MCM7

Gene Summary

Gene:MCM7; minichromosome maintenance complex component 7
Aliases: MCM2, CDC47, P85MCM, P1CDC47, PNAS146, PPP1R104, P1.1-MCM3
Location:7q21.3-q22.1
Summary:The protein encoded by this gene is one of the highly conserved mini-chromosome maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication. The hexameric protein complex formed by the MCM proteins is a key component of the pre-replication complex (pre_RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins. The MCM complex consisting of this protein and MCM2, 4 and 6 proteins possesses DNA helicase activity, and may act as a DNA unwinding enzyme. Cyclin D1-dependent kinase, CDK4, is found to associate with this protein, and may regulate the binding of this protein with the tumorsuppressor protein RB1/RB. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:DNA replication licensing factor MCM7
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Tumor Markers
  • Prostate Cancer
  • Chromosome 7
  • Viral Load
  • p53 Protein
  • Proto-Oncogenes
  • Young Adult
  • Promoter Regions
  • RTPCR
  • Transcriptional Activation
  • Translocation
  • Neoplastic Cell Transformation
  • Cell Cycle Proteins
  • Minichromosome Maintenance Complex Component 2
  • Up-Regulation
  • Breast Cancer
  • Cancer Gene Expression Regulation
  • Virus Replication
  • Down-Regulation
  • DNA Replication
  • Messenger RNA
  • Gene Expression
  • Immunohistochemistry
  • Nuclear Proteins
  • Oligonucleotide Array Sequence Analysis
  • Survival Rate
  • siRNA
  • MicroRNAs
  • DNA-Binding Proteins
  • Minichromosome Maintenance Complex Component 7
  • Stomach Cancer
  • Adolescents
  • Apoptosis
  • Signal Transduction
  • Cervical Cancer
  • Tissue Array Analysis
  • RT-PCR
  • Transfection
  • Gene Expression Profiling
  • Cell Proliferation
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MCM7 (cancer-related)

Hoskins JW, Jia J, Flandez M, et al.
Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A.
Carcinogenesis. 2014; 35(12):2670-8 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is driven by the accumulation of somatic mutations, epigenetic modifications and changes in the micro-environment. New approaches to investigating disruptions of gene expression networks promise to uncover key regulators and pathways in carcinogenesis. We performed messenger RNA-sequencing in pancreatic normal (n = 10) and tumor (n = 8) derived tissue samples, as well as in pancreatic cancer cell lines (n = 9), to determine differential gene expression (DE) patterns. Sub-network enrichment analyses identified HNF1A as the regulator of the most significantly and consistently dysregulated expression sub-network in pancreatic tumor tissues and cells (median P = 7.56×10(-7), median rank = 1, range = 1-25). To explore the effects of HNF1A expression in pancreatic tumor-derived cells, we generated stable HNF1A-inducible clones in two pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and observed growth inhibition (5.3-fold, P = 4.5×10(-5) for MIA PaCa-2 clones; 7.2-fold, P = 2.2×10(-5) for PANC-1 clones), and a G0/G1 cell cycle arrest and apoptosis upon induction. These effects correlated with HNF1A-induced down-regulation of 51 of 84 cell cycle genes (e.g. E2F1, CDK2, CDK4, MCM2/3/4/5, SKP2 and CCND1), decreased expression of anti-apoptotic genes (e.g. BIRC2/5/6 and AKT) and increased expression of pro-apoptotic genes (e.g. CASP4/9/10 and APAF1). In light of the established role of HNF1A in the regulation of pancreatic development and homeostasis, our data suggest that it also functions as an important tumor suppressor in the pancreas.

Zhang W, Gong W, Ai H, et al.
Gene expression analysis of lung adenocarcinoma and matched adjacent non-tumor lung tissue.
Tumori. 2014 May-Jun; 100(3):338-45 [PubMed] Related Publications
AIMS AND BACKGROUND: The aim of this study was to find disease-associated genes and gene functions in lung adenocarcinoma and matched adjacent non-tumor lung tissues with DNA microarray.
METHODS: We downloaded the gene expression profile GSE32863 from the Gene Expression Omnibus database including 58 lung adenocarcinoma and 58 adjacent non-tumor lung tissue samples. Data were preprocessed and the differentially expressed genes (DEGs) were identified using packages in the R computing language. The selected DEGs were further analyzed with bioinformatics methods. After the coexpression network of DEGs was constructed by STRING (Search Tool for the Retrieval of Interacting Genes/Proteins), we analyzed gene functions with DAVID (The Database for Annotation, Visualization and Integrated Discovery) and WebGestalt (WEB-based Gene Set Analysis Toolkit).
RESULTS: A total of 1429 genes were filtered as DEGs, including 873 downregulated genes and 556 upregulated genes, and the DEGs including CDC45, CCNB2, CDC20, MCM2, PTTG1, MCM4 and FEN1 were most significantly related to cell cycle and DNA replication.
CONCLUSION: The discovery of featured genes which were significantly related to cell cycle and DNA replication has potential for use in the clinic for the diagnosis of lung adenocarcinoma in the future. However, further experiments will be needed to confirm our result.

Ichinose J, Watanabe K, Sano A, et al.
Alternative polyadenylation is associated with lower expression of PABPN1 and poor prognosis in non-small cell lung cancer.
Cancer Sci. 2014; 105(9):1135-41 [PubMed] Related Publications
Alternative polyadenylation (APA), which induces shortening of the 3'UTR, is emerging as an important phenomenon in gene regulation. APA is involved in development, cancer and cell proliferation. APA may lead to disruption of microRNA-mediated gene silencing in cancer cells via detachment of microRNA binding sites. We studied the correlation between the APA profile and the tumor aggressiveness in cases of lung cancer. We selected the top 10 genes showing significant 3'UTR shortening in lung cancer, using the package of the Bioconductor for probe-level analyses of expression microarrays. We established and evaluated the APA score by quantitative RT-PCR in 147 clinical specimens of non-small cell lung cancer and compared the results with the clinical outcomes and expression levels of APA-related genes, including PABPN1, CPEB1, E2F1 and proliferation markers (MKI67, TOP2A and MCM2). High APA scores were correlated with an advanced tumor stage and a poor prognosis (P < 0.001). Multivariate analysis identified the APA score as an independent prognostic factor (hazard ratio, 3.0; P = 0.03). Both lower expression of PABPN1 and higher expression of the proliferation markers were correlated with high APA scores and a poor prognosis, with suppression of PABPN1 exerting its influence independent of gain of the proliferation markers. Moreover, the APA score was correlated with the maximum standardized uptake value of the tumors on positron emission tomography (r = 0.53; P < 0.001). Our results indicate that the loss of PABPN1, a suppressor of APA, might promote tumor aggressiveness by releasing the cancer cells from microRNA-mediated gene regulation.

Liu D, Zhang XX, Xi BX, et al.
Sine oculis homeobox homolog 1 promotes DNA replication and cell proliferation in cervical cancer.
Int J Oncol. 2014; 45(3):1232-40 [PubMed] Related Publications
Malignant proliferation is the fundamental trait of tumor cells. The initiation of DNA replication represents a key process for cell proliferation, and has a marked impact on tumorigenesis and progression. Here we report that Sine oculis homeobox homolog 1 (SIX1) functions as a master regulator in DNA replication of cervical cancer cells. The expression of SIX1 was induced by the E7 oncoprotein of human papillomaviruses in cervical intraepithelial neoplasia and cervical cancer. The increase of SIX1 expression resulted in the upregulation of multiple genes related to the initiation of DNA replication, including the genes coding for the proteins in minichromosome maintenance complex (MCM2, MCM3, MCM6), DNA polymerase α-primase complex (POLA1, PRIM1, PRIM2), clamp loader (RFC3, RFC4, RFC5), DNA polymerase δ complex (POLD3) and DNA polymerase ε complex (POLE2). In line with this, the increase of SIX1 expression enhanced DNA synthesis, accelerated G1 to S phase progression, and promoted the proliferation of cervical cancer cells and the growth of cervical cancer. Consistently, knockdown of SIX1 could hamper DNA synthesis, slow down G1 to S phase progression, and suppress tumor cell proliferation and tumor growth. Importantly, SIX1 could more efficiently promote anchorage-independent cell growth. These results suggest that the increase of SIX1 expression could promote tumorigenesis, progression and invasive growth of cervical cancer by promoting DNA replication, and that targeting SIX1 may have significant therapeutic value in cervical cancer treatment.

Zhong X, Guan X, Dong Q, et al.
Examining Nek2 as a better proliferation marker in non-small cell lung cancer prognosis.
Tumour Biol. 2014; 35(7):7155-62 [PubMed] Related Publications
The purpose of this study is to identify a better potential biomarker for the prognosis of patients with non-small cell lung cancer (NSCLC). The expressions of Nek2, MCM7, and Ki-67 were evaluated in 270 NSCLC tissues using immunohistochemical and immunofluorescence techniques. Associations between protein expression and clinical pathologic characters were assessed, and the impact on overall survival was analyzed. We detected high levels of Nek2, MCM7, and Ki-67 expression in 25.9, 35.2, and 24.4 % of NSCLC tissues, respectively. Overexpressions of Nek2 were detected more frequently in high T-stage and N-stage cases (P = 0.000, 0.011). The expressions of Nek2, MCM7, and Ki-67 were correlated with each other. Kaplan-Meier curves indicated that patients with overexpression of Nek2, MCM7, and Ki-67 had a poorer overall survival rate compared to those with low expression for all stages (P = 0.000). In particular, the patients with Nek2 overexpression had the most negative prognosis. Multivariate Cox regression analysis showed that Nek2, MCM7, and Ki-67 are independent prognostic indicators for NSCLC. Our data suggest that among Nek2 kinase, MCM7, and Ki-67, it is Nek2 kinase that is the more effective tumor proliferation marker of poor prognosis for NSCLC patients. Thus, Nek2 may represent a new potential target for NSCLC therapeutic intervention.

Zali H, Rezaei Tavirani M
Meningioma protein-protein interaction network.
Arch Iran Med. 2014; 17(4):262-72 [PubMed] Related Publications
BACKGROUND: Meningioma is one of the most common central nervous system tumors that derived from meningothelial (arachnoid cap) cells. This paper identified the network-based Protein-Protein Interactions (PPI) for meningioma relative to healthy control.
METHODS: Gene expression data including 384 gene or protein names extracted from a number of beforehand investigations.
RESULTS: Out of these 384 proteins, 176 were found to be exclusively expressed in meningiomas and 208 proteins were down-regulated. The networks of related differentially expressed genes were explored using cytoscape and the PPI analysis methods such as MCODE and ClueGO. Results analysis introduced a number of hub proteins and 27 clusters (protein complex) with distinctive seed genes. Identified ClueGO Pathways based on subnetworks mined by MCODE composed of positive regulation in RBC homeostasis, dysregulation of transport from ER to Golgi, disruption regulation of cell cycle and antigen processing and presentation of exogenous peptide antigen and neutralization of exogenous dsRNA. Combination of over expression of TCEA1, UBE2E1, XRCC5, IFIT1, IFIT-3, MCM2, and MCM7 and under expression of CDC25A, SEC31A, and CDK6 can serve as diagnostic biomarker panel for meningiomas.
CONCLUSION: These introduced network-based biomarkers for the meningioma patterns may be helpful in diagnosis, prognosis and treatment processes however biomarker validation is necessary.

Kang W, Tong JH, Chan AW, et al.
MCM7 serves as a prognostic marker in diffuse-type gastric adenocarcinoma and siRNA-mediated knockdown suppresses its oncogenic function.
Oncol Rep. 2014; 31(5):2071-8 [PubMed] Related Publications
MCM7 (mini-chromosome maintenance protein 7) is essential for the initiation of genomic replication as a component of the pre-replication complex. The present study aimed to analyze its expression, clinical significance and biological functions in gastric adenocarcinoma (GAC). The MCM7 protein was upregulated in all 9 GAC cell lines. In 6 paired primary GACs, MCM7 was upregulated in tumor compared with the corresponding non-tumorous gastric tissues. In normal gastric epithelium tissue, MCM7 was strictly expressed in the proliferative compartment. MCM7 knockdown by siRNA in gastric cancer cell line AGS and NCI-N87 significantly suppressed cell proliferation, inhibited monolayer colony formation, reduced cell invasion and induced late apoptosis. Its nuclear expression correlated with advanced age and poorer disease specific survival in diffuse-type GACs. All the findings supported that MCM7 might play an oncogenic role in gastric tumorigenesis. It serves as a potential prognostic marker and therapeutic target in diffuse-type GACs.

Miles KA, Ganeshan B, Rodriguez-Justo M, et al.
Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.
J Nucl Med. 2014; 55(3):386-91 [PubMed] Related Publications
UNLABELLED: This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer.
METHODS: This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy.
RESULTS: The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036).
CONCLUSION: Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

Qi F, Huang M, Pan Y, et al.
A genetic variant in the promoter region of miR-106b-25 cluster predict clinical outcome of HBV-related hepatocellular carcinoma in Chinese.
PLoS One. 2014; 9(1):e85394 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: MiR-106b-25 cluster, hosted in intron 13 of MCM7, may play integral roles in diverse processes including immune response, tumorigenesis and progression. A single nucleotide polymorphism (SNP), rs999885, is located in the promoter region of MCM7. Our previous study showed that the A to G base change of rs999885 may provide an increased risk for HCC in HBV persistent carriers by altering the expression of the miR-106b-25 cluster. However, it is unknown whether rs999885 is associated with prognosis of intermediate or advanced HBV-related hepatocellular carcinoma (HCC) patients.
METHODS: The SNP, rs999885, was genotyped by using the TaqMan allelic discrimination Assay in 414 intermediate or advanced HCC patients. Log-rank test and Cox proportional hazard models were used for survival analysis.
RESULTS: The variant genotypes of rs999885 were associated with a significantly decreased risk of death for intermediate or advanced HCC [additive model: adjusted hazard ratio (HR)  = 0.76,95% confidence intervals (CI)  = 0.59-0.97]. Further stepwise regression analysis suggested that rs999885 was an independently protective factor for the prognosis of HCC in the final model (additive model: adjusted HR  = 0.72, 95% CI  = 0.56-0.91, P = 0.007).
CONCLUSIONS: These findings indicate that the A to G base change of rs999885 may provide a protective effect on the prognosis of intermediate or advanced HCC in Chinese.

Lian M, Fang J, Han D, et al.
Microarray gene expression analysis of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma.
PLoS One. 2013; 8(12):e84854 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the most common type in head and neck squamous cell carcinoma (HNSCC), and the development and progression of LSCC are multistep processes accompanied by changes of molecular biology.
OBJECTIVE: The purpose of this study was to investigate the molecular basis of tumorigenesis and regional lymph node metastasis in LSCC, and provide a set of genes that may be useful for the development of novel diagnostic markers and/or more effective therapeutic strategies.
METHODS: A total number of 10 patients who underwent surgery for primary laryngeal squamous cell carcinoma were recruited for microarray analysis. LSCC tissues compared with corresponding adjacent non-neoplastic tissues were analysed by Illumina mRNA microarrays, and LSCC tissues with regional lymph node metastasis and LSCC tissues without regional lymph node metastasis were analyzed in the same manner. The most frequently differently expressed genes screened by microarrays were also validated by qRT-PCR in another 42 patients diagnosed for LSCC.
RESULTS: Analysed by Illumina mRNA microarrays, there were 361 genes significantly related to tumorigenesis while 246 genes significantly related to regional lymph node metastasis in LSCC. We found that the six genes (CDK1, CDK2, CDK4, MCM2, MCM3, MCM4) were most frequently differently expressed functional genes related to tumorigenesis while eIF3a and RPN2 were most frequently differently expressed functional genes related to regional lymph node metastasis in LSCC. The expressions of these genes were also validated by qRT-PCR.
CONCLUSIONS: The research revealed a gene expression signature of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma. Of the total, the deregulation of several genes (CDK1, CDK2, CDK4, MCM2, MCM3, MCM4, EIF3a and RPN2) were potentially associated with disease development and progression. The result will contribute to the understanding of the molecular basis of LSCC and help to improve diagnosis and treatment.

Tornesello ML, Buonaguro L, Giorgi-Rossi P, Buonaguro FM
Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer.
Biomed Res Int. 2013; 2013:519619 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Cervical cancer arises from cells localized in the ectoendocervical squamocolumnar junction of the cervix persistently infected with one of about 13 human papillomavirus (HPV) genotypes. The majority of HPV infections induces low grade squamous epithelial lesions that in more than 90% of cases spontaneously regress and in about 10% eventually progress to high grade lesions and even less frequently evolve to invasive cancer. Tumor progression is characterized by (1) increased expression of E6 and E7 genes of high risk HPVs, known to bind to and inactivate p53 and pRb oncosuppressors, respectively; (2) integration of viral DNA into host genome, with disruption of E2 viral genes and host chromosomal loci; and (3) molecular alterations of key regulators of cell cycle. Molecular markers with high sensitivity and specificity in differentiating viral infections associated with cellular abnormalities with high risk of progression are strongly needed for cervical cancer screening and triage. This review will focus on the analysis of clinical validated or candidate biomarkers, such as HPV DNA, HPV E6/E7 mRNA, HPV proteins, p16(INK4a) and Ki67, TOP2A and MCM2 cellular factors, and DNA methylation profiles, which will likely improve the identification of premalignant lesions that have a high risk to evolve into invasive cervical cancer.

Bi X, Jin Y, Gao X, et al.
Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.
Eur J Mass Spectrom (Chichester, Eng). 2013; 19(2):111-21 [PubMed] Related Publications
Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

Das M, Prasad SB, Yadav SS, et al.
Over expression of minichromosome maintenance genes is clinically correlated to cervical carcinogenesis.
PLoS One. 2013; 8(7):e69607 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Minichromosome Maintenance (MCM) proteins play important roles in cell cycle progression by mediating DNA replication initiation and elongation. Among 10 MCM homologues MCM 2-7 form a hexamer and assemble to the pre-replication complex acting as replication licensing factors. Binding and function of MCM2-7 to pre-replication complex is regulated by MCM10 mediated binding of RECQL4 with MCM2-7. The purpose of this study is to explore the role of MCMs in cervical cancer and their correlation with the clinical parameters of cervical cancer. We have investigated sixty primary cervical cancer tissue samples, eight cervical cancer cell lines and thirty hysterectomised normal cervical tissue. The expression profiling of MCMs was done using semi-quantitative RT-PCR, immunoblotting and immunohistochemistry. MCM2, 4, 5, 6, 7, 10 and RECQL4 are significantly over-expressed in cervical cancer. Among these, MCM4, 6 and 10 show increased frequency of over expression along with advancement of tumor stages. MCM4, 5 and 6 also show differential expression in different types of lesion, while MCM2 and MCM10 are over expressed in cervical cancer irrespective of clinico-pathological parameters. Our data indicates the role of MCM4, MCM5, MCM6, MCM10 and RECQL4 in the progression of cervical cancer.

Coulombe P, Grégoire D, Tsanov N, Méchali M
A spontaneous Cdt1 mutation in 129 mouse strains reveals a regulatory domain restraining replication licensing.
Nat Commun. 2013; 4:2065 [PubMed] Related Publications
Cdt1 is required for loading the replicative DNA helicase MCM2/7, a process known as DNA replication licensing. Here we show that 129 mouse strains express a Cdt1 mutated allele with enhanced licensing activity. The mutation, named Δ(6)PEST, involves a six-amino acid deletion within a previously uncharacterized PEST-like domain. Cdt1 Δ(6)PEST and more extensive deletions exhibit increased re-replication and transformation activities that are independent of the Geminin and E3 ligase pathways. This PEST domain negatively regulates cell cycle-dependent chromatin recruitment of Cdt1 in G2/M phases of the cell cycle. Mass spectrometry analysis indicates that Cdt1 is phosphorylated at sites within the deleted PEST domain during mitosis. This study reveals a conserved new regulatory Cdt1 domain crucial for proper DNA licensing activity and suggests a mechanism by which the presence of Cdt1 in G2/M phases does not lead to premature origin licensing. These results also question the usage of 129 mouse strains for knockout analyses.

Liu Y, He G, Wang Y, et al.
MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells.
Toxicol Lett. 2013; 221(1):23-30 [PubMed] Related Publications
Histone deacetylase (HDAC) inhibitors have recently emerged as a new class of anti-cancer agents. Trichostatin A (TSA), a classical HDAC inhibitor, has been demonstrated to induce cell cycle arrest, promote cell apoptosis, and inhibit metastasis. However, the molecular mechanism underlying TSA function has not been fully elucidated. In the current study, we found that TSA treatment induced altered expression of cell cycle-associated genes in HCT116 cells by RT-PCR array. Among the 84 genes related to cell cycle control, 34 genes were significantly altered by TSA treatment, with 7 genes upregulated and 27 genes downregulated. Interestingly, gene expression of minichromosome maintenance protein-2 (MCM-2) was significantly downregulated by TSA treatment. This was confirmed by quantitative RT-PCR and Western blotting. Moreover, silencing of MCM-2 by siRNA led to cell cycle arrest and apoptosis in HCT116 cells. In addition, TSA caused an increase of phosphorylated JNK, which was involved in downregulation of MCM-2. Together, our results suggest that MCM-2 is a noval therapeutic target of TSA in colon cancer cells.

Zhou J, Li B, Peng C, et al.
Inhibition of cervical cancer cell growth in vitro and in vivo by lentiviral-vector mediated shRNA targeting the common promoter of HPV16 E6 and E7 oncogenes.
Antiviral Res. 2013; 98(2):305-13 [PubMed] Related Publications
Deregulated expression of high-risk human papillomavirus oncogenes (E6 and E7) is a pivotal event for pathogenesis and progression in cervical cancer. Both viral oncogenes are therefore regarded as ideal therapeutic targets. Small interfering RNAs (siRNA) or double-stranded RNAs can knock down target genes effectively through siRNA-induced transcriptional gene silencing (TGS). Here, we established lentiviral-vector mediated shRNA (LV-shRNA) targeting common promoter of HPV16 E6/E7 and targeting E6 transcript, transduced the lentiviral construct into cervical HPV16-positive cell lines Siha and Caski, then selected and established stably transduced monoclonal cell lines. The results showed that LV-shRNA targeting promoter, as well as targeting E6 transcript, effectively knocked down E6 and E7 expression, resulted in accumulation of p53 and pRB protein and decrease of MCM7 and p16 protein, and consequently remarkably reduced the abilities of proliferation and invasiveness of cervical cancers cells in vitro. Then we inoculated subcutaneously those monoclonal cells into nude mice to establish the transplanted tumor animal models, and found dramatically inhibited tumorigenesis and growth, as well as prolonged survival time of mice incubated by cells with LV-shRNA targeting promoter and E6 transcript. Our results may provide evidence for application of LV-shRNA targeting HR-HPV key oncogenes, as a new treatment strategy, in cervical and other HPV-associated cancer therapy.

Che Y, Best OG, Zhong L, et al.
Hsp90 Inhibitor SNX-7081 dysregulates proteins involved with DNA repair and replication and the cell cycle in human chronic lymphocytic leukemia (CLL) cells.
J Proteome Res. 2013; 12(4):1710-22 [PubMed] Related Publications
The proteomic effects of the Hsp90 inhibitor, SNX-7081, have been determined on the p53-mutated B-cell chronic lymphocytic leukemia (CLL) cell line, MEC1. Following SNX-7081 treatment (500 nM, 24 h), 51 proteins changed abundance by more than 2-fold (p < 0.05); 7 proteins increased while 44 proteins decreased. Proteins identified as differentially abundant by LC-MS/MS were validated by Western blotting (DDB1, PCNA, MCM2, Hsp90, Hsp70, GRP78, PDIA6, HLA-DR). RT-PCR showed that SNX-7081 unexpectedly modulates a number of these proteins in MEC1 cells at the mRNA level (PCNA, MCM2, Nup155, Hsp70, GRP78, PDIA6, and HLA-DR). Pathway analysis determined that 3 of the differentially abundant proteins (cyclin D1, c-Myc and pRb) were functionally related. p53 levels did not change upon SNX-7081 treatment of p53 wild-type Raji cells or p53-mutated MEC1 and U266 cells, indicating that SNX-7081 has a p53-independent mechanism. The decreases in DDB1, MCM2, c-Myc, and PCNA and increases of pRb and cyclin D1 were confirmed in MEC1, U266, Raji, and p53 null HL60 cells by Western blotting. These data suggest that SNX-7081 arrests the cell cycle and inhibits DNA replication and r epair and provides evidence for the mechanism of the observed synergy between Hsp90 inhibitors and drugs that induce DNA strand breaks.

Lin PC, Chiu YL, Banerjee S, et al.
Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression.
Cancer Res. 2013; 73(3):1232-44 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Androgen receptor signaling plays a critical role in prostate cancer pathogenesis. Yet, the regulation of androgen receptor signaling remains elusive. Even with stringent androgen deprivation therapy, androgen receptor signaling persists. Here, our data suggest that there is a complex interaction between the expression of the tumor suppressor miRNA, miR-31, and androgen receptor signaling. We examined primary and metastatic prostate cancer and found that miR-31 expression was reduced as a result of promoter hypermethylation, and importantly, the levels of miR-31 expression were inversely correlated with the aggressiveness of the disease. As the expression of androgen receptor and miR-31 was inversely correlated in the cell lines, our study further suggested that miR-31 and androgen receptor could mutually repress each other. Upregulation of miR-31 effectively suppressed androgen receptor expression through multiple mechanisms and inhibited prostate cancer growth in vivo. Notably, we found that miR-31 targeted androgen receptor directly at a site located in the coding region, which was commonly mutated in prostate cancer. In addition, miR-31 suppressed cell-cycle regulators including E2F1, E2F2, EXO1, FOXM1, and MCM2. Together, our findings suggest a novel androgen receptor regulatory mechanism mediated through miR-31 expression. The downregulation of miR-31 may disrupt cellular homeostasis and contribute to the evolution and progression of prostate cancer. We provide implications for epigenetic treatment and support clinical development of detecting miR-31 promoter methylation as a novel biomarker.

Fristrup N, Birkenkamp-Demtröder K, Reinert T, et al.
Multicenter validation of cyclin D1, MCM7, TRIM29, and UBE2C as prognostic protein markers in non-muscle-invasive bladder cancer.
Am J Pathol. 2013; 182(2):339-49 [PubMed] Related Publications
Transcripts from the four genes encoding cyclin D1, MCM7, TRIM29, and UBE2C have previously been included in gene expression signatures for outcome prediction in stage Ta/T1 urothelial carcinomas. We investigated the prognostic value of the protein expressions in Ta/T1 urothelial carcinomas patients. We used four different tissue microarrays (TMAs) with a total of 859 Ta/T1 urothelial carcinomas from Danish, Swedish, Spanish, and Taiwanese patient cohorts with long-term follow-up. Protein expression was measured by IHC, and antibody specificity was validated by Western blotting. We found the expression of cyclin D1, MCM7, TRIM29, and UBE2C to be significantly associated with progression to muscle-invasive bladder cancer (log-rank test; P < 0.001) in the Danish training cohort (n = 283). Multivariate Cox regression analysis identified cyclin D1 (P = 0.003), TRIM29 (P = 0.001), and UBE2C (P < 0.001) as independent prognostic markers. The prognostic value of the four proteins was validated in a joint validation cohort from Sweden, Spain, and Taiwan (n = 576). Computer-assisted image analysis of the prognostic markers produced results comparable to those obtained by manual scoring. Finally, a four-protein maximum-likelihood classifier was trained on the Danish training cohort and applied to the validation cohort. The four protein markers may help optimize treatment of patients with Ta/T1 bladder cancer. Additional prospective studies are needed for further validation of their clinical relevance.

Bagley BN, Keane TM, Maklakova VI, et al.
A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.
PLoS Genet. 2012; 8(11):e1003034 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

Wu JZ, Lu P, Liu R, Yang TJ
Transcription regulation network analysis of MCF7 breast cancer cells exposed to estradiol.
Asian Pac J Cancer Prev. 2012; 13(8):3681-5 [PubMed] Related Publications
BACKGROUND: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy.
PURPOSE: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol.
METHODS: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs).
RESULTS: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the TGFβ signaling pathway.
CONCLUSION: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

Zhao ZN, Bai JX, Zhou Q, et al.
TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC.
PLoS One. 2012; 7(9):e45133 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to decrease proliferation and increase apoptosis in different cancer cells. A significant number of genes have been identified as potential effectors responsible for the anti-tumor function of HDAC inhibitor. However, the molecular mechanisms of these HDAC inhibitors in this process remain largely undefined. In the current study, we searched for microRNAs (miRs) that were affected by HDAC inhibitor trichostatin (TSA) and investigated their effects in endometrial cancer (EMC) cells. Our data showed that TSA significantly inhibited the growth of EMC cells and induced their apoptosis. Among the miRNAs that altered in the presence of TSA, the miR-106b-93-25 cluster, together with its host gene MCM7, were obviously down-regulated in EMC cells. p21 and BIM, which were identified as target genes of miR-106b-93-25 cluster, increased in TSA treated tumor cells and were responsible for cell cycle arrest and apoptosis. We further identified MYC as a regulator of miR-106b-93-25 cluster and demonstrated its down-regulation in the presence of TSA resulted in the reduction of miR-106b-93-25 cluster and up-regulation of p21 and BIM. More important, we found miR-106b-93-25 cluster was up-regulated in clinical EMC samples in association with the overexpression of MCM7 and MYC and the down-regulation of p21 and BIM. Thus our studies strongly indicated TSA inhibited EMC cell growth and induced cell apoptosis and cell cycle arrest at least partially through the down-regulation of the miR-106b-93-25 cluster and up-regulation of it's target genes p21 and BIM via MYC.

Wu C, Zhu J, Zhang X
Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes.
BMC Bioinformatics. 2012; 13:182 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: To understand the roles they play in complex diseases, genes need to be investigated in the networks they are involved in. Integration of gene expression and network data is a promising approach to prioritize disease-associated genes. Some methods have been developed in this field, but the problem is still far from being solved.
RESULTS: In this paper, we developed a method, Networked Gene Prioritizer (NGP), to prioritize cancer-associated genes. Applications on several breast cancer and lung cancer datasets demonstrated that NGP performs better than the existing methods. It provides stable top ranking genes between independent datasets. The top-ranked genes by NGP are enriched in the cancer-associated pathways. The top-ranked genes by NGP-PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2 might coordinate to promote cell cycle related processes in cancer but not normal cells.
CONCLUSIONS: In this paper, we have developed a method named NGP, to prioritize cancer-associated genes. Our results demonstrated that NGP performs better than the existing methods.

Zhou YM, Zhang XF, Cao L, et al.
MCM7 expression predicts post-operative prognosis for hepatocellular carcinoma.
Liver Int. 2012; 32(10):1505-9 [PubMed] Related Publications
BACKGROUND: Dysregulation of minichromosome maintenance protein 7 (MCM7) was previously identified in multiple human malignancies. The clinical significance of MCM7 expression is yet to be delineated in patients with hepatocellular carcinoma (HCC).
METHODS: Paired cancerous and non-cancerous specimens from 87 patients with HCC who underwent resection were used for the immunohistochemical evaluation of MCM7 expression. Effect of sorafenib on the expression of MCM7 was tested in two human HCC cell lines SMMC-7721 and PLC/PRF/5.
RESULTS: Non-cancerous tissues were negative for immunohistochemical staining for MCM7 expression. Nuclear MCM7 was expressed in 42 of 87 HCC (48.2%) and was correlated with hepatitis B virus infection (P = 0.020), intrahepatic metastasis (P = 0.022) and vascular invasion (P = 0.013). Moreover, its expression was correlated with shorter overall survival (P = 0.033). Multivariate analysis showed that MCM7 expression was an independent prognostic factor for overall survival(P = 0.041). Sorafenib inhibited the expression of MCM7 in a concentration-dependent manner in vitro.
CONCLUSIONS: The current findings suggested that MCM7 expression may be a useful predictor of prognosis in patients with HCC after resection. Adjuvant therapy with sorafenib might be a valuable therapeutic strategy for MCM7-positive HCC patients.

Liu S, Patel SH, Ginestier C, et al.
MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells.
PLoS Genet. 2012; 8(6):e1002751 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
MicroRNAs (miRNAs) play important roles in normal cellular differentiation and oncogenesis. microRNA93 (mir-93), a member of the mir106b-25 cluster, located in intron 13 of the MCM7 gene, although frequently overexpressed in human malignancies may also function as a tumor suppressor gene. Using a series of breast cancer cell lines representing different stages of differentiation and mouse xenograft models, we demonstrate that mir-93 modulates the fate of breast cancer stem cells (BCSCs) by regulating their proliferation and differentiation states. In "claudin(low)" SUM159 cells, expression of mir-93 induces Mesenchymal-Epithelial Transition (MET) associated with downregulation of TGFβ signaling and downregulates multiple stem cell regulatory genes, including JAK1, STAT3, AKT3, SOX4, EZH1, and HMGA2, resulting in cancer stem cell (CSC) depletion. Enforced expression of mir-93 completely blocks tumor development in mammary fat pads and development of metastases following intracardiac injection in mouse xenografts. The effect of mir-93 on the CSC population is dependent on the cellular differentiation state, with mir-93 expression increasing the CSC population in MCF7 cells that display a more differentiated "luminal" phenotype. mir-93 also regulates the proliferation and differentiation of normal breast stem cells isolated from reduction mammoplasties. These studies demonstrate that miRNAs can regulate the states and fates of normal and malignant mammary stem cells, findings which have important biological and clinical implications.

de Andrade BA, León JE, Carlos R, et al.
Expression of minichromosome maintenance 2, Ki-67, and geminin in oral nevi and melanoma.
Ann Diagn Pathol. 2013; 17(1):32-6 [PubMed] Related Publications
Evaluation of cell cycle using antibodies against nuclear proteins involved in regulating DNA replication has gained special interest in the effort to predict biologic behavior of benign and malignant tumors. The aim of this study was to analyze the expression of minichromosome maintenance 2, Ki-67, and geminin in oral nevi and melanomas. Expression of these cell proliferation markers was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 38 intramucosal nevi and 11 primary oral melanomas. The labeling index of each proliferation marker was assessed considering the percentage of cells expressing nuclear positivity out of the total number of cells, counting 1000 cells per slide. Minichromosome maintenance 2, Ki-67, and geminin were rarely expressed in intramucosal nevi, in contrast to oral melanomas, which showed high levels of these cell proliferation markers, particularly minichromosome maintenance 2, indicating it is a more sensitive marker in primary oral melanomas than Ki-67 and geminin. These results indicate that these markers may be involved in the pathogenesis of oral melanomas and could be eventually useful as an additional diagnostic tool for differential diagnosis of oral benign and malignant melanocytic lesions.

Kim SH, Chen G, King AN, et al.
Characterization of vitamin D receptor (VDR) in lung adenocarcinoma.
Lung Cancer. 2012; 77(2):265-71 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
PURPOSE: The anti-proliferative effects of 1α,25-dihydroxyvitamin D(3) (1,25-D(3), calcitriol, the active form of vitamin D) are mediated by the nuclear vitamin D receptor (VDR). In the present study, we characterized VDR expression in lung adenocarcinoma (AC).
EXPERIMENTAL DESIGN: We examined VDR mRNA expression using a quantitative real-time PCR (qRT-PCR) in 100 patients who underwent surgery for lung AC. In a subset of these patients (n=89), we examined VDR protein expression using immunohistochemistry. We also examined the association of VDR protein expression with circulating serum levels of 25-hydroxyvitamin D(3) (25-D(3)) and 1,25-D(3). The antiproliferative effects and cell cycle arrest of 1,25-D(3) were examined using lung cancer cell lines with high (SKLU-1) as well as low (A549) expression of VDR mRNA.
RESULTS: Higher VDR expression correlates with longer survival after adjusting for age, sex, disease stage and tumor grade (HR 0.73, 95% CI 0.58-0.91). In addition, there was a positive correlation (r=0.38) between serum 1,25-D(3) and tumor VDR protein expression. A greater anti-proliferative effect of 1,25-D(3) was observed in high compared to low VDR-expressing cell lines; these effects corresponded to G1 cell cycle arrest; this was associated with a decline in cyclin D1, S-phase kinase protein 2 (Skp2), retinoblastoma (Rb) and minichromosome maintenance 2 (MCM2) proteins involved in S-phase entry.
CONCLUSIONS: Increased VDR expression in lung AC is associated with improved survival. This may relate to a lower proliferative status and G1 arrest in high VDR-expressing tumors.

Chuang TD, Luo X, Panda H, Chegini N
miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8.
Mol Endocrinol. 2012; 26(6):1028-42 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
miR-93/106b and their host gene minichromosome maintenance complex component 7 (MCM7) reside at chr7q22, a region frequently rearranged in leiomyomas. We explored the expression of miR-93/106b in leiomyoma and paired myometrium (n = 63) from untreated and patients exposed to hormonal therapies (GnRH agonist, Depo-Provera, and oral contraceptives) from African-Americans and Caucasians and their regulatory functions in isolated paired (n = 15) leiomyoma and myometrial smooth muscle cells and the leiomyosarcoma cell line. At tissue level leiomyomas expressed significantly lower levels of miR-93 and elevated MCM7 as compared with myometrium with limited racial influence or hormonal exposure on their expression. Assessing the regulatory function of miR-93/106b through doxycycline-inducible lentiviral transduction in a microarray analysis, tissue factor (F3) and IL8 were identified as their possible targets. At the tissue level, leiomyomas expressed a significantly lower level of F3 and an elevated IL-8 level, which exhibited an inverse relationship with miR-93 but with limited racial or hormonal influences. The gain of function of miR-93/106b in leiomyoma smooth muscle cells, myometrial smooth muscle cells, and the leiomyosarcoma cell line dose dependently repressed F3 and IL8 through direct interactions with their respective 3'-untranslated region and indirectly through F3 repression inhibited IL8, CTGF, and PAI-1 expression, confirmed by using small interfering RNA silencing or factor Vlla (FVIIa) activation of F3, as well as reducing the rate of proliferation, while increasing caspase-3/7 activity. We concluded that differential expression of miR-93/106b and their direct and/or indirect regulatory functions on F3, IL8, CTGF, and PAI-1 expression, with key roles in inflammation and tissue turnover may be of significance in the outcome of leiomyoma growth and associated symptoms.

Nicol AF, Lapa e Silva JR, Cunha CB, et al.
Evaluation of MCM-2 expression in TMA cervical specimens.
PLoS One. 2012; 7(4):e32936 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Minichromosome maintenance proteins (MCM) are highly expressed in actively replicating cells. The need for biological markers for cervical carcinoma and its precursor lesions is emerging. Our main aim was to determine the immunohistochemical expression of MCM-2 in HIV-positive and -negative dysplastic cervical specimens.
METHODS: Immunohistochemical analysis of MCM-2 was performed in a total of 352 cervical TMA specimens of normal control, low-grade CIN, high-grade CIN and invasive tumor. 38 specimens were from HIV-positive women. A receiver operating characteristic (ROC) curve was constructed to determine the best cutoff to diagnose high-grade CIN and invasive cervical cancer.
RESULTS: In the progression from normal epithelium to high-grade CIN and invasive tumor we found significant differences in the MCM-2 expression (p<0.05). Based on the ROC curve of 80% with an area under the curve (AUC) of 0.78, expression of MCM-2 to diagnose high-grade CIN and invasive tumor resulted in sensitivity of 81%, specificity of 66%, a positive predictive value (PPV) of 86% and a negative predictive value (NPV) of 57%. HIV-positive cervices revealed a decreasing expression of MCM-2 in both LGCIN and HGCIN compared with HIV-negative specimens (p<0.0001).
CONCLUSIONS: The present study suggests that immunohistochemical MCM-2 may not be a promising biomarker for diagnosing high-grade CIN and invasive cancer.

Liu Y, Zhang Y, Wen J, et al.
A genetic variant in the promoter region of miR-106b-25 cluster and risk of HBV infection and hepatocellular carcinoma.
PLoS One. 2012; 7(2):e32230 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: MiR-106b-25 cluster, hosted in intron 13 of MCM7, may play integral roles in diverse processes including immune response and tumorigenesis. A single nucleotide polymorphism (SNP), rs999885, is located in the promoter region of MCM7.
METHODS: We performed a case-control study including 1300 HBV-positive hepatocellular carcinoma (HCC) cases, 1344 HBV persistent carriers and 1344 subjects with HBV natural clearance to test the association between rs999885 and the risk of HBV persistent infection and HCC. We also investigated the genotype-expression correlation between rs999885 and miR-106b-25 cluster in 25 pairs of HCC and adjacent non-tumor liver tissues.
RESULTS: Compared with the HBV natural clearance subjects carrying rs999885 AA genotype, those with AG/GG genotypes had a decreased risk of chronic HBV infection with an adjusted odds ratio (OR) of 0.79 [95% confidence intervals (CIs) = 0.67-0.93]. However, the AG/GG genotypes were significantly associated with an increased HCC risk in HBV persistent carriers (adjusted OR = 1.25, 95% CIs = 1.06-1.47). Expression analysis revealed that the expression level of miR-106b-25 cluster was significantly higher in AG/GG carriers than those in AA carriers in non-tumor liver tissues.
CONCLUSIONS: These findings indicate that the A to G base change of rs999885 may provide a protective effect against chronic HBV infection but an increased risk for HCC in HBV persistent carriers by altering the expression of the miR-106b-25 cluster.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MCM7, Cancer Genetics Web: http://www.cancer-genetics.org/MCM7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999