Gene Summary

Gene:SDHA; succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
Aliases: FP, PGL5, SDH1, SDH2, SDHF, CMD1GG
Summary:This gene encodes a major catalytic subunit of succinate-ubiquinone oxidoreductase, a complex of the mitochondrial respiratory chain. The complex is composed of four nuclear-encoded subunits and is localized in the mitochondrial inner membrane. Mutations in this gene have been associated with a form of mitochondrial respiratory chain deficiency known as Leigh Syndrome. A pseudogene has been identified on chromosome 3q29. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2014]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Latest Publications: SDHA (cancer-related)

Koo JS, Yoon JS
Expression of metabolism-related proteins in lacrimal gland adenoid cystic carcinoma.
Am J Clin Pathol. 2015; 143(4):584-92 [PubMed] Related Publications
OBJECTIVES: To investigate the expression and the clinical implications of metabolism-related proteins in lacrimal gland adenoid cystic carcinoma (ACC) in comparison with salivary gland ACC.
METHODS: Human tissue samples of lacrimal gland ACC (n = 11) and salivary gland ACC (n = 64) were analyzed. Immunochemistry was used to measure expression of proteins related to glycolysis (glucose transporter 1, hexokinase II, carbonic anhydrase IX, and monocarboxylate transporter 4 [MCT4]), glutaminolysis (glutaminase 1 [GLS1], glutamate dehydrogenase [GDH], and amino acid transporter 2 [ASCT2]), mitochondria (adenosine triphosphate [ATP] synthase, succinate dehydrogenase A [SDHA], and succinate dehydrogenase B), and glycolytic intermediate metabolism (phosphoserine phosphatase [PSPH], serine hydroxymethyl transferase 1 [SHMT1]).
RESULTS: GLS1 and ASCT2 were more highly expressed, and GDH, ATP synthase, and SDHA were expressed to a lesser degree in lacrimal gland ACC than in salivary gland ACC (P < .05). Lacrimal gland ACC showed less of a mitochondrial phenotype than did salivary gland ACC (P = .001). Positivity of MCT4 and PSPH was related to shorter disease-free survival, and SHMT1 was related to shorter overall survival (P < .05).
CONCLUSIONS: Lacrimal gland ACC exhibited higher expression of GLS1 and ASCT2, compared with salivary gland ACC. Overexpression of MCT4, PSPH, and SHMT1 was associated with poorer prognosis.

Dénes J, Swords F, Rattenberry E, et al.
Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort.
J Clin Endocrinol Metab. 2015; 100(3):E531-41 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Pituitary adenomas and pheochromocytomas/paragangliomas (pheo/PGL) can occur in the same patient or in the same family. Coexistence of the two diseases could be due to either a common pathogenic mechanism or a coincidence.
OBJECTIVE: The objective of the investigation was to study the possible coexistence of pituitary adenoma and pheo/PGL.
DESIGN: Thirty-nine cases of sporadic or familial pheo/PGL and pituitary adenomas were investigated. Known pheo/PGL genes (SDHA-D, SDHAF2, RET, VHL, TMEM127, MAX, FH) and pituitary adenoma genes (MEN1, AIP, CDKN1B) were sequenced using next generation or Sanger sequencing. Loss of heterozygosity study and pathological studies were performed on the available tumor samples.
SETTING: The study was conducted at university hospitals.
PATIENTS: Thirty-nine patients with sporadic of familial pituitary adenoma and pheo/PGL participated in the study.
OUTCOME: Outcomes included genetic screening and clinical characteristics.
RESULTS: Eleven germline mutations (five SDHB, one SDHC, one SDHD, two VHL, and two MEN1) and four variants of unknown significance (two SDHA, one SDHB, and one SDHAF2) were identified in the studied genes in our patient cohort. Tumor tissue analysis identified LOH at the SDHB locus in three pituitary adenomas and loss of heterozygosity at the MEN1 locus in two pheochromocytomas. All the pituitary adenomas of patients affected by SDHX alterations have a unique histological feature not previously described in this context.
CONCLUSIONS: Mutations in the genes known to cause pheo/PGL can rarely be associated with pituitary adenomas, whereas mutation in a gene predisposing to pituitary adenomas (MEN1) can be associated with pheo/PGL. Our findings suggest that genetic testing should be considered in all patients or families with the constellation of pheo/PGL and a pituitary adenoma.

Menara M, Oudijk L, Badoual C, et al.
SDHD immunohistochemistry: a new tool to validate SDHx mutations in pheochromocytoma/paraganglioma.
J Clin Endocrinol Metab. 2015; 100(2):E287-91 [PubMed] Related Publications
CONTEXT: Pheochromocytomas (PCC) and paragangliomas (PGL) may be caused by a germline mutation in 12 different predisposing genes. We previously reported that immunohistochemistry is a useful approach to detect patients harboring SDHx mutations. SDHA immunostaining is negative in SDHA-mutated tumors only, while SDHB immunostaining is negative in samples mutated on all SDHx genes. In some cases of SDHD or SDHC-mutated tumors, a weak diffuse SDHB labeling has however been described.
OBJECTIVE: Here, we addressed whether the same procedure could be applicable to detect patients with germline SDHD mutations, by testing two new commercially available anti-SDHD antibodies.
DESIGN AND METHODS: We performed a retrospective study on 170 PGL/PCC in which we investigated SDHD and SDHB expression by immunohistochemistry.
RESULTS: SDHx-mutated PGL/PCC showed a completely negative SDHB staining (23/27) or a weak cytoplasmic background (4/27). Unexpectedly, we observed that SDHD immunohistochemistry was positive in SDHx-deficient tumors and negative in the other samples. Twenty-six of 27 SDHx tumors (including the four weakly stained for SDHB) were positive for SDHD. Among non-SDHx tumors, 138/143 were positive for SDHB and negative for SDHD. Five cases showed a negative immunostaining for SDHB, but were negative for SDHD.
CONCLUSION: Our results demonstrate that a positive SDHD immunostaining predicts the presence of an SDHx gene mutation. Because SDHB negative immunostaining is sometimes difficult to interpret in the case of background, the addition of SDHD positive immunohistochemistry will be a very useful tool to predict or validate SDHx gene variants in PGL/PCC.

Montesinos-Rongen M, Purschke F, Küppers R, Deckert M
Immunoglobulin repertoire of primary lymphomas of the central nervous system.
J Neuropathol Exp Neurol. 2014; 73(12):1116-25 [PubMed] Related Publications
Primary lymphoma of the central nervous system (PCNSL) is a diffuse large B-cell lymphoma confined to the CNS. It has been hypothesized that antigen(s) in the CNS may trigger tumor cell proliferation. Because efforts to identify potential antigens have been unsuccessful to date, we studied the B-cell receptor in detail in a comprehensive series of 50 PCNSLs to obtain indirect information on potential antigens. Potentially functional V-D-J rearrangements were identified in all PCNSLs analyzed. Immunoglobulin heavy-chain variable gene segment (IGHV), IGHV4, was the predominant family used by 66% (33 of 50) of PCNSLs with a preferential rearrangement of the IGHV4-34 gene segment (18 [55%] of 33). The IGHV genes showed mutation frequencies from 0% to 29%, with a high average mutation frequency of 10%. In addition to 48% (24 of 50) of PCNSLs being highly mutated, 22% (11 of 50) defined a low-level mutated group. Antigen selection of the tumor cells or their precursors was indicated by replacement/silent mutation ratios and ongoing somatic hypermutation. Complementarity determining region 3 length and composition as well as the lack of stereotyped B-cell receptors suggest involvement of several antigens instead of a unique antigen recognized by the tumor cells.

Sharma B, Singh S, Kanwar SS
L-methionase: a therapeutic enzyme to treat malignancies.
Biomed Res Int. 2014; 2014:506287 [PubMed] Free Access to Full Article Related Publications
Cancer is an increasing cause of mortality and morbidity throughout the world. L-methionase has potential application against many types of cancers. L-Methionase is an intracellular enzyme in bacterial species, an extracellular enzyme in fungi, and absent in mammals. L-Methionase producing bacterial strain(s) can be isolated by 5,5'-dithio-bis-(2-nitrobenzoic acid) as a screening dye. L-Methionine plays an important role in tumour cells. These cells become methionine dependent and eventually follow apoptosis due to methionine limitation in cancer cells. L-Methionine also plays an indispensable role in gene activation and inactivation due to hypermethylation and/or hypomethylation. Membrane transporters such as GLUT1 and ion channels like Na(2+), Ca(2+), K(+), and Cl(-) become overexpressed. Further, the α-subunit of ATP synthase plays a role in cancer cells growth and development by providing them enhanced nutritional requirements. Currently, selenomethionine is also used as a prodrug in cancer therapy along with enzyme methionase that converts prodrug into active toxic chemical(s) that causes death of cancerous cells/tissue. More recently, fusion protein (FP) consisting of L-methionase linked to annexin-V has been used in cancer therapy. The fusion proteins have advantage that they have specificity only for cancer cells and do not harm the normal cells.

Nannini M, Astolfi A, Urbini M, et al.
Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST).
BMC Cancer. 2014; 14:685 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: About 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813-3825, 2004; Hematol Oncol Clin North Am 23:15-34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P).In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes.
METHODS: We performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis.
RESULTS: We found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG).
CONCLUSION: We report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors.

Grimm M, Cetindis M, Lehmann M, et al.
Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma?
J Transl Med. 2014; 12:208 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC).
METHODS: Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines.
RESULTS: Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay).
CONCLUSIONS: This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.

Clark GR, Sciacovelli M, Gaude E, et al.
Germline FH mutations presenting with pheochromocytoma.
J Clin Endocrinol Metab. 2014; 99(10):E2046-50 [PubMed] Related Publications
CONTEXT: At least a third of the patients with pheochromocytoma (PCC) or paraganglioma (PGL) harbor an underlying germline mutation in a known PCC/PGL gene. Mutations in genes (SDHB, SDHD, SDHC, and SDHA) encoding a component of the tricarboxylic acid cycle, succinate dehydrogenase (SDH), are a major cause of inherited PCC and PGL. SDHB mutations are also, albeit less frequently, associated with inherited renal cell carcinoma. Inactivation of SDH and another tricarboxylic acid cycle component, fumarate hydratase (FH), have both been associated with abnormalities of cellular metabolism, responsible for the activation of hypoxic gene response pathways and epigenetic alterations (eg, DNA methylation). However, the clinical phenotype of germline mutations in SDHx genes and FH is usually distinct, with FH mutations classically associated with hereditary cutaneous and uterine leiomyomatosis and renal cell carcinoma, although recently an association with PCC/PGL has been reported.
OBJECTIVE AND DESIGN: To identify potential novel PCC/PGL predisposition genes, we initially undertook exome resequencing studies in a case of childhood PCC, and subsequently FH mutation analysis in a further 71 patients with PCC, PGL, or head and neck PGL.
RESULTS: After identifying a candidate FH missense mutation in the exome study, we then detected a further candidate missense mutation (p.Glu53Lys) by candidate gene sequencing. In vitro analyses demonstrated that both missense mutations (p.Cys434Tyr and p.Glu53Lys) were catalytically inactive.
CONCLUSIONS: These findings 1) confirm that germline FH mutations may present, albeit rarely with PCC or PGL; and 2) extend the clinical phenotype associated with FH mutations to pediatric PCC.

Miettinen M, Lasota J
Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) - a review.
Int J Biochem Cell Biol. 2014; 53:514-9 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
Loss of function of the succinate dehydrogenase complex characterizes a rare group of human tumors including some gastrointestinal stromal tumors, paragangliomas, renal carcinomas, and pituitary adenomas, and these can all be characterized as SDH-deficient tumors. Approximately 7.5% of gastric gastrointestinal stromal tumors are SDH-deficient and not driven by KIT/PDGFRA mutations, as are most other GISTs. The occurrence of SDH-deficient GISTs is restricted to stomach, and they typically occur in children and young adults representing a spectrum of clinical behavior from indolent to progressive. Slow progression is a common feature even after metastatic spread has taken place, and many patients live years with metastases. SDH-deficient GISTs have characteristic morphologic features including multinodular gastric wall involvement, often multiple separate tumors, common lymphovascular invasion, and occasional lymph node metastases. Diagnostic is the loss of succinate dehydrogenase subunit B (SDHB) from the tumor cells and this can be practically assessed by immunohistochemistry. SDHA is lost in cases associated with SDHA mutations. Approximately half of the patients have SDH subunit gene mutations, often germline and most commonly A (30%), and B, C or D (together 20%), with both alleles inactivated in the tumor cells according to the classic tumor suppressor gene model. Half of the cases are not associated with SDH-mutations and epigenetic silencing of the SDH complex is the possible pathogenesis. Extensive genomic methylation has been observed in these tumors, which is in contrast with other GISTs. SDH-loss causes succinate accumulation and activation of pseudohypoxia signaling via overexpression of HIF-proteins. Activation of insulin-like growth factor 1-signaling is also typical of these tumors. SDH-deficient GISTs are a unique group of GISTs with an energy metabolism defect as the key oncogenic mechanism. This article is part of a Directed Issue entitled: Rare Cancers.

Krzystek-Korpacka M, Diakowska D, Bania J, Gamian A
Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: implications for finding suitable normalizers for inflammatory bowel disease studies.
Inflamm Bowel Dis. 2014; 20(7):1147-56 [PubMed] Related Publications
Instability of housekeeping genes (HKG), supposedly unregulated and hence used as normalizers, may dramatically change conclusions of quantitative PCR experiments. The effect of bowel inflammation on HKG remains unknown. Expression stability of 15 HKG (ACTB, B2M, GAPDH, GUSB, HPRT1, IPO8, MRPL19, PGK1, PPIA, RPLP0, RPS23, SDHA, TBP, UBC, and YWHAZ) in 166 bowel specimens (91 normal, 35 cancerous, and 40 inflamed) was ranked by coefficients of variation (CV%) or using dedicated software: geNorm and NormFinder. The RPS23, PPIA, and RPLP0 were top-ranked, whereas IPO8, UBC and TBP were the lowest-ranked HKG across inflamed/cancerous/normal colonic tissues. The pairs RPS23/RPLP0, PGK1/MRPL19, or PPIA/RPLP0 were optimal reference by CV%, NormFinder, and geNorm, respectively. Colon inflammation affected HKG more pronouncedly than cancer with ACTB significantly down- and B2M upregulated. In inflammatory bowel disease (IBD), different genes were top-ranked in a large and small bowel, whereas TBP, UBC, and IPO8 were lowest-ranked in both. For patients with IBD at large, RPS23/PPIA, PGK1/MRPL19, and PPIA/RPLP0 were found optimal by CV%, NormFinder, and geNorm, respectively. ACTB and B2M expression was related to CRC stage and positively correlated with clinical activity of IBD. Although GAPDH was upregulated neither in CRC nor IBD, it tended to positively correlate with tumor depth and Crohn's disease activity index. Normalizing against GAPDH affected experimental conclusions in a small but not large bowel. Bowel inflammation significantly affects several classic HKG. The pair PPIA/RPLP0 is a common optimal reference for studies encompassing tissues sampled from colorectal cancer and IBD patients. Using ACTB or B2M is not recommended.

Hicks M, Hu Q, Macrae E, DeWille J
JUNB promotes the survival of Flavopiridol treated human breast cancer cells.
Biochem Biophys Res Commun. 2014; 450(1):19-24 [PubMed] Related Publications
Chemotherapy resistance is a major obstacle to achieving durable progression-free-survival in breast cancer patients. Identifying resistance mechanisms is crucial to the development of effective breast cancer therapies. Immediate early genes (IEGs) function in the initial cellular reprogramming response to alterations in the extracellular environment and IEGs have been implicated in cancer cell development and progression. The purpose of this study was to investigate the influence of kinase inhibitors on IEG expression in breast cancer cells. The results demonstrated that Flavopiridol (FP), a CDK9 inhibitor, effectively reduced gene expression. FP treatment, however, consistently produced a delayed induction of JUNB gene expression in multiple breast cancer cell lines. Similar results were obtained with Sorafenib, a multi-kinase inhibitor and U0126, a MEK1 inhibitor. Functional studies revealed that JUNB plays a pro-survival role in kinase inhibitor treated breast cancer cells. These results demonstrate a unique induction of JUNB in response to kinase inhibitor therapies that may be among the earliest events in the progression to treatment resistance.

Raygada M, King KS, Adams KT, et al.
Counseling patients with succinate dehydrogenase subunit defects: genetics, preventive guidelines, and dealing with uncertainty.
J Pediatr Endocrinol Metab. 2014; 27(9-10):837-44 [PubMed] Related Publications
The discovery that mutations in the succinate dehydrogenase (SDH) complex subunit (SDHA, B/C/D/AF2) genes predispose patients to the development of tumors has led to the identification of a large population of patients and relatives at risk for developing malignancies. The most frequent conditions associated with these mutations are the familial paraganglioma syndromes. Other tumors that are frequently associated with SDH mutations (SDHx) are gastrointestinal stromal tumors and renal cell carcinomas. A number of other rare associations have also been described. SDHx mutations are often clinically silent and metastatic, but they may also be aggressive in their presentation. The penetrance of these mutations is beginning to be understood, and the characteristics of the phenotype are being elucidated. However, the inability to accurately predict the appearance, nature, and location of tumors as well as their tendency to recur or metastasize pose challenges to those who counsel and manage patients with SDHx mutations. In this work, we present our approach for counseling these families in the context of the current uncertainties, while striving to maintain patient autonomy.

Zecchini V, Madhu B, Russell R, et al.
Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.
EMBO J. 2014; 33(12):1365-82 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.

Choi J, Kim do H, Jung W, Koo JS
The expression of succinate dehydrogenase in breast phyllodes tumor.
Histol Histopathol. 2014; 29(10):1343-54 [PubMed] Related Publications
The purpose of this study is to investigate the expression of succinate dehydrogenase (SDH)A, SDHB, and HIF-1α in phyllodes tumors and the association with clinic-pathologic factors. Using tissue microarray (TMA) for 206 phyllodes tumor cases, we performed immunohistochemical stains for SDHA, SDHB, and HIF-1α and analyzed their expression in regard to clinicopathologic parameters of each case. The cases were comprised of 156 benign, 34 borderline, and 16 malignant phyllodes tumors. The expression of stromal SDHA and epithelial- and stromal- SDHB increased as the tumor progressed from benign to malignant (P⟨0.001). There were five stromal SDHA-negative cases and 31 stromal SDHB-negative cases. SDHB negativity was associated with a lower histologic grade (P=0.054) and lower stromal atypia (P=0.048). Univariate analysis revealed that a shorter disease free survival (DFS) was associated with stromal SDHB high-positivity (P=0.013) and a shorter overall survival (OS) was associated with high-positivity of stromal SDHA and SDHB (P⟨0.001 and P⟨0.001, respectively). The multivariate Cox analysis with the variables stromal cellularity, stromal atypia, stromal mitosis, stromal overgrowth, tumor margin, stromal SDHA expression, and stromal SDHB expression revealed that stromal overgrowth was associated with a shorter DFS (hazard ratio: 24.78, 95% CI: 3.126-196.5, P=0.002) and a shorter OS (hazard ratio: 176.7, 95% CI: 8.466-3691, P=0.001). In conclusion, Tumor grade is positively correlated with SDHA and SDHB expression in the tumor stroma in phyllodes tumors of the breast. This result may be attributed to the increased metabolic demand in high grade tumors.

Renella R, Carnevale J, Schneider KA, et al.
Exploring the association of succinate dehydrogenase complex mutations with lymphoid malignancies.
Fam Cancer. 2014; 13(3):507-11 [PubMed] Related Publications
The succinate dehydrogenase (SDH) complex exerts a fundamental role in mitochondrial cellular respiration and mutations in its encoding genes (SDHA, SDHB, SDHC, SDHD, collectively referred to as SDHx) lead to a number of inherited endocrine cancer predisposition syndromes, including familial paraganglioma/pheochromocytoma. Recent studies suggest a possible role for the SDH complex and other mitochondrial enzymes in the pathogenesis of hematological malignancy. Our aim was to search and identify pedigrees of patients affected by germline SHDx mutations treated at our institution for endocrine and other tumors, and seek to identify cases of hematological malignancy. We also analyzed cancer genome databases for reported cases of SDHx mutations outside of endocrine neoplasms. We report of two unrelated pedigrees carrying SDHx mutations with members affected by lymphomas. Sequencing data revealed one case of chronic lymphocytic leukemia with a SDHB mutation. This novel set of observations demonstrates the need for collaborative databases of patients with endocrine cancers with SDHx mutations, and the investigation of their role in hematological (lymphoid) malignancy.

Casey R, Garrahy A, Tuthill A, et al.
Universal genetic screening uncovers a novel presentation of an SDHAF2 mutation.
J Clin Endocrinol Metab. 2014; 99(7):E1392-6 [PubMed] Related Publications
CONTEXT: Hereditary pheochromocytoma/paraganglioma (PC/PGL) accounts for up to 60% of previously considered sporadic tumors. Guidelines suggest that phenotype should guide genetic testing. Next-generation sequencing technology can simultaneously sequence 9 of the 18 known susceptibility genes in a timely, cost-efficient manner.
OBJECTIVE: Our aim was to confirm that universal screening is superior to targeted testing in patients with histologically confirmed PC and PGL.
METHODS: In two tertiary referral hospitals in Ireland, NGS was carried out on all histologically confirmed cases of PC/PGL diagnosed between 2004 and 2013. The following susceptibility genes were sequenced: VHL, RET, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, and MAX. A multiplex ligation-dependent probe amplification analysis was performed in VHL, SDHB, SDHC, SDHD, and SDHAF2 genes to detect deletions and duplications.
RESULTS: A total of 31 patients were tested, 31% (n = 10) of whom were found to have a genetic mutation. Of those patients with a positive genotype, phenotype predicted genotype in only 50% (n = 5). Significant genetic mutations that would have been missed in our cohort by phenotypic evaluation alone include a mutation in TMEM127, two mutations in SDHAF2, and two mutations in RET. Target testing would have identified three of the latter mutations based on age criteria. However, 20% of patients (n = 2) would not have satisfied any criteria for targeted testing including one patient with a novel presentation of an SDHAF2 mutation.
CONCLUSION: This study supports the value of universal genetic screening for all patients with PC/PGL.

Welander J, Andreasson A, Juhlin CC, et al.
Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma.
J Clin Endocrinol Metab. 2014; 99(7):E1352-60 [PubMed] Related Publications
CONTEXT: Pheochromocytomas and paragangliomas have a highly diverse genetic background, with a third of the cases carrying a germline mutation in 1 of 14 identified genes.
OBJECTIVE: This study aimed to evaluate next-generation sequencing for more efficient genetic testing of pheochromocytoma and paraganglioma and to establish germline and somatic mutation frequencies for all known susceptibility genes.
DESIGN: A targeted next-generation sequencing approach on an Illumina MiSeq instrument was used for a mutation analysis in 86 unselected pheochromocytoma and paraganglioma tumor samples. The study included the genes EGLN1, EPAS1, KIF1Bβ, MAX, MEN1, NF1, RET, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, and VHL. RESULTS were verified in tumor and constitutional DNA with Sanger sequencing.
RESULTS: In all cases with clinical syndromes or known germline mutations, a mutation was detected in the expected gene. Among 68 nonfamilial tumors, 32 mutations were identified in 28 of the samples (41%), including germline mutations in EGLN1, KIF1Bβ, SDHA, SDHB, and TMEM127 and somatic mutations in EPAS1, KIF1Bβ, MAX, NF1, RET, and VHL, including one double monoallelic EPAS1 mutation.
CONCLUSIONS: Targeted next-generation sequencing proved to be fast and cost effective for the genetic analysis of pheochromocytoma and paraganglioma. More than half of the tumors harbored mutations in the investigated genes. Notably, 7% of the apparently sporadic cases carried germline mutations, highlighting the importance of comprehensive genetic testing. KIF1Bβ, which previously has not been investigated in a large cohort, appears to be an equally important tumor suppressor as MAX and TMEM127 and could be considered for genetic testing of these patients.

Polato F, Rusconi P, Zangrossi S, et al.
DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].
J Natl Cancer Inst. 2014; 106(4):dju053 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
BACKGROUND: p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage.
METHODS: DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided.
RESULTS: We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs.
CONCLUSIONS: DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

Gill AJ, Toon CW, Clarkson A, et al.
Succinate dehydrogenase deficiency is rare in pituitary adenomas.
Am J Surg Pathol. 2014; 38(4):560-6 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
Germline mutations in the succinate dehydrogenase genes (SDHA, SDHB, SDHC, and SDHD) are established as causes of pheochromocytoma/paraganglioma, renal carcinoma, and gastrointestinal stromal tumor. It has recently been suggested that pituitary adenomas may also be a component of this syndrome. We sought to determine the incidence of SDH mutation in pituitary adenomas. We performed screening immunohistochemistry for SDHB and SDHA on all available pituitary adenomas resected at our institution from 1998 to 2012. In those patients with an abnormal pattern of staining, we then performed SDH mutation analysis on DNA extracted from paraffin-embedded tissue, fresh frozen tissue, and peripheral blood. One of 309 adenomas (0.3%) demonstrated an abnormal pattern of staining, a 30 mm prolactin-producing tumor from a 62-year-old man showing loss of staining for both SDHA and SDHB. Examination of paraffin-embedded and frozen tissues confirmed double-hit inactivating somatic SDHA mutations (c.725_736del and c.989_990insTA). Neither of these mutations was present in the germline. We conclude that, although pathogenic SDH mutation may occur in pituitary adenomas and can be identified by immunohistochemistry, it appears to be a very rare event and can occur in the absence of germline mutation. SDH-deficient pituitary adenomas may be larger and more likely to produce prolactin than other pituitary adenomas. Unless suggested by family history and physical examination, it is difficult to justify screening for SDH mutations in pituitary adenomas. Surveillance programs for patients with SDH mutation may be tailored to include the possibility of pituitary neoplasia; however, this is likely to be a low-yield strategy.

Tsang VH, Dwight T, Benn DE, et al.
Overexpression of miR-210 is associated with SDH-related pheochromocytomas, paragangliomas, and gastrointestinal stromal tumours.
Endocr Relat Cancer. 2014; 21(3):415-26 [PubMed] Related Publications
miR-210 is a key regulator of response to hypoxia. Pheochromocytomas (PCs) and paragangliomas (PGLs) with germline SDHx or VHL mutations have pseudohypoxic gene expression signatures. We hypothesised that PC/PGLs containing SDHx or VHL mutations, and succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumours (GISTs), would overexpress miR-210 relative to non-SDH or -VHL-mutated counterparts. miR-210 was analysed by quantitative PCR in i) 39 PC/PGLs, according to genotype (one SDHA, five SDHB, seven VHL, three NF1, seven RET, 15 sporadic, one unknown) and pathology (18 benign, eight atypical, 11 malignant, two unknown); ii) 18 GISTs, according to SDHB immunoreactivity (nine SDH-deficient and nine SDH-proficient) and iii) two novel SDHB-mutant neurosphere cell lines. miR-210 was higher in SDHx- or VHL-mutated PC/PGLs (7.6-fold) compared with tumours without SDHx or VHL mutations (P=0.0016). miR-210 was higher in malignant than in unequivocally benign PC/PGLs (P=0.05), but significance was lost when benign and atypical tumours were combined (P=0.08). In multivariate analysis, elevated miR-210 was significantly associated with SDHx or VHL mutation, but not with malignancy. In GISTs, miR-210 was higher in SDH-deficient (median 2.58) compared with SDH-proficient tumours (median 0.60; P=0.0078). miR-210 was higher in patient-derived neurosphere cell lines containing SDHB mutations (6.5-fold increase) compared with normal controls, in normoxic conditions (P<0.01). Furthermore, siRNA-knockdown of SDHB in HEK293 cells increased miR-210 by 2.7-fold (P=0.001) under normoxia. Overall, our results suggest that SDH deficiency in PC, PGL and GISTs induces miR-210 expression and substantiates the role of aberrant hypoxic-type cellular responses in the development of these tumours.

Crona J, Nordling M, Maharjan R, et al.
Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours.
PLoS One. 2014; 9(1):e86756 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
BACKGROUND: About 60% of Pheochromocytoma (PCC) and Paraganglioma (PGL) patients have either germline or somatic mutations in one of the 12 proposed disease causing genes; SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, EPAS1, RET, NF1, TMEM127, MAX and H-RAS. Selective screening for germline mutations is routinely performed in clinical management of these diseases. Testing for somatic alterations is not performed on a regular basis because of limitations in interpreting the results.
AIM: The purpose of the study was to investigate genetic events and phenotype correlations in a large cohort of PCC and PGL tumours.
METHODS: A total of 101 tumours from 89 patients with PCC and PGL were re-sequenced for a panel of 10 disease causing genes using automated Sanger sequencing. Selected samples were analysed with Multiplex Ligation-dependent Probe Amplification and/or SNParray.
RESULTS: Pathogenic genetic variants were found in tumours from 33 individual patients (37%), 14 (16%) were discovered in constitutional DNA and 16 (18%) were confirmed as somatic. Loss of heterozygosity (LOH) was observed in 1/1 SDHB, 11/11 VHL and 3/3 NF1-associated tumours. In patients with somatic mutations there were no recurrences in contrast to carriers of germline mutations (P = 0.022). SDHx/VHL/EPAS1 associated cases had higher norepinephrine output (P = 0.03) and lower epinephrine output (P<0.001) compared to RET/NF1/H-RAS cases.
CONCLUSION: Somatic mutations are frequent events in PCC and PGL tumours. Tumour genotype may be further investigated as prognostic factors in these diseases. Growing evidence suggest that analysis of tumour DNA could have an impact on the management of these patients.

Sun J, Yu M, Lu Y, et al.
Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation.
Cancer Lett. 2014; 346(2):257-63 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
Environmental or occupational exposure to arsenic, a chemical element classified as metalloid, has been associated with cancer of the lung, skin, bladder, liver, etc. Mdig (mineral dust-induced gene) is a newly identified oncogene linked to occupational lung diseases and lung cancer. It is unclear whether mdig is also involved in arsenic-induced malignant transformation of the lung cells. By using human bronchial epithelial cells and human lung cancer cell lines, we showed that arsenic was able to induce expression of mdig. We further demonstrated that this mdig induction by arsenic was partially dependent on the JNK and STAT3 signaling pathways. Disruption of the JNK or STAT3 by either chemical inhibitors or siRNAs diminished arsenic-induced accumulation of mdig mRNA and protein. Furthermore, we also showed that microRNA-21 (miR-21) and Akt were down-stream effectors of the JNK and STAT3 signaling pathways in arsenic-induced mdig expression. Transfection of the cells with anti-miR-21 or pre-treatment of the cells with Akt inhibitor blunted mdig induction by arsenic. Clinically, the levels of mdig can be applied to predict the disease progression, the first progression (FP), in non-small cell lung cancer (NSCLC) patients. Taken together, our data suggest that mdig may play important roles on the pathogenesis of arsenic-induced lung cancer and that JNK and STAT3 signaling pathways are essential in mediating arsenic-induced mdig expression.

Shimizu T, Inoue K, Hachiya H, et al.
Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas.
J Gastroenterol. 2014; 49(9):1324-32 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
BACKGROUND: Cancer cells show enhanced glycolysis and inhibition of oxidative phosphorylation, even in the presence of sufficient oxygen (aerobic glycolysis). Glycolysis is much less efficient for energy production than oxidative phosphorylation, and the reason why cancer cells selectively use glycolysis remains unclear.
METHODS: Biospecimens were collected from 45 hepatocellular carcinoma patients. Protein samples were prepared through subcellular localization or whole-cell lysis. Protein synthesis was measured by SDS-PAGE and immunoblotting. mRNA transcription was measured using quantitative RT-PCR. Statistical correlation among immunoblotting data and clinicolaboratory factors were analyzed using SPSS.
RESULTS: Enzymes for oxidative phosphorylation (SDHA and SDHB) were frequently decreased (56 and 48 % of patients, respectively) in hepatocellular carcinomas. The lowered amount of the SDH protein complex was rarely accompanied by stabilization of HIF1α and subsequent activation of the hypoxia response. On the other hand, protein synthesis of G6PD and TKT, enzymes critical for pentose phosphate pathway (PPP), was increased (in 45 and 55 % of patients, respectively), while that of ALDOA, an enzyme for mainstream glycolysis, was eliminated (in 55 % of patients). Alteration of protein synthesis was correlated with gene expression for G6PD and TKT, but not for TKTL1, ALDOA, SDHA or SDHB. Augmented transcription and synthesis of PPP enzymes were accompanied by nuclear accumulation of NRF2.
CONCLUSION: Hepatocellular carcinomas divert glucose metabolism to the anabolic shunt by activating transcription factor NRF2.

Shi JH, Scholz H, Huitfeldt HS, Line PD
The effect of hepatic progenitor cells on experimental hepatocellular carcinoma in the regenerating liver.
Scand J Gastroenterol. 2014; 49(1):99-108 [PubMed] Related Publications
OBJECTIVE: Liver regeneration following hepatectomy can stimulate the growth of hepatocellular carcinoma (HCC), and major hepatectomy can be associated with activation of hepatic progenitor cells (HPCs). The aim of this study was to evaluate how HPCs influence the malignant potential of tumor cells in vitro and HCC tumor growth after surgery in a rodent model.
MATERIAL AND METHODS: Hepatoma cells (JM1) were cultured with conditioned medium (CM) from syngeneic HPCs (WB-F344). Growth rate, resistance to Adriamycin, and expression patterns for invasiveness and stemness were compared with naïve JM1. Microscopic HCC tumors from naïve JM1 or JM1 cultured with CM were inoculated in Fischer 344 rats undergoing 70% hepatectomy with or without simultaneous infusion of WB-F344. Tumor growth and invasiveness-related factors were compared. Buffalo rats were induced with Morris hepatoma cells. Liver tissue from both in vivo models was examined with regard to activation of cells with progenitor-like phenotype.
RESULTS: Co-culture with CM resulted in an increased resistance to Adriamycin and enhanced expressions of α-FP, MMP9, ABCG2, CD133, and SOX2, as well as the activation of ERK, AKT, WNT, and TGF-β1 pathways. Tumor size and metastases were significantly higher in groups with co-cultured cells or HPCs infusion. After 70% hepatectomy and tumor implantation, cells positive for α-FP, CK19, and CD133 were found, thus suggesting a progenitor-like phenotype in the setting of epithelial-mesenchymal transition.
CONCLUSION: HPCs have a marked effect on HCC cells in vitro and appear to stimulate the growth and malignant potential of experimental HCC tumors.

Bausch B, Wellner U, Bausch D, et al.
Long-term prognosis of patients with pediatric pheochromocytoma.
Endocr Relat Cancer. 2014; 21(1):17-25 [PubMed] Related Publications
A third of patients with paraganglial tumors, pheochromocytoma, and paraganglioma, carry germline mutations in one of the susceptibility genes, RET, VHL, NF1, SDHAF2, SDHA, SDHB, SDHC, SDHD, TMEM127, and MAX. Despite increasing importance, data for long-term prognosis are scarce in pediatric presentations. The European-American-Pheochromocytoma-Paraganglioma-Registry, with a total of 2001 patients with confirmed paraganglial tumors, was the platform for this study. Molecular genetic and phenotypic classification and assessment of gene-specific long-term outcome with second and/or malignant paraganglial tumors and life expectancy were performed in patients diagnosed at <18 years. Of 177 eligible registrants, 80% had mutations, 49% VHL, 15% SDHB, 10% SDHD, 4% NF1, and one patient each in RET, SDHA, and SDHC. A second primary paraganglial tumor developed in 38% with increasing frequency over time, reaching 50% at 30 years after initial diagnosis. Their prevalence was associated with hereditary disease (P=0.001), particularly in VHL and SDHD mutation carriers (VHL vs others, P=0.001 and SDHD vs others, P=0.042). A total of 16 (9%) patients with hereditary disease had malignant tumors, ten at initial diagnosis and another six during follow-up. The highest prevalence was associated with SDHB (SDHB vs others, P<0.001). Eight patients died (5%), all of whom had germline mutations. Mean life expectancy was 62 years with hereditary disease. Hereditary disease and the underlying germline mutation define the long-term prognosis of pediatric patients in terms of prevalence and time of second primaries, malignant transformation, and survival. Based on these data, gene-adjusted, specific surveillance guidelines can help effective preventive medicine.

Papathomas TG, de Krijger RR, Tischler AS
Paragangliomas: update on differential diagnostic considerations, composite tumors, and recent genetic developments.
Semin Diagn Pathol. 2013; 30(3):207-23 [PubMed] Related Publications
Recent developments in molecular genetics have expanded the spectrum of disorders associated with pheochromocytomas (PCCs) and extra-adrenal paragangliomas (PGLs) and have increased the roles of pathologists in helping to guide patient care. At least 30% of these tumors are now known to be hereditary, and germline mutations of at least 10 genes are known to cause the tumors to develop. Genotype-phenotype correlations have been identified, including differences in tumor distribution, catecholamine production, and risk of metastasis, and types of tumors not previously associated with PCC/PGL are now considered in the spectrum of hereditary disease. Important new findings are that mutations of succinate dehydrogenase genes SDHA, SDHB, SDHC, SDHD, and SDHAF2 (collectively "SDHx") are responsible for a large percentage of hereditary PCC/PGL and that SDHB mutations are strongly correlated with extra-adrenal tumor location, metastasis, and poor prognosis. Further, gastrointestinal stromal tumors and renal tumors are now associated with SDHx mutations. A PCC or PGL caused by any of the hereditary susceptibility genes can present as a solitary, apparently sporadic, tumor, and substantial numbers of patients presenting with apparently sporadic tumors harbor occult germline mutations of susceptibility genes. Current roles of pathologists are differential diagnosis of primary tumors and metastases, identification of clues to occult hereditary disease, and triaging of patients for optimal genetic testing by immunohistochemical staining of tumor tissue for the loss of SDHB and SDHA protein. Diagnostic pitfalls are posed by morphological variants of PCC/PGL, unusual anatomic sites of occurrence, and coexisting neuroendocrine tumors of other types in some hereditary syndromes. These pitfalls can be avoided by judicious use of appropriate immunohistochemical stains. Aside from loss of staining for SDHB, criteria for predicting risk of metastasis are still controversial, and "malignancy" is diagnosed only after metastases have occurred. All PCCs/PGLs are considered to pose some risk of metastasis, and long-term follow-up is advised.

van Rijn SJ, Riemers FM, van den Heuvel D, et al.
Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs.
Mol Neurobiol. 2014; 49(2):893-9 [PubMed] Related Publications
Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses.

McInerney-Leo AM, Marshall MS, Gardiner B, et al.
Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas.
Clin Endocrinol (Oxf). 2014; 80(1):25-33 [PubMed] Related Publications
BACKGROUND: Genetic testing is recommended when the probability of a disease-associated germline mutation exceeds 10%. Germline mutations are found in approximately 25% of individuals with phaeochromcytoma (PCC) or paraganglioma (PGL); however, genetic heterogeneity for PCC/PGL means many genes may require sequencing. A phenotype-directed iterative approach may limit costs but may also delay diagnosis, and will not detect mutations in genes not previously associated with PCC/PGL.
OBJECTIVE: To assess whether whole exome sequencing (WES) was efficient and sensitive for mutation detection in PCC/PGL.
METHODS: Whole exome sequencing was performed on blinded samples from eleven individuals with PCC/PGL and known mutations. Illumina TruSeq (Illumina Inc, San Diego, CA, USA) was used for exome capture of seven samples, and NimbleGen SeqCap EZ v3.0 (Roche NimbleGen Inc, Basel, Switzerland) for five samples (one sample was repeated). Massive parallel sequencing was performed on multiplexed samples. Sequencing data were called using Genome Analysis Toolkit and annotated using annovar. Data were assessed for coding variants in RET, NF1, VHL, SDHD, SDHB, SDHC, SDHA, SDHAF2, KIF1B, TMEM127, EGLN1 and MAX. Target capture of five exome capture platforms was compared.
RESULTS: Six of seven mutations were detected using Illumina TruSeq exome capture. All five mutations were detected using NimbleGen SeqCap EZ v3.0 platform, including the mutation missed using Illumina TruSeq capture. Target capture for exons in known PCC/PGL genes differs substantially between platforms. Exome sequencing was inexpensive (<$A800 per sample for reagents) and rapid (results <5 weeks from sample reception).
CONCLUSION: Whole exome sequencing is sensitive, rapid and efficient for detection of PCC/PGL germline mutations. However, capture platform selection is critical to maximize sensitivity.

Castelblanco E, Santacana M, Valls J, et al.
Usefulness of negative and weak-diffuse pattern of SDHB immunostaining in assessment of SDH mutations in paragangliomas and pheochromocytomas.
Endocr Pathol. 2013; 24(4):199-205 [PubMed] Related Publications
This is a confirmatory study about usefulness of SDHB and SDHA immunostaining in assessment of SDH mutations in paragangliomas and pheochromocytomas. Paraganglioma/pheochromocytoma syndrome (PGL/PCC syndrome) consists of different entities, associated with germline mutations in five different genes: SDHD, SDHAF2, SDHC, SDHA and SDHB. It has been suggested that negative immunostaining of SDHB can be taken as an indicator of the presence of a mutation in one of the five SDH genes. We have performed SDHB and SDHA immunohistochemical staining in a series of paragangliomas and pheochromocytomas from 64 patients. The patients had been previously checked for mutations in SDHD, SDHC and SDHB, but also for mutation in RET and VHL. All 14 patients with SDH mutations (9 with SDHB and 5 with SDHD mutations) exhibited negative or weak-diffuse SDHB staining pattern in tumour tissue, whereas cells of the 23 RET mutated and 8 VHL mutated tumours showed a positive SDHB immunostaining. Sixteen of the patients that did not exhibit a mutation in any gene showed positive SDHB immunostaining in tumour tissue, while only three of the patients without mutation exhibited negative staining. All patients exhibited positive pattern of SDHA immunostaining. The results confirm the value of SDHB immunohistochemical status in assessment of germline mutations in PGL/PCC syndrome.

Papathomas TG, Gaal J, Corssmit EP, et al.
Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis.
Eur J Endocrinol. 2014; 170(1):1-12 [PubMed] Related Publications
OBJECTIVE: Although the succinate dehydrogenase (SDH)-related tumor spectrum has been recently expanded, there are only rare reports of non-pheochromocytoma/paraganglioma tumors in SDHx-mutated patients. Therefore, questions still remain unresolved concerning the aforementioned tumors with regard to their pathogenesis, clinicopathological phenotype, and even causal relatedness to SDHx mutations. Absence of SDHB expression in tumors derived from tissues susceptible to SDH deficiency is not fully elucidated.
DESIGN AND METHODS: Three unrelated SDHD patients, two with pituitary adenoma (PA) and one with papillary thyroid carcinoma (PTC), and three SDHB patients affected by renal cell carcinomas (RCCs) were identified from four European centers. SDHA/SDHB immunohistochemistry (IHC), SDHx mutation analysis, and loss of heterozygosity analysis of the involved SDHx gene were performed on all tumors. A cohort of 348 tumors of unknown SDHx mutational status, including renal tumors, PTCs, PAs, neuroblastic tumors, seminomas, and adenomatoid tumors, was investigated by SDHB IHC.
RESULTS: Of the six index patients, all RCCs and one PA displayed SDHB immunonegativity in contrast to the other PA and PTC. All immunonegative tumors demonstrated loss of the WT allele, indicating bi-allelic inactivation of the germline mutated gene. Of 348 tumors, one clear cell RCC exhibited partial loss of SDHB expression.
CONCLUSIONS: These findings strengthen the etiological association of SDHx genes with pituitary neoplasia and provide evidence against a link between PTC and SDHx mutations. Somatic deletions seem to constitute the second hit in SDHB-related renal neoplasia, while SDHx alterations do not appear to be primary drivers in sporadic tumorigenesis from tissues affected by SDH deficiency.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SDHA, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999