Gene Summary

Gene:TET1; tet methylcytosine dioxygenase 1
Aliases: LCX, CXXC6, bA119F7.1
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:methylcytosine dioxygenase TET1
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA-Binding Proteins
  • Tumor Suppressor Proteins
  • Young Adult
  • Cytosine
  • Mutation
  • Dioxygenases
  • Transforming Growth Factor beta
  • Neoplasm Invasiveness
  • Gene Expression Profiling
  • Cancer Gene Expression Regulation
  • Transcription Factors
  • 5-Methylcytosine
  • Translocation
  • Testis
  • Messenger RNA
  • CpG Islands
  • Acute Myeloid Leukaemia
  • Oncogene Fusion Proteins
  • Epigenetics
  • Chromosome 10
  • Oxygenases
  • Acute Lymphocytic Leukaemia
  • Molecular Sequence Data
  • Wnt1 Protein
  • Cancer DNA
  • Isocitrate Dehydrogenase
  • MicroRNAs
  • DNA Methylation
  • Cell Differentiation
  • Leukaemia
  • Neoplastic Cell Transformation
  • Histones
  • MLL
  • Brain Tumours
  • Base Sequence
  • KMT2A
  • Proto-Oncogene Proteins
  • Immunohistochemistry
  • Rats, Wistar
  • Stem Cells
  • TET1
  • Tumor Markers
  • Stomach Cancer
  • Down-Regulation
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TET1 (cancer-related)

Navarro A, Yin P, Ono M, et al.
5-Hydroxymethylcytosine promotes proliferation of human uterine leiomyoma: a biological link to a new epigenetic modification in benign tumors.
J Clin Endocrinol Metab. 2014; 99(11):E2437-45 [PubMed] Related Publications
CONTEXT: Uterine leiomyoma, or fibroids, represent the most common benign tumors of the female reproductive tract. A newly discovered epigenetic modification, 5-hydroxymethylation (5-hmC), and its regulators, the TET (Ten Eleven Translocation) enzymes, were implicated in the pathology of malignant tumors; however, their roles in benign tumors, including uterine fibroids, remain unknown.
OBJECTIVE: To determine the role of 5-hmC and TET proteins in the pathogenesis of leiomyoma using human uterine leiomyoma and normal matched myometrial tissues and primary cells.
DESIGN: 5-hmC levels were determined by ELISA and immunofluorescent staining in matched myometrial and leiomyoma tissues. TET expression was analyzed by quantitative RT-PCR and immunoblotting. TET1 or TET3 were silenced or inhibited by small interfering RNA or 2-hydroxyglutarate to study their effects on 5-hmC content and cell proliferation.
RESULTS: We demonstrated significantly higher 5-hmC levels in the genomic DNA of leiomyoma tissue compared to normal myometrial tissue. The increase in 5-hmC levels was associated with the up-regulation of TET1 or TET3 mRNA and protein expression in leiomyoma tissue. TET1 or TET3 knockdown significantly reduced 5-hmC levels in leiomyoma cells and decreased cell proliferation. Treatment with 2-hydroxyglutarate, a competitive TET enzyme inhibitor, significantly decreased both 5-hmC content and cell proliferation of leiomyoma cells.
CONCLUSION: An epigenetic imbalance in the 5-hmC content of leiomyoma tissue, caused by up-regulation of the TET1 and TET3 enzymes, might lead to discovery of new therapeutic targets in leiomyoma.

Ahsan S, Raabe EH, Haffner MC, et al.
Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma.
Acta Neuropathol Commun. 2014; 2:59 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) is a malignant pediatric brain tumor associated with dismal outcome. Recent high-throughput molecular studies have shown a high frequency of mutations in histone-encoding genes (H3F3A and HIST1B) and distinctive epigenetic alterations in these tumors. Epigenetic alterations described in DIPG include global DNA hypomethylation. In addition to the generally repressive methylcytosine DNA alteration, 5-hydroxymethylation of cytosine (5hmC) is recognized as an epigenetic mark associated with active chromatin. We hypothesized that in addition to alterations in DNA methylation, that there would be changes in 5hmC. To test this hypothesis, we performed immunohistochemical studies to compare epigenetic alterations in DIPG to extrapontine adult and pediatric glioblastoma (GBM) and normal brain. A total of 124 tumors were scored for histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 9 trimethylation (H3K9me3) and 104 for 5hmC and 5-methylcytosine (5mC). An H-score was derived by multiplying intensity (0-2) by percentage of positive tumor nuclei (0-100%).
RESULTS: We identified decreased H3K27me3 in the DIPG cohort compared to pediatric GBM (p < 0.01), adult GBM (p < 0.0001) and normal brain (p < 0.0001). H3K9me3 was not significantly different between tumor types. Global DNA methylation as measured by 5mC levels were significantly lower in DIPG compared to pediatric GBM (p < 0.001), adult GBM (p < 0.01), and normal brain (p < 0.01). Conversely, 5hmC levels were significantly higher in DIPG compared to pediatric GBM (p < 0.0001) and adult GBM (p < 0.0001). Additionally, in an independent set of DIPG tumor samples, TET1 and TET3 mRNAs were found to be overexpressed relative to matched normal brain.
CONCLUSIONS: Our findings extend the immunohistochemical study of epigenetic alterations in archival tissue to DIPG specimens. Low H3K27me3, decreased 5mC and increased 5hmC are characteristic of DIPG in comparison with extrapontine GBM. In DIPG, the relative imbalance of 5mC compared to 5hmC may represent an opportunity for therapeutic intervention.

Qiang W, Jin T, Yang Q, et al.
PRIMA-1 selectively induces global DNA demethylation in p53 mutant-type thyroid cancer cells.
J Biomed Nanotechnol. 2014; 10(7):1249-58 [PubMed] Related Publications
The p53 tumor suppressor pathway blocks carcinogenesis by triggering apoptosis and cellular senescence in response to oncogenic stress. Over 50% of human cancers including thyroid cancer carry loss-of-function mutations in the p53 gene. Recently, the identification of mutant p53-reactivating small molecules such as PRIMA-1 (p53 reactivation and induction of massive apoptosis) renders possibilities for the development of more efficient anticancer drugs. Although PRIMA-1 has been widely used for cancer therapy and exhibits a promising anticancer activity, its biological effect, particularly the epigenetic aspect, remains to be well elucidated. The present study attempts to explore the effect of PRIMA-1 on DNA methylation in a panel of thyroid cancer cell lines using luminometric methylation assay (LUMA). Our results showed that only p53 mutant-type cells were inhibited upon PRIMA-1 treatment. Conversely, p53 wild-type cells were non-sensitive to PRIMA-1. Moreover, our data demonstrated that PRIMA-1 selectively induced significant global DNA demethylation in p53 mutant-type cells. Mechanically, PRIMA-1 induced global DNA demethylation in these cells mainly through inhibiting the expression of DNA methyltransferase (DNMT) 1, 3a and 3b, and upregulating the expression of GADD45a. Notably, PRIMA-1 dramatically increased the expression of the ten-eleven translocation (TET) family of 5mC-hydroxylases, particularly TET1, in p53 mutant-type cells, further contributing to DNA demethylation. Thus, this study uncovered a previously unrecognized and prominent biological effect of PRIMA-1 through which it can cause global DNA demethylation in p53 mutant-type cancer cells mainly by rescuing the function of mutant p53 protein.

Fu HL, Ma Y, Lu LG, et al.
TET1 exerts its tumor suppressor function by interacting with p53-EZH2 pathway in gastric cancer.
J Biomed Nanotechnol. 2014; 10(7):1217-30 [PubMed] Related Publications
TET1 protein is reported to suppress cancer invasion and metastasis in prostate and breast cancer while EZH2, a polycomb group protein, has been identified as an oncogene in many types of cancers including gastric cancer. Here we report that there is an inverse relation of the expression pattern of TET1 and EZH2 in both normal gastric mucosa and gastric cancer. In gastric mucosa, EZH2 is selectively expressed in the proliferating neck cells while TET1 and 5-hydroxymethyl-cytosine (5-hmc) exhibit very low expression in the neck cells. In contrast, TET1 and 5-hmc expression is high in gastric glandular epithelium while EZH2 expression is absent in this cell population. On the other hand, in proliferating Ki67-positive gastric cancer cells, EZH2 is highly expressed while TET1 and 5-hmc expression is significantly down-regulated. When the mouse homologue of human TET1 protein Tet1 is overexpressed in a gastric cancer cell line MGC-803, we observed the dramatically down-regulation of EZH2 in one-third of the Tet1 overexpressed cells. In addition, Tet1 overexpressing cells also lost the H3K27 trimethylation mark and the cell proliferation protein Ki67. Furthermore, Tet1 overexpression induced p53 tumor suppressor protein. The increase of p53 protein level is accompanied by the phosphorylation of p53 by activated DNA-PK. Together, these results suggested a mechanism by which TET1 suppresses cancer formation by coupling DNA demethylation with DNA-PK activation of p53 and suppression of oncogenic protein EZH2. Conversely, loss of TET1 and 5-hmc expression might contribute to EZH2 up-regulation during gastric cancer development.

Liu F, Zhou Y, Zhou D, et al.
Whole DNA methylome profiling in lung cancer cells before and after epithelial-to-mesenchymal transition.
Diagn Pathol. 2014; 9:66 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastatic lung cancer is one of the leading causes of cancer death. In recent years, epithelial-to-mesenchymal transition (EMT) has been found to contribute to metastasis, as it enables migratory and invasive properties in cancer cells. Previous genome-wide studies found that DNA methylation was unchanged during EMT induced by TGF-β in AML12 cells. In this study, we aimed to discover EMT-related changes in DNA methylation in cancer cells, which are poorly understood.
METHODS: We employed a next-generation sequencing-based method, MSCC (methyl-sensitive cut counting), to investigate DNA methylation during EMT in the A549 lung cancer cell line.
RESULTS: We found that methylation levels were highly correlated to gene expression, histone modifications and small RNA expression. However, no differentially methylated regions (DMRs) were found in A549 cells treated with TGF-β for 4 h, 12 h, 24 h and 96 h. Additionally, CpG islands (CGIs) showed no overall change in methylation levels, and at the single-base level, almost all of the CpGs showed conservation of DNA methylation levels. Furthermore, we found that the expression of DNA methyltransferase 1, 3a, 3b (DNMT1, DNMT3a, DNMT3b) and ten-eleven translocation 1 (TET1) was altered after EMT. The level of several histone methylations was also changed.
CONCLUSIONS: DNA methylation-related enzymes and histone methylation might have a role in TGF-β-induced EMT without affecting the whole DNA methylome in cancer cells. Our data provide new insights into the global methylation signature of lung cancer cells and the role of DNA methylation in EMT.
VIRTUAL SLIDES: The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1112892497119603.

Frycz BA, Murawa D, Borejsza-Wysocki M, et al.
Decreased expression of ten-eleven translocation 1 protein is associated with some clinicopathological features in gastric cancer.
Biomed Pharmacother. 2014; 68(2):209-12 [PubMed] Related Publications
A decrease in ten-eleven translocation 1 (TET1) transcript and 5-Hydroxymethylcytosine (5hmC) levels has recently been demonstrated in primary gastric cancer (GC). However, little is known about TET1 protein levels in gastric tumoral and nontumoral tissue. Therefore, using reverse transcription, real-time quantitative polymerase chain reaction and western blotting analysis, we determined the TET1 transcript and protein levels in tumoral and nontumoral tissue from 38 patients with GC. We also assessed the association between the decrease in TET1 transcript and protein levels and some clinicopathological features in primary GC. We found significantly decreased levels of TET1 transcript (P=0.0023) and protein (P=0.00024) in primary tumoral tissues as compared to nontumoral tissues in patients with GC. Moreover, we also observed significantly lower amounts of TET1 transcript (P=0.03) and protein (P=0.00018) in tumoral tissues in patients aged>60. We also found significant lowered TET1 protein levels in male patients (P=0.0014), stomach (P=0.044) and cardia (P=0.013) tumor localization, T3 depth of invasion (P=0.019), N1 (P=0.012) and N3 lymph node metastasis (P=0.013) and G3 histological grade (P=0.0012). There were also significant decreases in TET1 transcript levels in female patients (P=0.042), intestinal histological types (P=0.0079) and T4 depth of invasion (P=0.037). Our results demonstrated that a decrease in TET1 transcript and protein levels is associated with some clinicopathological features in GC.

Bian EB, Zong G, Xie YS, et al.
TET family proteins: new players in gliomas.
J Neurooncol. 2014; 116(3):429-35 [PubMed] Related Publications
DNA methylation at the 5-position of cytosine (5mC) in the mammalian genome has emerged as a pivotal epigenetic event that plays important roles in development, aging and disease. The three members of the TET protein family, which convert 5mC to 5-hydroxymethylcytosine, has provided a potential mechanism resulting in DNA demethylation and maintaining cellular identity. Recent studies have shown that epigenetic modifications play a key role in the regulation of the molecular pathogenesis of gliomas. In this review we focus on demonstrating the TET proteins in DNA demethylation and transcriptional regulation of different target genes. In addition, we address the role of TET proteins in gliomas. This review will provide valuable insights into the potential targets of gliomas, and may open the possibility of novel therapeutic approaches to this fatal disease.

Nettersheim D, Heukamp LC, Fronhoffs F, et al.
Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development.
PLoS One. 2013; 8(12):e82881 [PubMed] Free Access to Full Article Related Publications
During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the base excision repair mechanism leads to replacement of a modified cytosine by an unmodified one. In this study, we analyzed the expression/activity of TET1-3 and screened for the presence of 5 mC oxidation products in adult human testis and in germ cell cancers. By analyzing human testis sections, we show that levels of 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine are decreasing as spermatogenesis proceeds, while 5-methylcytosine levels remain constant. These data indicate that during spermatogenesis active DNA demethylation becomes downregulated leading to a conservation of the methylation marks in mature sperm. We demonstrate that all carcinoma in situ and the majority of seminomas are hypomethylated and hypohydroxymethylated compared to non-seminomas. Interestingly, 5-formylcytosine and 5-carboxylcytosine were detectable in all germ cell cancer entities analyzed, but levels did not correlate to the 5-methylcytosine or 5-hydroxymethylcytosine status. A meta-analysis of gene expression data of germ cell cancer tissues and corresponding cell lines demonstrates high expression of TET1 and the DNA glycosylase TDG, suggesting that germ cell cancers utilize the oxidation pathway for active DNA demethylation. During xenograft experiments, where seminoma-like TCam-2 cells transit to an embryonal carcinoma-like state DNMT3B and DNMT3L where strongly upregulated, which correlated to increasing 5-methylcytosine levels. Additionally, 5-hydroxymethylcytosine levels were elevated, demonstrating that de novo methylation and active demethylation accompanies this transition process. Finally, mutations of IDH1 (IDH1 (R132)) and IDH2 (IDH2 (R172)) leading to production of the TET inhibiting oncometabolite 2-hydroxyglutarate in germ cell cancer cell lines were not detected.

Ittel A, Jeandidier E, Helias C, et al.
First description of the t(10;11)(q22;q23)/MLL-TET1 translocation in a T-cell lymphoblastic lymphoma, with subsequent lineage switch to acute myelomonocytic myeloid leukemia.
Haematologica. 2013; 98(12):e166-8 [PubMed] Free Access to Full Article Related Publications

Kristensen DG, Nielsen JE, Jørgensen A, et al.
Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis.
Br J Cancer. 2014; 110(3):668-78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Developmental arrest of fetal germ cells may lead to neoplastic transformation and formation of germ cell tumours via carcinoma in situ (CIS) cells. Normal fetal germ cell development requires complete erasure and re-establishment of DNA methylation. In contrast to normal spermatogonia, the genome of CIS cells remains unmethylated in the adult testis. We here investigated the possible active and passive pathways that can sustain the CIS genome hypomethylated in the adult testis.
METHODS: The levels of 5-methyl-cytosine (5mC) and 5-hydroxy-methyl-cytosine (5hmC) in DNA from micro-dissected CIS cells were assessed by quantitative measurements. The expression of TET1, TET2, APOBEC1, MBD4, APEX1, PARP1, DNMT1, DNMT3A, DNMT3B and DNMT3L in adult testis specimens with CIS and in human fetal testis was investigated by immunohistochemistry and immunofluorescence.
RESULTS: DNA from micro-dissected CIS cells contained very low levels of 5hmC produced by ten eleven translocation (TET) enzymes. CIS cells and fetal germ cells expressed the suggested initiator of active demethylation, APOBEC1, and the base excision repair proteins MBD4, APEX1 and PARP1, whereas TETs - the alternative initiators were absent. Both maintenance and de novo methyltransferases were detected in CIS cells.
CONCLUSION: The data are consistent with the presence of an active DNA de-methylation pathway in CIS cells. The hypomethylated genome of CIS cells may contribute to phenotypic plasticity and invasive capabilities of this testicular cancer precursor.

Ye C, Li L
5-hydroxymethylcytosine: a new insight into epigenetics in cancer.
Cancer Biol Ther. 2014; 15(1):10-5 [PubMed] Free Access to Full Article Related Publications
DNA methylation at the 5 position of cytosine (5-mC) has emerged as a key epigenetic marker that plays essential roles in various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family proteins, which is now widely recognized as the "sixth base" in the mammalian genome, following 5-mC, the "fifth base". 5-hmC is detected to be abundant in brain and embryonic stem cells, and is also distributed in many different human tissues. Emerging evidence has shown that 5-hmC and TET family might serve unique biological roles in many biological processes such as gene control mechanisms, DNA methylation regulation, and involved in many diseases, especially cancers. In this paper we provide an overview of the role of 5-hmC as a new sight of epigenetics in human cancer.

Jacobsen A, Silber J, Harinath G, et al.
Analysis of microRNA-target interactions across diverse cancer types.
Nat Struct Mol Biol. 2013; 20(11):1325-32 [PubMed] Free Access to Full Article Related Publications
Little is known about the extent to which individual microRNAs (miRNAs) regulate common processes of tumor biology across diverse cancer types. Using molecular profiles of >3,000 tumors from 11 human cancer types in The Cancer Genome Atlas, we systematically analyzed expression of miRNAs and mRNAs across cancer types to infer recurrent cancer-associated miRNA-target relationships. As we expected, the inferred relationships were consistent with sequence-based predictions and published data from miRNA perturbation experiments. Notably, miRNAs with recurrent target relationships were frequently regulated by genetic and epigenetic alterations across the studied cancer types. We also identify new examples of miRNAs that coordinately regulate cancer pathways, including the miR-29 family, which recurrently regulates active DNA demethylation pathway members TET1 and TDG. The online resource http://cancerminer.org allows exploration and prioritization of miRNA-target interactions that potentially regulate tumorigenesis.

Yang Q, Wu K, Ji M, et al.
Decreased 5-hydroxymethylcytosine (5-hmC) is an independent poor prognostic factor in gastric cancer patients.
J Biomed Nanotechnol. 2013; 9(9):1607-16 [PubMed] Related Publications
DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is involved in various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Increasing evidence suggests that large-scale loss of 5-hmC is an epigenetic hallmark of several human cancers. However, the value of 5-hmC in diagnosis and prognosis of human cancers, including gastric cancer (GC), remains largely unknown. The aim of this study is to determine 5-hmC levels in GCs and explore its association with clinicopathological characteristics and clinical outcome of GC patients. Using immunohistochemistry (IHC) and dot-blot assays, we demonstrated that 5-hmC was dramatically decreased in GCs compared with matched normal tissues. We also found a strong link between decreased 5-hmC and the reduction of TET1 gene expression, but not TET2 or 3, suggesting that decreased TET1 expression might be one of the mechanisms underlying 5-hmC loss in GCs. Wilcoxon tests showed that 5-hmC content was significantly associated with most of clinicopathological characteristics, such as tumor size (P = 0.016), Bormman type (P < 0.0001), tumor invasion (P = 0.001), TNM stage (P < 0.0001), the number of lymph nodes metastasis (P = 0.002), and survival status (P < 0.0001). It is noteworthy that decreased 5-hmC was significantly associated with poor survival of GC patients. Collectively, our findings indicate that decreased 5-hmC may be crucial to the clinical pathology of GC and is a strong and independent poor prognostic factor in GCs.

Weichenhan D, Plass C
The evolving epigenome.
Hum Mol Genet. 2013; 22(R1):R1-6 [PubMed] Related Publications
Epigenetic studies include the investigation of DNA methylation, histone modifications, chromatin remodeling and gene regulation by noncoding RNAs (ncRNAs). Epigenetic alterations are critical for early developmental processes, the silencing of the inactive X-chromosome and tissue-specific gene regulation. A comprehensive picture of epigenetic patterns in normal cells is now emerging; these patterns are disturbed in human diseases such as cancer. In this review, we highlight some of the most recent advances and discoveries in the field. First, while DNA methylation is known for many years, we are just beginning to learn about novel modifications of the DNA such as 5-hydroxymethylation and the enzymes that establish and remove these marks (e.g. TET1, TET2, TET3). Furthermore, altered epigenetic patterns in diseases might be linked to recurrent mutations within enzymes required for the establishment, maintenance and editing of these patterns. Examples are mutations in the gene encoding chromatin remodeling factor SMARCB1 in rhabdoid tumors or mutations in one of the three histone H3.3-encoding genes, H3F3A, in pediatric glioblastomas. A further focus in this review will be on recent findings in the field of ncRNAs as exemplified by the long noncoding RNA CTBP1-AS involved in prostate cancer and circular RNA CDR1as which captures and negatively regulates microRNA mir-7. Finally, we will highlight some of the novel technologies that have recently emerged in the field and will help in the profiling of disease genomes by allowing the use of small cell numbers and a higher resolution.

Głowacki S, Błasiak J
[Role of 5-hydroxymethylcytosine and TET proteins in epigenetic regulation of gene expression].
Postepy Biochem. 2013; 59(1):64-9 [PubMed] Related Publications
DNA methylation plays an important role in epigenetic regulation of human gene expression. Mechanism of active demethylation of the human genome have been a matter of discussion for many years. Recently, a novel group of TET protein family enzymatically converting 5-methylcytosine into 5-hydroxymethylcytosine was discovered, playing a role in active DNA demethylation pathway. Results obtained in subsequent studies pointed that 5-hydroxymethylcytosine was not only an intermediate in that pathway, but might also modify epigenetic profile of the human genome.

Huang H, Jiang X, Li Z, et al.
TET1 plays an essential oncogenic role in MLL-rearranged leukemia.
Proc Natl Acad Sci U S A. 2013; 110(29):11994-9 [PubMed] Free Access to Full Article Related Publications
The ten-eleven translocation 1 (TET1) gene is the founding member of the TET family of enzymes (TET1/2/3) that convert 5-methylcytosine to 5-hydroxymethylcytosine. Although TET1 was first identified as a fusion partner of the mixed lineage leukemia (MLL) gene in acute myeloid leukemia carrying t(10,11), its definitive role in leukemia is unclear. In contrast to the frequent down-regulation (or loss-of-function mutations) and critical tumor-suppressor roles of the three TET genes observed in various types of cancers, here we show that TET1 is a direct target of MLL-fusion proteins and is significantly up-regulated in MLL-rearranged leukemia, leading to a global increase of 5-hydroxymethylcytosine level. Furthermore, our both in vitro and in vivo functional studies demonstrate that Tet1 plays an indispensable oncogenic role in the development of MLL-rearranged leukemia, through coordination with MLL-fusion proteins in regulating their critical cotargets, including homeobox A9 (Hoxa9)/myeloid ecotropic viral integration 1 (Meis1)/pre-B-cell leukemia homeobox 3 (Pbx3) genes. Collectively, our data delineate an MLL-fusion/Tet1/Hoxa9/Meis1/Pbx3 signaling axis in MLL-rearranged leukemia and highlight TET1 as a potential therapeutic target in treating this presently therapy-resistant disease.

Sun M, Song CX, Huang H, et al.
HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis.
Proc Natl Acad Sci U S A. 2013; 110(24):9920-5 [PubMed] Free Access to Full Article Related Publications
The ten-eleven translocation (TET) family of methylcytosine dioxygenases initiates demethylation of DNA and is associated with tumorigenesis in many cancers; however, the mechanism is mostly unknown. Here we identify upstream activators and downstream effectors of TET1 in breast cancer using human breast cancer cells and a genetically engineered mouse model. We show that depleting the architectural transcription factor high mobility group AT-hook 2 (HMGA2) induces TET1. TET1 binds and demethylates its own promoter and the promoter of homeobox A (HOXA) genes, enhancing its own expression and stimulating expression of HOXA genes including HOXA7 and HOXA9. Both TET1 and HOXA9 suppress breast tumor growth and metastasis in mouse xenografts. The genes comprising the HMGA2-TET1-HOXA9 pathway are coordinately regulated in breast cancer and together encompass a prognostic signature for patient survival. These results implicate the HMGA2-TET1-HOX signaling pathway in the epigenetic regulation of human breast cancer and highlight the importance of targeting methylation in specific subpopulations as a potential therapeutic strategy.

Liu C, Liu L, Chen X, et al.
Decrease of 5-hydroxymethylcytosine is associated with progression of hepatocellular carcinoma through downregulation of TET1.
PLoS One. 2013; 8(5):e62828 [PubMed] Free Access to Full Article Related Publications
DNA methylation is an important epigenetic modification and is frequently altered in cancer. Convert of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5 hmC was altered in various types of cancers. However, the change of 5 hmC level in hepatocellular carcinoma (HCC) and association with clinical outcome were not well defined. Here, we reported that level of 5 hmC was decreased in HCC tissues, as compared with non-tumor tissues. Clincopathological analysis showed the decreased level of 5 hmC in HCC was associated with tumor size, AFP level and poor overall survival. We also found that the decreased level of 5 hmC in non-tumor tissues was associated with tumor recurrence in the first year after surgical resection. In an animal model with carcinogen DEN-induced HCC, we found that the level of 5 hmC was gradually decreased in the livers during the period of induction. There was further reduction of 5 hmC in tumor tissues when tumors were developed. In contrast, level of 5 mC was increased in HCC tissues and the increased 5 mC level was associated with capsular invasion, vascular thrombosis, tumor recurrence and overall survival. Furthermore, our data showed that expression of TET1, but not TET2 and TET3, was downregulated in HCC. Taken together, our data indicated 5 hmC may be served as a prognostic marker for HCC and the decreased expression of TET1 is likely one of the mechanisms underlying 5 hmC loss in HCC.

Lee SG, Cho SY, Kim MJ, et al.
Genomic breakpoints and clinical features of MLL-TET1 rearrangement in acute leukemias.
Haematologica. 2013; 98(4):e55-7 [PubMed] Free Access to Full Article Related Publications

Hsu CH, Peng KL, Kang ML, et al.
TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases.
Cell Rep. 2012; 2(3):568-79 [PubMed] Related Publications
Tumor suppressor gene silencing through cytosine methylation contributes to cancer formation. Whether DNA demethylation enzymes counteract this oncogenic effect is unknown. Here, we show that TET1, a dioxygenase involved in cytosine demethylation, is downregulated in prostate and breast cancer tissues. TET1 depletion facilitates cell invasion, tumor growth, and cancer metastasis in prostate xenograft models and correlates with poor survival rates in breast cancer patients. Consistently, enforced expression of TET1 reduces cell invasion and breast xenograft tumor formation. Mechanistically, TET1 suppresses cell invasion through its dioxygenase and DNA binding activities. Furthermore, TET1 maintains the expression of tissue inhibitors of metalloproteinase (TIMP) family proteins 2 and 3 by inhibiting their DNA methylation. Concurrent low expression of TET1 and TIMP2 or TIMP3 correlates with advanced node status in clinical samples. Together, these results illustrate a mechanism by which TET1 suppresses tumor development and invasion partly through downregulation of critical gene methylation.

Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, et al.
Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing.
Blood. 2012; 120(18):e83-92 [PubMed] Related Publications
Acute myeloid leukemia (AML) is characterized by molecular heterogeneity. As commonly altered genomic regions point to candidate genes involved in leukemogenesis, we used microarray-based comparative genomic hybridization and single nucleotide polymorphism profiling data of 391 AML cases to further narrow down genomic regions of interest. Targeted resequencing of 1000 genes located in the critical regions was performed in a representative cohort of 50 AML samples comprising all major cytogenetic subgroups. We identified 120 missense/nonsense mutations as well as 60 insertions/deletions affecting 73 different genes (∼ 3.6 tumor-specific aberrations/AML). While most of the newly identified alterations were nonrecurrent, we observed an enrichment of mutations affecting genes involved in epigenetic regulation including known candidates like TET2, TET1, DNMT3A, and DNMT1, as well as mutations in the histone methyltransferases NSD1, EZH2, and MLL3. Furthermore, we found mutations in the splicing factor SFPQ and in the nonclassic regulators of mRNA processing CTCF and RAD21. These splicing-related mutations affected 10% of AML patients in a mutually exclusive manner. In conclusion, we could identify a large number of alterations in genes involved in aberrant splicing and epigenetic regulation in genomic regions commonly altered in AML, highlighting their important role in the molecular pathogenesis of AML.

Müller T, Gessi M, Waha A, et al.
Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas.
Am J Pathol. 2012; 181(2):675-83 [PubMed] Related Publications
The recent identification of isocitrate dehydrogenase 1 (IDH1) gene mutations in gliomas stimulated various studies to explore the molecular consequences and the clinical implications of such alterations. The Cancer Genome Atlas Research Network showed evidence for a CpG island methylator phenotype in glioblastomas that was associated with IDH1 mutations. These alterations were associated with the production of the oncometabolite, 2-hydroxyglutarate, that inhibits oxygenases [ie, ten-eleven translocation (TET) enzymes involved in the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC)]. We investigated 60 gliomas for 5hmC presence, 5-methylcytosine content, TET1 expression, and IDH1 mutation to gain insight into their relationships on a histological level. Of gliomas, 61% revealed no immunoreactivity for 5hmC, and no correlation was observed between IDH1 mutations and loss of 5hmC. Interestingly, expression of TET1 showed remarkable differences regarding overall protein levels and subcellular localization. We found a highly significant (P = 0.0007) correlation between IDH1 mutations and nuclear accumulation of TET1, but not with loss of 5hmC. Of 5hmC-negative gliomas, 70% showed either exclusive or dominant cytoplasmic expression, or no detectable TET1 protein (P = 0.0122). Our data suggest that the loss of 5hmC is a frequent event in gliomas, independent of IDH1 mutation, and may be influenced by the nuclear exclusion of TET1 from the nuclei of glioma cells.

Kalender Atak Z, De Keersmaecker K, Gianfelici V, et al.
High accuracy mutation detection in leukemia on a selected panel of cancer genes.
PLoS One. 2012; 7(6):e38463 [PubMed] Free Access to Full Article Related Publications
With the advent of whole-genome and whole-exome sequencing, high-quality catalogs of recurrently mutated cancer genes are becoming available for many cancer types. Increasing access to sequencing technology, including bench-top sequencers, provide the opportunity to re-sequence a limited set of cancer genes across a patient cohort with limited processing time. Here, we re-sequenced a set of cancer genes in T-cell acute lymphoblastic leukemia (T-ALL) using Nimblegen sequence capture coupled with Roche/454 technology. First, we investigated how a maximal sensitivity and specificity of mutation detection can be achieved through a benchmark study. We tested nine combinations of different mapping and variant-calling methods, varied the variant calling parameters, and compared the predicted mutations with a large independent validation set obtained by capillary re-sequencing. We found that the combination of two mapping algorithms, namely BWA-SW and SSAHA2, coupled with the variant calling algorithm Atlas-SNP2 yields the highest sensitivity (95%) and the highest specificity (93%). Next, we applied this analysis pipeline to identify mutations in a set of 58 cancer genes, in a panel of 18 T-ALL cell lines and 15 T-ALL patient samples. We confirmed mutations in known T-ALL drivers, including PHF6, NF1, FBXW7, NOTCH1, KRAS, NRAS, PIK3CA, and PTEN. Interestingly, we also found mutations in several cancer genes that had not been linked to T-ALL before, including JAK3. Finally, we re-sequenced a small set of 39 candidate genes and identified recurrent mutations in TET1, SPRY3 and SPRY4. In conclusion, we established an optimized analysis pipeline for Roche/454 data that can be applied to accurately detect gene mutations in cancer, which led to the identification of several new candidate T-ALL driver mutations.

Tan L, Shi YG
Tet family proteins and 5-hydroxymethylcytosine in development and disease.
Development. 2012; 139(11):1895-902 [PubMed] Free Access to Full Article Related Publications
Over the past few decades, DNA methylation at the 5-position of cytosine (5-methylcytosine, 5mC) has emerged as an important epigenetic modification that plays essential roles in development, aging and disease. However, the mechanisms controlling 5mC dynamics remain elusive. Recent studies have shown that ten-eleven translocation (Tet) proteins can catalyze 5mC oxidation and generate 5mC derivatives, including 5-hydroxymethylcytosine (5hmC). The exciting discovery of these novel 5mC derivatives has begun to shed light on the dynamic nature of 5mC, and emerging evidence has shown that Tet family proteins and 5hmC are involved in normal development as well as in many diseases. In this Primer we provide an overview of the role of Tet family proteins and 5hmC in development and cancer.

Yang H, Liu Y, Bai F, et al.
Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation.
Oncogene. 2013; 32(5):663-9 [PubMed] Free Access to Full Article Related Publications
The TET (ten-eleven translocation) family of α-ketoglutarate (α-KG)-dependent dioxygenases catalyzes the sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine, leading to eventual DNA demethylation. The TET2 gene is a bona fide tumor suppressor frequently mutated in leukemia, and TET enzyme activity is inhibited in IDH1/2-mutated tumors by the oncometabolite 2-hydroxyglutarate, an antagonist of α-KG, linking 5mC oxidation to cancer development. We report here that the levels of 5hmC are dramatically reduced in human breast, liver, lung, pancreatic and prostate cancers when compared with the matched surrounding normal tissues. Associated with the 5hmC decrease is the substantial reduction of the expression of all three TET genes, revealing a possible mechanism for the reduced 5hmC in cancer cells. The decrease of 5hmC was also observed during tumor development in different genetically engineered mouse models. Together, our results identify 5hmC as a biomarker whose decrease is broadly and tightly associated with tumor development.

Zhuang J, Jones A, Lee SH, et al.
The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer.
PLoS Genet. 2012; 8(2):e1002517 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation is an important cancer hallmark, yet the dynamics of DNA methylation changes in human carcinogenesis remain largely unexplored. Moreover, the role of DNA methylation for prediction of clinical outcome is still uncertain and confined to specific cancers. Here we perform the most comprehensive study of DNA methylation changes throughout human carcinogenesis, analysing 27,578 CpGs in each of 1,475 samples, ranging from normal cells in advance of non-invasive neoplastic transformation to non-invasive and invasive cancers and metastatic tissue. We demonstrate that hypermethylation at stem cell PolyComb Group Target genes (PCGTs) occurs in cytologically normal cells three years in advance of the first morphological neoplastic changes, while hypomethylation occurs preferentially at CpGs which are heavily Methylated in Embryonic Stem Cells (MESCs) and increases significantly with cancer invasion in both the epithelial and stromal tumour compartments. In contrast to PCGT hypermethylation, MESC hypomethylation progresses significantly from primary to metastatic cancer and defines a poor prognostic signature in four different gynaecological cancers. Finally, we associate expression of TET enzymes, which are involved in active DNA demethylation, to MESC hypomethylation in cancer. These findings have major implications for cancer and embryonic stem cell biology and establish the importance of systemic DNA hypomethylation for predicting prognosis in a wide range of different cancers.

Kudo Y, Tateishi K, Yamamoto K, et al.
Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation.
Cancer Sci. 2012; 103(4):670-6 [PubMed] Related Publications
Dysregulated DNA methylation followed by abnormal gene expression is an epigenetic hallmark in cancer. DNA methylation is catalyzed by DNA methyltransferases, and the aberrant expression or mutations of DNA methyltransferase genes are found in human neoplasm. The enzymes for demethylating 5-methylcytosine were recently identified, and the biological significance of DNA demethylation is a current focus of scientific attention in various research fields. Ten-eleven translocation (TET) proteins have an enzymatic activity for the conversion from 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), which is an intermediate of DNA demethylation. The loss-of-function mutations of TET2 gene were reported in myeloid malignancies, suggesting that impaired TET-mediated DNA demethylation could play a crucial role in tumorigenesis. It is still unknown, however, whether DNA demethylation is involved in biological properties in solid cancers. Here, we show the loss of 5-hmC in a broad spectrum of solid tumors: for example, a significant reduction of 5-hmC was found in 72.7% of colorectal cancers (CRCs) and 75% of gastric cancers compared to background tissues. TET1 expression was decreased in half of CRCs, and a large part of them was followed by the loss of 5-hmC. These findings suggest that the amount of 5-hmC in tumors is often reduced via various mechanisms, including the downregulation of TET1. Consistently, in the in vitro experiments, the downregulation of TET1 was clearly induced by oncogene-dependent cellular transformation, and loss of 5-hmC was seen in the transformed cells. These results suggest the critical roles of aberrant DNA demethylation for oncogenic processes in solid tissues.

Jin SG, Jiang Y, Qiu R, et al.
5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations.
Cancer Res. 2011; 71(24):7360-5 [PubMed] Free Access to Full Article Related Publications
The base 5-hydroxymethylcytosine (5hmC) was recently identified as an oxidation product of 5-methylcytosine in mammalian DNA. Here, using sensitive and quantitative methods to assess levels of 5-hydroxymethyl-2'-deoxycytidine (5hmdC) and 5-methyl-2'-deoxycytidine (5mdC) in genomic DNA, we investigated whether levels of 5hmC can distinguish normal tissue from tumor tissue. In squamous cell lung cancers, levels of 5hmdC were depleted substantially with up to 5-fold reduction compared with normal lung tissue. In brain tumors, 5hmdC showed an even more drastic reduction with levels up to more than 30-fold lower than in normal brain, but 5hmdC levels were independent of mutations in isocitrate dehydrogenase-1. Furthermore, immunohistochemical analysis indicated that 5hmC is remarkably depleted in many types of human cancer. Importantly, an inverse relationship between 5hmC levels and cell proliferation was observed with lack of 5hmC in proliferating cells. The data therefore suggest that 5hmdC is strongly depleted in human malignant tumors, a finding that adds another layer of complexity to the aberrant epigenome found in cancer tissue. In addition, a lack of 5hmC may become a useful biomarker for cancer diagnosis.

Cimmino L, Abdel-Wahab O, Levine RL, Aifantis I
TET family proteins and their role in stem cell differentiation and transformation.
Cell Stem Cell. 2011; 9(3):193-204 [PubMed] Free Access to Full Article Related Publications
One of the main regulators of gene expression during embryogenesis and stem cell differentiation is DNA methylation. The recent identification of hydroxymethylcytosine (5hmC) as a novel epigenetic mark sparked an intense effort to characterize its specialized enzymatic machinery and to understand the biological significance of 5hmC. The recent discovery of recurrent deletions and somatic mutations in the TET gene family, which includes proteins that can hydroxylate methylcytosine (5mC), in a large fraction of myeloid malignancies further suggested a key role for dynamic DNA methylation changes in the regulation of stem cell differentiation and transformation.

Dahl C, Grønbæk K, Guldberg P
Advances in DNA methylation: 5-hydroxymethylcytosine revisited.
Clin Chim Acta. 2011; 412(11-12):831-6 [PubMed] Related Publications
Mammalian DNA contains two modified cytosine bases; 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Both of these have been known for decades but have received very different levels of attention in the scientific literature. 5mC has been studied extensively, and its role as an epigenetic modification involved in gene regulation, X-chromosome inactivation, genomic imprinting, long-term silencing of transposons and cancer development is well described. 5hmC, on the other hand, has only recently entered center stage when it was shown that the Ten-Eleven-Translocation (TET) family of oxygenases catalyzes the conversion of 5mC to 5hmC, and that one of these enzymes, TET2, is frequently mutated in myeloid neoplasms. The formation of 5hmC can lead to demethylation of DNA, which may contribute to the dynamics of DNA methylation. 5hmC has been found in many cell types and tissues, with particularly high levels in the brain, and TET1 has been shown to be important for self-renewal and maintenance of embryonic stem cells. Future challenges include better understanding the normal molecular, cellular and physiological roles of 5hmC and TET proteins, understanding the exact roles of TET proteins in cancer development, and developing sequencing methodologies that can accurately distinguish among cytosine, 5mC and 5hmC at single-base-pair resolution.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TET1, Cancer Genetics Web: http://www.cancer-genetics.org/LCX.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999