown and mutant PIK3CA into a normal human ovarian epithelial cell line, resulting in cell transformation and cytokine gene induction. We demonstrate that loss of ARID1A impairs the recruitment of the Sin3A-HDAC complex, while the PIK3CA mutation releases RelA from IκB, leading to cytokine gene activation. We show that an NF-κB inhibitor partly attenuates the proliferation of OCCC and improves the efficacy of carboplatin both in cell culture and in a mouse model. Our study thus reveals the mechanistic link between ARID1A/PIK3CA mutations and cytokine gene induction in OCCC and suggests that NF-κB inhibition could be a potential therapeutic option.

Bansal N, Bosch A, Leibovitch B, et al.
Blocking the PAH2 domain of Sin3A inhibits tumorigenesis and confers retinoid sensitivity in triple negative breast cancer.
Oncotarget. 2016; 7(28):43689-43702 [PubMed] Free Access to Full Article Related Publications
Triple negative breast cancer (TNBC) frequently relapses locally, regionally or as systemic metastases. Development of targeted therapy that offers significant survival benefit in TNBC is an unmet clinical need. We have previously reported that blocking interactions between PAH2 domain of chromatin regulator Sin3A and the Sin3 interaction domain (SID) containing proteins by SID decoys result in EMT reversal, and re-expression of genes associated with differentiation. Here we report a novel and therapeutically relevant combinatorial use of SID decoys. SID decoys activate RARα/β pathways that are enhanced in combination with RARα-selective agonist AM80 to induce morphogenesis and inhibit tumorsphere formation. These findings correlate with inhibition of mammary hyperplasia and a significant increase in tumor-free survival in MMTV-Myc oncomice treated with a small molecule mimetic of SID (C16). Further, in two well-established mouse TNBC models we show that treatment with C16-AM80 combination has marked anti-tumor effects, prevents lung metastases and seeding of tumor cells to bone marrow. This correlated to a remarkable 100% increase in disease-free survival with a possibility of "cure" in mice bearing a TNBC-like tumor. Targeting Sin3A by C16 alone or in combination with AM80 may thus be a promising adjuvant therapy for treating or preventing metastatic TNBC.

Ko HR, Chang YS, Park WS, Ahn JY
Opposing roles of the two isoforms of ErbB3 binding protein 1 in human cancer cells.
Int J Cancer. 2016; 139(6):1202-8 [PubMed] Related Publications
The different functions of the two isoforms of ErbB3 binding protein 1 (Ebp1), p48 and p42, have recently become the focus of interest as they reveal contradictory roles in cell growth promoting ability. The conformational change that crystal structure of p42 was shown to lack α helices at the amino-terminus present in p48 represents the differential binding partners and protein modifications of two Ebp1 isoforms. N-terminal specific phosphorylation by CDK2 and deregulation of the p53 tumor suppressor through specific interaction with HDM2 and Akt activation is postulated to contribute to p48-mediated tumorigenesis. The short isoform p42 Ebp1, which is actual binding partner of ErbB3 has been implicated as a tumor suppressor with many binding partners such as Rb, HDAC2, Sin3A and the p85 subunit of PI3K with HSP70/CHIP, inhibiting its own antiproliferative activity or inhibiting PI3K activity. The aim of the current review is to provide a summary on distinctive cellular functions of two Ebp1 proteins and their molecular partners that might be responsible for the unique functions of each isoform of Ebp1.

Jiang X, Hu C, Arnovitz S, et al.
miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia.
Nat Commun. 2016; 7:11452 [PubMed] Free Access to Full Article Related Publications
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.

Bansal N, David G, Farias E, Waxman S
Emerging Roles of Epigenetic Regulator Sin3 in Cancer.
Adv Cancer Res. 2016; 130:113-35 [PubMed] Related Publications
Revolutionizing treatment strategies is an urgent clinical need in the fight against cancer. Recently the scientific community has recognized chromatin-associated proteins as promising therapeutic candidates. However, there is a need to develop more targeted epigenetic inhibitors with less toxicity. Sin3 family is one such target which consists of evolutionary conserved proteins with two paralogues Sin3A and Sin3B. Sin3A/B are global transcription regulators that provide a versatile platform for diverse chromatin-modifying activities. Sin3 proteins regulate key cellular functions that include cell cycle, proliferation, and differentiation, and have recently been implicated in cancer pathogenesis. In this chapter, we summarize the key concepts of Sin3 biology and elaborate the recent advancements in the role of Sin3 proteins in cancer with specific examples in multiple endocrine neoplasia type 2, pancreatic ductal adenocarcinoma, and triple negative breast cancer. Finally, a program to create an integrative approach for screening antitumor agents that target chromatin-associated factors like Sin3 is presented.

Suryo Rahmanto Y, Jung JG, Wu RC, et al.
Inactivating ARID1A Tumor Suppressor Enhances TERT Transcription and Maintains Telomere Length in Cancer Cells.
J Biol Chem. 2016; 291(18):9690-9 [PubMed] Free Access to Full Article Related Publications
ARID1A is a tumor suppressor gene that belongs to the switch/sucrose non-fermentable chromatin remodeling gene family. It is mutated in many types of human cancer with the highest frequency in endometrium-related ovarian and uterine neoplasms including ovarian clear cell, ovarian endometrioid, and uterine endometrioid carcinomas. We have previously reported that mutations in the promoter of human telomerase reverse transcriptase (TERT) rarely co-occur with the loss of ARID1A protein expression, suggesting a potential role of ARID1A in telomere biology. In this study, we demonstrate that ARID1A negatively regulates TERT transcriptional regulation and activity via binding to the regulatory element of TERT and promotes a repressive histone mode. Induction of ARID1A expression was associated with increased occupancy of SIN3A and H3K9me3, known transcription repressor and histone repressor marks, respectively. Thus, loss of ARID1A protein expression caused by inactivating mutations reactivates TERT transcriptional activity and confers a survival advantage of tumor cells by maintaining their telomeres.

L'Abbate A, Tolomeo D, De Astis F, et al.
t(15;21) translocations leading to the concurrent downregulation of RUNX1 and its transcription factor partner genes SIN3A and TCF12 in myeloid disorders.
Mol Cancer. 2015; 14:211 [PubMed] Free Access to Full Article Related Publications
Through a combined approach integrating RNA-Seq, SNP-array, FISH and PCR techniques, we identified two novel t(15;21) translocations leading to the inactivation of RUNX1 and its partners SIN3A and TCF12. One is a complex t(15;21)(q24;q22), with both breakpoints mapped at the nucleotide level, joining RUNX1 to SIN3A and UBL7-AS1 in a patient with myelodysplasia. The other is a recurrent t(15;21)(q21;q22), juxtaposing RUNX1 and TCF12, with an opposite transcriptional orientation, in three myeloid leukemia cases. Since our transcriptome analysis indicated a significant number of differentially expressed genes associated with both translocations, we speculate an important pathogenetic role for these alterations involving RUNX1.

Farhana L, Dawson MI, Fontana JA
Down regulation of miR-202 modulates Mxd1 and Sin3A repressor complexes to induce apoptosis of pancreatic cancer cells.
Cancer Biol Ther. 2015; 16(1):115-24 [PubMed] Free Access to Full Article Related Publications
Aberrant regulation of microRNA expression in pancreatic cancers has been shown to play an important role in its inherent poor prognosis and malignant potential. MicroRNAs have also been shown to inhibit translation of genes by targeting the 3'-untranslated region (3-UTR) of mRNAs resulting in the inhibition of translation and often destruction of the mRNA. In the present study we investigated the role of the microRNA miR-202 in the apoptotic pathways of pancreatic cancer cells. The adamantyl-related molecule, 3-Cl-AHPC down-regulated expression of miR-202 and miR-578 resulting in the increased expression of mRNA and protein expression of their target genes, Max dimerization protein 1 (Mxd1/Mad1) and the Sin3A associated protein 18 (SAP18). Overexpression of pre-miR-202 led to diminished levels of Mxd1 and blocked the 3-Cl-AHPC-mediated increase in Mxd1 mRNA expression. The addition of the microRNA inhibitor 2'-O-methylated miR-202 enhanced the 3-Cl-AHPC-mediated increase of Mxd1 mRNA levels as well as 3-CI-AHPC-mediated apoptosis. We found increased Mxd1 bound to the Sin3A repressor protein complex through its increased binding with HDAC-2 and subsequently enhanced transcriptional repression in cells as evidenced by increased HDAC activity. Mxd1 also repressed human telomerase reverse transcriptase (hTERT) mRNA expression through its increased binding to the hTERT promoter site and resulted in decreased telomerase activity in cells. Our results demonstrate that down regulation of miR-202 increased the expression of its target Mxd1, followed by Mxd1 recruitment to the Sin3A repressor complex and through its dimerization with Max, and increased repression of Myc-Max target proteins.

Shang C, Hong Y, Guo Y, et al.
MiR-210 up-regulation inhibits proliferation and induces apoptosis in glioma cells by targeting SIN3A.
Med Sci Monit. 2014; 20:2571-7 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The aim of this study was to determine whether miR-210 can affect the apoptosis and proliferation of human U251 glioma cells from down-regulating SIN3A.
MATERIAL AND METHODS: The expression of miRNA-210 was detected by quantitative real-time PCR in normal brain tissue and glioma samples. The apoptosis and proliferation ability of U251 cells were analyzed by MTT and flow cytometry assay after anti-miR-210 transfection. For the regulation mechanism analysis of miR-210, TargetScan, PicTar, and microRNA were selected to predict some potential target genes of miR-210. The predicted gene was identified to be the direct and specific target gene of miR-210 by luciferase activities assay and Western blot. RNA interference technology was used to confirm that the apoptosis and proliferation effects of miR-210 were directly induced by SIN3A.
RESULTS: The expression of miR-210 increased significantly in glioma in comparison with normal brain tissue. The silence of miR-210 expression could inhibit the proliferation of U251 cells and induce the apoptosis. Mechanism analysis revealed that SIN3A was a specific and direct target gene of miR-210. The siRNA-SIN3A could down-regulate the expression of SIN3A protein, which was up-regulated in U251 cells by anti-miR-210 transfection, and our experiments found that silence of SIN3A could inhibit the apoptosis and sharply increase the proliferation of U251 cells. The regulation effects of anti-miR-210 on apoptosis and proliferation can be reversed respectively by the expression silence of SIN3A.
CONCLUSIONS: Aberrantly expressed miR-210 regulates human U251 glioma cells apoptosis and proliferation partly through directly down-regulating SIN3A protein expression. This might offer a new potential therapeutic stratagem for glioma.

Gong C, Qu S, Lv XB, et al.
BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10.
Nat Commun. 2014; 5:5406 [PubMed] Related Publications
BRMS1L (breast cancer metastasis suppressor 1 like, BRMS1-like) is a component of Sin3A-histone deacetylase (HDAC) co-repressor complex that suppresses target gene transcription. Here we show that reduced BRMS1L in breast cancer tissues is associated with metastasis and poor patient survival. Functionally, BRMS1L inhibits breast cancer cells migration and invasion by inhibiting epithelial-mesenchymal transition. These effects are mediated by epigenetic silencing of FZD10, a receptor for Wnt signalling, through HDAC1 recruitment and histone H3K9 deacetylation at the promoter. Consequently, BRMS1L-induced FZD10 silencing inhibits aberrant activation of WNT3-FZD10-β-catenin signalling. Furthermore, BRMS1L is a target of miR-106b and miR-106b upregulation leads to BRMS1L reduction in breast cancer cells. RNA interference-mediated silencing of BRMS1L expression promotes metastasis of breast cancer xenografts in immunocompromised mice, whereas ectopic BRMS1L expression inhibits metastasis. Therefore, BRMS1L provides an epigenetic regulation of Wnt signalling in breast cancer cells and acts as a breast cancer metastasis suppressor.

Garcia-Sanz P, Quintanilla A, Lafita MC, et al.
Sin3b interacts with Myc and decreases Myc levels.
J Biol Chem. 2014; 289(32):22221-36 [PubMed] Free Access to Full Article Related Publications
Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186-203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels.

Gu X, Hu Z, Ebrahem Q, et al.
Runx1 regulation of Pu.1 corepressor/coactivator exchange identifies specific molecular targets for leukemia differentiation therapy.
J Biol Chem. 2014; 289(21):14881-95 [PubMed] Free Access to Full Article Related Publications
Gene activation requires cooperative assembly of multiprotein transcription factor-coregulator complexes. Disruption to cooperative assemblage could underlie repression of tumor suppressor genes in leukemia cells. Mechanisms of cooperation and its disruption were therefore examined for PU.1 and RUNX1, transcription factors that cooperate to activate hematopoietic differentiation genes. PU.1 is highly expressed in leukemia cells, whereas RUNX1 is frequently inactivated by mutation or translocation. Thus, coregulator interactions of Pu.1 were examined by immunoprecipitation coupled with tandem mass spectrometry/Western blot in wild-type and Runx1-deficient hematopoietic cells. In wild-type cells, the NuAT and Baf families of coactivators coimmunoprecipitated with Pu.1. Runx1 deficiency produced a striking switch to Pu.1 interaction with the Dnmt1, Sin3A, Nurd, CoRest, and B-Wich corepressor families. Corepressors of the Polycomb family, which are frequently inactivated by mutation or deletion in myeloid leukemia, did not interact with Pu.1. The most significant gene ontology association of Runx1-Pu.1 co-bound genes was with macrophages, therefore, functional consequences of altered corepressor/coactivator exchange were examined at Mcsfr, a key macrophage differentiation gene. In chromatin immunoprecipitation analyses, high level Pu.1 binding to the Mcsfr promoter was not decreased by Runx1 deficiency. However, the Pu.1-driven shift from histone repression to activation marks at this locus, and terminal macrophage differentiation, were substantially diminished. DNMT1 inhibition, but not Polycomb inhibition, in RUNX1-translocated leukemia cells induced terminal differentiation. Thus, RUNX1 and PU.1 cooperate to exchange corepressors for coactivators, and the specific corepressors recruited to PU.1 as a consequence of RUNX1 deficiency could be rational targets for leukemia differentiation therapy.

Jiang S, Willox B, Zhou H, et al.
Epstein-Barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A.
Proc Natl Acad Sci U S A. 2014; 111(1):421-6 [PubMed] Free Access to Full Article Related Publications
Epstein-Barr virus nuclear antigen 3C (EBNA3C) repression of CDKN2A p14(ARF) and p16(INK4A) is essential for immortal human B-lymphoblastoid cell line (LCL) growth. EBNA3C ChIP-sequencing identified >13,000 EBNA3C sites in LCL DNA. Most EBNA3C sites were associated with active transcription; 64% were strong H3K4me1- and H3K27ac-marked enhancers and 16% were active promoters marked by H3K4me3 and H3K9ac. Using ENCODE LCL transcription factor ChIP-sequencing data, EBNA3C sites coincided (±250 bp) with RUNX3 (64%), BATF (55%), ATF2 (51%), IRF4 (41%), MEF2A (35%), PAX5 (34%), SPI1 (29%), BCL11a (28%), SP1 (26%), TCF12 (23%), NF-κB (23%), POU2F2 (23%), and RBPJ (16%). EBNA3C sites separated into five distinct clusters: (i) Sin3A, (ii) EBNA2/RBPJ, (iii) SPI1, and (iv) strong or (v) weak BATF/IRF4. EBNA3C signals were positively affected by RUNX3, BATF/IRF4 (AICE) and SPI1/IRF4 (EICE) cooccupancy. Gene set enrichment analyses correlated EBNA3C/Sin3A promoter sites with transcription down-regulation (P < 1.6 × 10(-4)). EBNA3C signals were strongest at BATF/IRF4 and SPI1/IRF4 composite sites. EBNA3C bound strongly to the p14(ARF) promoter through SPI1/IRF4/BATF/RUNX3, establishing RBPJ-, Sin3A-, and REST-mediated repression. EBNA3C immune precipitated with Sin3A and conditional EBNA3C inactivation significantly decreased Sin3A binding at the p14(ARF) promoter (P < 0.05). These data support a model in which EBNA3C binds strongly to BATF/IRF4/SPI1/RUNX3 sites to enhance transcription and recruits RBPJ/Sin3A- and REST/NRSF-repressive complexes to repress p14(ARF) and p16(INK4A) expression.

Cai Q, Cai S, Zhu C, et al.
A unique SUMO-2-interacting motif within LANA is essential for KSHV latency.
PLoS Pathog. 2013; 9(11):e1003750 [PubMed] Free Access to Full Article Related Publications
Kaposi's sarcoma-associated herpesvirus (KSHV) stabilizes hypoxia-inducible factor α (HIF-1α) during latent infection, and HIF-1α reactivates lytic replication under hypoxic stress. However, the mechanism utilized by KSHV to block lytic reactivation with the accumulation of HIF-1α in latency remains unclear. Here, we report that LANA encoded by KSHV contains a unique SUMO-interacting motif (LANA(SIM)) which is specific for interaction with SUMO-2 and facilitates LANA SUMOylation at lysine 1140. Proteomic and co-immunoprecipitation analysis further reveal that the SUMO-2 modified transcription repressor KAP1 is a critical factor recruited by LANA(SIM). Deletion of LANA(SIM) led to functional loss of both LANA-mediated viral episome maintenance and lytic gene silencing. Moreover, hypoxia reduced KAP1 SUMOylation and resulted in dissociation of both KAP1 and Sin3A repressors from LANA(SIM)-associated complex. Therefore, the LANA(SIM) motif plays an essential role in KSHV latency and is a potential drug target against KSHV-associated cancers.

Kadamb R, Mittal S, Bansal N, et al.
Sin3: insight into its transcription regulatory functions.
Eur J Cell Biol. 2013 Aug-Sep; 92(8-9):237-46 [PubMed] Related Publications
Sin3, a large acidic protein, shares structural similarity with the helix-loop-helix dimerization domain of proteins of the Myc family of transcription factors. Sin3/HDAC corepressor complex functions in transcriptional regulation of several genes and is therefore implicated in the regulation of key biological processes. Knockdown studies have confirmed the role of Sin3 in cellular proliferation, differentiation, apoptosis and cell cycle regulation, emphasizing Sin3 as an essential regulator of critical cellular events in normal and pathological processes. The present review covers the diverse functions of this master transcriptional regulator as well as illustrates the redundant and distinct functions of its two mammalian isoforms.

Poos K, Smida J, Nathrath M, et al.
How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation.
PLoS Comput Biol. 2013; 9(8):e1003210 [PubMed] Free Access to Full Article Related Publications
Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets. Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB- and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1, E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.de/co_networks.html).

Piazza R, Magistroni V, Mogavero A, et al.
Epigenetic silencing of the proapoptotic gene BIM in anaplastic large cell lymphoma through an MeCP2/SIN3a deacetylating complex.
Neoplasia. 2013; 15(5):511-22 [PubMed] Free Access to Full Article Related Publications
BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the BIM locus in NPM/ALK+ anaplastic large cell lymphoma (ALCL) cell lines and in lymph node biopsies from NPM/ALK+ ALCL patients. We show that BIM is epigenetically silenced in cell lines and lymph node specimens and that treatment with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression, and induces cell death. BIM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase 1/2 (HDAC1/2) corepressor complex. This event requires BIM CpG methylation/demethylation with 5-azacytidine that leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore BIM locus reacetylation; however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation at the BIM locus. This study demonstrates that BIM is epigenetically silenced in NPM/ALK-positive cells through recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain BIM epigenetic silencing but is able to act as an inducer of BIM methylation.

Hurst DR, Xie Y, Thomas JW, et al.
The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression.
PLoS One. 2013; 8(2):e55966 [PubMed] Free Access to Full Article Related Publications
Breast cancer metastasis suppressor 1 (BRMS1) is a predominantly nuclear protein that suppresses metastasis in multiple human and murine carcinoma cell lines. BRMS1 interacts with several nuclear proteins including SIN3:HDAC chromatin remodeling complexes that are involved in repressing transcription. However, recent reports suggest BRMS1 may function in the cytoplasm. BRMS1 has two predicted nuclear localization sequences (NLS) that are located near the C-terminus (amino acids 198-205 and 238-244, NLS1 and NLS2 respectively). We hypothesized that nuclear localization sequences of BRMS1 were essential for BRMS1 mediated metastasis suppression. Replacement of NLS2 with NLS1 (BRMS1(NLS1,1)), truncation at 238 (BRMS1(ΔNLS2)), or switching the location of NLS1 and NLS2 (BRMS1(NLS2,1)) did not affect nuclear localization; but, replacement of NLS1 with NLS2 (BRMS1(NLS2,2)) or truncation at 197 (BRMS1(ΔNLS) which removes both NLS) promoted cytoplasmic localization. MDA-MB-231 human metastatic breast cancer cells transduced with BRMS1(NLS1,1), BRMS1(NLS2,2) or BRMS1(NLS2,1) were evaluated for metastasis suppression in an experimental xenograft mouse model. Interestingly, while NLS2 was not necessary for nuclear localization, it was found to be important for metastasis suppression since BRMS1(NLS2,2) suppressed metastasis by 85%. In contrast, BRMS1(NLS2,1) and BRMS1(NLS1,1) did not significantly suppress metastasis. Both BRMS1 and BRMS1(NLS2,2) co-immunoprecipitated with SIN3A in the nucleus and cytoplasm; however, BRMS1(NLS1,1) and BRMS1(NLS2,1) were associated with SIN3A in the nucleus only. Moreover, BRMS1 and BRMS1(NLS2,2), but not BRMS1(NLS1,1) and BRMS1(NLS2,1), down-regulated the pro-metastatic microRNA, miR-10b. Together, these data demonstrate an important role for NLS2 in the cytoplasm that is critical for metastasis suppression and is distinct from nuclear localization.

Cartron PF, Blanquart C, Hervouet E, et al.
HDAC1-mSin3a-NCOR1, Dnmt3b-HDAC1-Egr1 and Dnmt1-PCNA-UHRF1-G9a regulate the NY-ESO1 gene expression.
Mol Oncol. 2013; 7(3):452-63 [PubMed] Free Access to Full Article Related Publications
The NY-ESO1 gene is a cancer/testis antigen considered to be suitable target for the immunotherapy of human malignancies. Despite the identification of the epigenetical silencing of the NY-ESO1 gene in a large variety of tumors, the molecular mechanism involved in this phenomenon is not fully elucidated. In two non epithelial cancers (glioma and mesothelioma), we found that the epigenetic regulation of the NY-ESO1 gene requires the sequential recruitment of the HDAC1-mSin3a-NCOR, Dnmt3b-HDAC1-Egr1 and Dnmt1-PCNA-UHRF1-G9a complexes. Thus, our data illustrate the orchestration of a sequential epigenetic mechanism including the histone deacetylation and methylation, and the DNA methylation processes.

Das TK, Sangodkar J, Negre N, et al.
Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors.
Oncogene. 2013; 32(26):3184-97 [PubMed] Free Access to Full Article Related Publications
Chromatin remodeling proteins regulate multiple aspects of cell homeostasis, making them ideal candidates for misregulation in transformed cells. Here, we explore Sin3A, a member of the Sin3 family of proteins linked to tumorigenesis that are thought to regulate gene expression through their role as histone deacetylases (HDACs). We identified Drosophila Sin3a as an important mediator of oncogenic Ret receptor in a fly model of Multiple Endocrine Neoplasia Type 2. Reducing Drosophila Sin3a activity led to metastasis-like behavior and, in the presence of Diap1, secondary tumors distant from the site of origin. Genetic and Chip-Seq analyses identified previously undescribed Sin3a targets including genes involved in cell motility and actin dynamics, as well as signaling pathways including Src, Jnk and Rho. A key Sin3a oncogenic target, PP1B, regulates stability of β-Catenin/Armadillo: the outcome is to oppose T-cell factor (TCF) function and Wg/Wnt pathway signaling in both fly and mammalian cancer cells. Reducing Sin3A strongly increased the invasive behavior of A549 human lung adenocarcinoma cells. We show that Sin3A is downregulated in a variety of human tumors and that Src, JNK, RhoA and PP1B/β-Catenin are regulated in a manner analogous to our Drosophila models. Our data suggest that Sin3A influences a specific step of tumorigenesis by regulating a module of genes involved in cell invasion. Tumor progression may commonly rely on such 'modules of invasion' under the control of broad transcriptional regulators.

Winter SF, Lukes L, Walker RC, et al.
Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis.
PLoS Genet. 2012; 8(5):e1002735 [PubMed] Free Access to Full Article Related Publications
Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT-rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA-mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.

De Amicis F, Giordano F, Vivacqua A, et al.
Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor alpha gene expression via p38MAPK/CK2 signaling in human breast cancer cells.
FASEB J. 2011; 25(10):3695-707 [PubMed] Free Access to Full Article Related Publications
Agents to counteract acquired resistance to hormonal therapy for breast cancer would substantially enhance the long-term benefits of hormonal therapy. In the present study, we demonstrate how resveratrol (Res) inhibits human breast cancer cell proliferation, including MCF-7 tamoxifen-resistant cells (IC(50) values for viability were in the 30-45 μM range). We show that Res, through p38(MAPK) phosphorylation, causes induction of p53, which recruits at the estrogen receptor α (ERα) proximal promoter, leading to an inhibition of ERα expression in terms of mRNA and protein content. These events appear specifically p53 dependent, since they are drastically abrogated with p53-targeting siRNA. Coimmunoprecipitation assay showed specific interaction between p53, the Sin3A corepressor, and histone deacetylase 1 (HDAC1), which was phosphorylated. The enhancement of the tripartite complex p53/Sin3A/HDAC1, together with NF-Y on Res treatment, was confirmed by chromatin immunoprecipitation analyses, with a concomitant release of Sp1 and RNA polymerase II, thereby inhibiting the cell transcriptional machinery. The persistence of such effects in MCF-7 tamoxifen-resistant cells at a higher extent than parental MCF-7 cells addresses how Res may be considered a useful pharmacological tool to be exploited in the adjuvant settings for treatment of breast cancer developing hormonal resistance.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SIN3A, Cancer Genetics Web: http://www.cancer-genetics.org/SIN3A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999