Gene Summary

Gene:MCM4; minichromosome maintenance complex component 4
Aliases: NKCD, CDC21, CDC54, IMD54, NKGCD, hCdc21, P1-CDC21
Summary:The protein encoded by this gene is one of the highly conserved mini-chromosome maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication. The hexameric protein complex formed by MCM proteins is a key component of the pre-replication complex (pre_RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins. The MCM complex consisting of this protein and MCM2, 6 and 7 proteins possesses DNA helicase activity, and may act as a DNA unwinding enzyme. The phosphorylation of this protein by CDC2 kinase reduces the DNA helicase activity and chromatin binding of the MCM complex. This gene is mapped to a region on the chromosome 8 head-to-head next to the PRKDC/DNA-PK, a DNA-activated protein kinase involved in the repair of DNA double-strand breaks. Alternatively spliced transcript variants encoding the same protein have been reported. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DNA replication licensing factor MCM4
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: MCM4 (cancer-related)

Cao Y, Zhu W, Chen W, et al.
Prognostic Value of BIRC5 in Lung Adenocarcinoma Lacking EGFR, KRAS, and ALK Mutations by Integrated Bioinformatics Analysis.
Dis Markers. 2019; 2019:5451290 [PubMed] Free Access to Full Article Related Publications
Objective: This study was aimed at investigating the prognostic significance of Baculoviral IAP repeat containing 5 (BIRC5) in lung adenocarcinoma (LAD) lacking EGFR, KRAS, and ALK mutations (triple-negative (TN) adenocarcinomas).
Methods: The gene expression profiles were obtained from Gene Expression Omnibus (GEO). The identification of the differentially expressed genes (DEGs) was performed by GeneSpring GX. Gene set enrichment analysis (GSEA) was used to execute gene ontology function and pathway enrichment analysis. The protein interaction network was constructed by Cytoscape. The hub genes were extracted by MCODE and cytoHubba plugin from the network. Then, using BIRC5 as a candidate, the prognostic value in LAD and TN adenocarcinomas was verified by the Kaplan-Meier plotter and The Cancer Genome Atlas (TCGA) database, respectively. Finally, the mechanism of BIRC5 was predicted by a coexpressed network and enrichment analysis.
Results: A total of 38 upregulated genes and 121 downregulated genes were identified. 9 hub genes were extracted. Among them, the mRNA expression of 5 genes, namely, BIRC5, MCM4, CDC20, KIAA0101, and TRIP13, were significantly upregulated among TN adenocarcinomas (all
Conclusion: Overexpressed in tumors, BIRC5 is associated with unfavorable overall survival in TN adenocarcinomas. BIRC5 is a potential predictor and therapeutic target in TN adenocarcinomas.

Ishimi Y
Regulation of MCM2-7 function.
Genes Genet Syst. 2018; 93(4):125-133 [PubMed] Related Publications
Recently published structural and functional analyses of the CMG complex have provided insight into the mechanism of its DNA helicase function and into the distinct roles of its central six component proteins MCM2-MCM7 (MCM2-7). To activate CMG helicase, the two protein kinases CDK and DDK, as well as MCM10, are required. In addition to the initiation of DNA replication, MCM function must be regulated at the DNA replication steps of elongation and termination. Polyubiquitylation of MCM7 is involved in terminating MCM function. Reinitiation of DNA replication in a single cell cycle, which is prevented mainly by CDK, is understood at the molecular level. MCM2-7 gene expression is regulated during cellular aging and the cell cycle, and the expression depends on oxygen concentration. These regulatory processes have been described recently. Genomic structural alteration, which is an essential element in cancer progression, is mainly generated by disruptions of DNA replication fork structures. A point mutation in MCM4 that disturbs MCM2-7 function results in genomic instability, leading to the generation of cancer cells. In this review, I focus on the following points: 1) function of the MCM2-7 complex, 2) activation of MCM2-7 helicase, 3) regulation of MCM2-7 function, 4) MCM2-7 expression, and 5) the role of MCM mutation in cancer progression.

Strahan R, Dabral P, Dingman K, et al.
Kaposi's Sarcoma-Associated Herpesvirus Deregulates Host Cellular Replication during Lytic Reactivation by Disrupting the MCM Complex through ORF59.
J Virol. 2018; 92(22) [PubMed] Free Access to Full Article Related Publications
Minichromosome maintenance proteins (MCMs) play an important role in DNA replication by binding to the origins as helicase and recruiting polymerases for DNA synthesis. During the S phase, MCM complex is loaded to limit DNA replication once per cell cycle. We identified MCMs as ORF59 binding partners in our protein pulldown assays, which led us to hypothesize that this interaction influences DNA replication. ORF59's interactions with MCMs were confirmed in both endogenous and overexpression systems, which showed its association with MCM3, MCM4, MCM5, and MCM6. Interestingly, MCM6 interacted with both the N- and C-terminal domains of ORF59, and its depletion in BCBL-1 and BC3 cells led to an increase in viral genome copies, viral late gene transcripts, and virion production compared to the control cells following reactivation. MCMs perform their function by loading onto the replication competent DNA, and one means of regulating chromatin loading/unloading, in addition to enzymatic activity of the MCM complex, is by posttranslational modifications, including phosphorylation of these factors. Interestingly, a hypophosphorylated form of MCM3, which is associated with reduced loading onto the chromatin, was detected during lytic reactivation and correlated with its inability to associate with histones in reactivated cells. Additionally, chromatin immunoprecipitation showed lower levels of MCM3 and MCM4 association at cellular origins of replication and decreased levels of cellular DNA synthesis in cells undergoing reactivation. Taken together, these findings suggest a mechanism in which KSHV ORF59 disrupts the assembly and functions of MCM complex to stall cellular DNA replication and promote viral replication.

Kucherlapati M
Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes.
BMC Cancer. 2018; 18(1):818 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed.
METHODS: Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher's exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test.
RESULTS: Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation.
CONCLUSION: The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.

Kayser K, Degenhardt F, Holzapfel S, et al.
Copy number variation analysis and targeted NGS in 77 families with suspected Lynch syndrome reveals novel potential causative genes.
Int J Cancer. 2018; 143(11):2800-2813 [PubMed] Related Publications
In many families with suspected Lynch syndrome (LS), no germline mutation in the causative mismatch repair (MMR) genes is detected during routine diagnostics. To identify novel causative genes for LS, the present study investigated 77 unrelated, mutation-negative patients with clinically suspected LS and a loss of MSH2 in tumor tissue. An analysis for genomic copy number variants (CNV) was performed, with subsequent next generation sequencing (NGS) of selected candidate genes in a subgroup of the cohort. Genomic DNA was genotyped using Illumina's HumanOmniExpress Bead Array. After quality control and filtering, 25 deletions and 16 duplications encompassing 73 genes were identified in 28 patients. No recurrent CNV was detected, and none of the CNVs affected the regulatory regions of MSH2. A total of 49 candidate genes from genomic regions implicated by the present CNV analysis and 30 known or assumed risk genes for colorectal cancer (CRC) were then sequenced in a subset of 38 patients using a customized NGS gene panel and Sanger sequencing. Single nucleotide variants were identified in 14 candidate genes from the CNV analysis. The most promising of these candidate genes were: (i) PRKCA, PRKDC, and MCM4, as a functional relation to MSH2 is predicted by network analysis, and (ii) CSMD1, as this is commonly mutated in CRC. Furthermore, six patients harbored POLE variants outside the exonuclease domain, suggesting that these might be implicated in hereditary CRC. Analyses in larger cohorts of suspected LS patients recruited via international collaborations are warranted to verify the present findings.

Han J, Lian M, Fang J, et al.
Minichromosome maintenance (MCM) protein 4 overexpression is a potential prognostic marker for laryngeal squamous cell carcinoma.
J BUON. 2017 Sep-Oct; 22(5):1272-1277 [PubMed] Related Publications
PURPOSE: The minichromosomal maintenance (MCM) proteins are involved in the initiation and DNA replication. The role of MCM4 remains to be elucidated. The purpose of this study was to investigate the effects of MCM4 in laryngeal squamous cell carcinoma (LSCC) cell growth and apoptosis.
METHODS: LSCC cell line UMSCC 5 was used in this study. The small interfering RNA (siRNA) of MCM 4 gene was used to identify the effects of MCM4 on the proliferation and apoptosis using methylimidazole tetrazolium (MTT) assay and flow-cytometry, respectively. Confirmed LSCC and adjacent non-tumor tissues were collected from 34 patients who were willing to participate in the study, from 2010 through 2015, from 163 patients undergoing treatment in the Department of Otorhinolaryngology/Head and Neck Surgery of Beijing Tongren Hospital in Capital Medical University of P.R. China. Immunohistochemical staining of MCM4 expression in the resected tissues was performed to analyze the correlation between its expression and the clinicopathological characteristics.
RESULTS: The results showed that siRNA of MCM4 could significantly inhibit LSCC cell line UMSCC 5 proliferation and induce apoptosis. MCM4 mRNA was higher expressed in carcinoma tissues than in adjacent normal tissues. MCM4 expression was correlated with male gender, smoking history and poor differentiation.
CONCLUSIONS: We noticed a significant role for MCM4 overexpression in human LSCC tissues and their corresponding adjacent non-neoplastic tissues and found that siRNA of MCM4 can significantly decrease the proliferation of cancer cells. It is suggested that MCM4 profiling could potentially be used to predict response to treatment and prognosis in LSCC.

Chu YY, Ko CY, Wang SM, et al.
Bortezomib-induced miRNAs direct epigenetic silencing of locus genes and trigger apoptosis in leukemia.
Cell Death Dis. 2017; 8(11):e3167 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs) have been suggested to repress transcription via binding the 3'-untranslated regions of mRNAs. However, the involvement and details of miRNA-mediated epigenetic regulation, particularly in targeting genomic DNA and mediating epigenetic regulation, remain largely uninvestigated. In the present study, transcription factor CCAAT/enhancer binding protein delta (CEBPD) was responsive to the anticancer drug bortezomib, a clinical and highly selective drug for leukemia treatment, and contributed to bortezomib-induced cell death. Interestingly, following the identification of CEBPD-induced miRNAs, we found that miR-744, miR-3154 and miR-3162 could target CpG islands in the 5'-flanking region of the CEBPD gene. We previously demonstrated that the Yin Yang 1 (YY1)/polycomb group (PcG) protein/DNA methyltransferase (DNMT) complex is important for CCAAT/enhancer binding protein delta (CEBPD) gene inactivation; we further found that Argonaute 2 (Ago2) interacts with YY1 and binds to the CEBPD promoter. The miRNA/Ago2/YY1/PcG group protein/DNMT complex linked the inactivation of CEBPD and genes adjacent to its 5'-flanking region, including protein kinase DNA-activated catalytic polypeptide (PRKDC), minichromosome maintenance-deficient 4 (MCM4) and ubiquitin-conjugating enzyme E2 variant 2 (UBE2V2), upon bortezomib treatment. Moreover, we revealed that miRNA binding is necessary for YY1/PcG group protein/DNMT complex-mediated epigenetic gene silencing and is associated with bortezomib-induced methylation on genomic DNA. The present study successfully characterized the interactions of the miRNA/Ago2/YY1/PcG group protein/DNMT complex and provided new insights for miRNA-mediated epigenetic regulation in bortezomib-induced leukemic cell arrest and cell death.

Yi J, Wei X, Li X, et al.
A genome-wide comprehensive analysis of alterations in driver genes in non-small-cell lung cancer.
Anticancer Drugs. 2018; 29(1):10-18 [PubMed] Related Publications
Lung cancer is one of the most common malignancies and the leading cause of cancer-related deaths worldwide. Although many oncogenes and tumor suppressors have been uncovered in the past decades, the pathogenesis and mechanisms of lung tumorigenesis and progression are unclear. The advancement of high-throughput sequencing technique and bioinformatics methods has led to the discovery of some unknown important protein-coding genes or noncoding RNAs in human cancers. In this study, we tried to identify and validate lung cancer driver genes to facilitate the diagnosis and individualized treatment of patients with this disease. To analyze distinct gene profile in lung cancer, the RNA sequencing data from TCGA and microarray data from Gene Expression Omnibus were used. Then, shRNA-pooled screen data and CRISPR-Cas9-based screen data in lung cancer cells were used to validate the functional roles of identified genes. We found that thousands of gene expression patterns are altered in lung cancer, and genomic alterations contribute to the dysregulation of these genes. Furthermore, we identified some potential lung cancer driver genes, such as TBX2, MCM4, SLC2A1, BIRC5, and CDC20, whose expression is significantly upregulated in lung cancer, and the copy number of these genes is amplified in the genome of patients with lung cancer. More importantly, overexpression of these genes is associated with poorer survival of patients with lung cancer, and knockdown or knockout of these genes results in decreased cell proliferation in lung cancer cells. Taken together, the genomewide comprehensive analysis combined with screen data analyses may provide a valuable help for identifying cancer driver genes for diagnosis and prevention of patients with lung cancer.

Stafford JL, Dyson G, Levin NK, et al.
Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability.
PLoS One. 2017; 12(6):e0178450 [PubMed] Free Access to Full Article Related Publications
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways.

Xie L, Li T, Yang LH
E2F2 induces MCM4, CCNE2 and WHSC1 upregulation in ovarian cancer and predicts poor overall survival.
Eur Rev Med Pharmacol Sci. 2017; 21(9):2150-2156 [PubMed] Related Publications
OBJECTIVE: To explore the genes co-upregulated with E2F2 in ovarian cancer and their association with survival outcomes in ovarian cancer patients.
MATERIALS AND METHODS: The raw data of GDS3592 was downloaded from GEO datasets for reanalysis. The overlapping subset between the top 150 upregulated genes in ovarian cancer epithelial cells (CEPIs) and the E2F2 positively correlated genes (Pearson's r≥0.5) in ovarian cancer cohort in TCGA was identified. The association between E2F2, MCM4, CCNE2 and WHSC1 and overall survival (OS) and recurrence-free survival (RFS) in ovarian cancer patients were assessed using Kaplan-Meier plotter.
RESULTS: E2F2 is a significantly upregulated transcription factor in CEPIs. MCM4, CCNE2, and WHSC1 are co-upregulated with E2F2 among the 308 ovarian cancer samples (Pearson's r=0.5159, 0.3963 and 0.4941 respectively). Enforced E2F2 expression significantly enhanced MCM4, CCNE2 and WHSC1 transcription in SKOV3 and A2780 cells. High E2F2 and CCNE2 expression are associated with worse OS (high E2F2, HR: 1.48, 95%CI: 1.17-1.85, p<0.01; high CCNE2, HR: 1.36, 95%CI: 1.15-1.6, p<0.01). High MCM expression might be associated with worse RFS at the margin of significance (HR: 1.18, 95%CI: 1.00-1.39, p=0.055).
CONCLUSIONS: MCM4, CCNE2, and WHSC1 are co-upregulated with E2F2 in ovarian cancer. Enforced E2F2 expression significantly increased MCM4, CCNE2, and WHSC1 expression in ovarian cancer cells. High E2F2 and CCNE2 expression are associated with worse OS among ovarian cancer patients.

Lee Y, Park S, Lee SH, Lee H
Characterization of genetic aberrations in a single case of metastatic thymic adenocarcinoma.
BMC Cancer. 2017; 17(1):330 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Thymic adenocarcinoma is an extremely rare subtype of thymic epithelial tumors. Due to its rarity, there is currently no sequencing approach for thymic adenocarcinoma.
METHODS: We performed whole exome and transcriptome sequencing on a case of thymic adenocarcinoma and performed subsequent validation using Sanger sequencing.
RESULTS: The case of thymic adenocarcinoma showed aggressive behaviors with systemic bone metastases. We identified a high incidence of genetic aberrations, which included somatic mutations in RNASEL, PEG10, TNFSF15, TP53, TGFB2, and FAT1. Copy number analysis revealed a complex chromosomal rearrangement of chromosome 8, which resulted in gene fusion between MCM4 and SNTB1 and dramatic amplification of MYC and NDRG1. Focal deletion was detected at human leukocyte antigen (HLA) class II alleles, which was previously observed in thymic epithelial tumors. We further investigated fusion transcripts using RNA-seq data and found an intergenic splicing event between the CTBS and GNG5 transcript. Finally, enrichment analysis using all the variants represented the immune system dysfunction in thymic adenocarcinoma.
CONCLUSION: Thymic adenocarcinoma shows highly malignant characteristics with alterations in several cancer-related genes.

Chen Q, Wang L, Jiang M, et al.
E2F1 interactive with BRCA1 pathway induces HCC two different small molecule metabolism or cell cycle regulation via mitochondrion or CD4+T to cytosol.
J Cell Physiol. 2018; 233(2):1213-1221 [PubMed] Related Publications
Breast cancer 1 (BRCA1) and E2F transcription factor 1 (E2F1) are related to metabolism and cell cycle regulation. However, the corresponding mechanism is not clear in HCC. High BRCA1 direct pathway was constructed with 11 molecules from E2F1 feedback-interactive network in HCC by GRNInfer based on 39 Pearson mutual positive corelation CC ≥0.25 molecules with E2F1. Integration of GRNInfer with GO, KEGG, BioCarta, GNF_U133A, UNIGENE_EST, Disease, GenMAPP databases by DAVID and MAS 3.0, E2F1 feedback-interactive BRCA1 indirect mitochondrion to cytosol pathway was identified as upstream LAPTM4B activation, feedback UNG, downstream BCAT1-HIST1H2AD-TK1 reflecting protein, and DNA binding with enrichment of small molecule metabolism; The corresponding BRCA1 indirect membrane to cytosol pathway as upstream CCNB2-NUSAP1 activation, feedback TTK-HIST1H2BJ-CENPF, downstream MCM4-TK1 reflecting ATP, and microtubule binding with enrichment of CD4+T-related cell cycle regulation in HCC. Therefore, we propose that E2F1 interactive with BRCA1 pathway induces HCC two different small molecule metabolism or cell cycle regulation via mitochondrion or CD4+T to cytosol. Knowledge analysis demonstrates our E2F1 feedback-interactive BRCA1 pathway wide disease distribution and reflects a novel common one of tumor and cancer.

Qing S, Tulake W, Ru M, et al.
Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection.
Tumour Biol. 2017; 39(4):1010428317697547 [PubMed] Related Publications
It is known that high-risk human papillomavirus infection is the main etiological factor in cervical carcinogenesis. However, human papillomavirus screening is not sufficient for early diagnosis. In this study, we aimed to identify potential biomarkers common to cervical carcinoma and human papillomavirus infection by proteomics for human papillomavirus-based early diagnosis and prognosis. To this end, we collected 76 cases of fresh cervical tissues and 116 cases of paraffin-embedded tissue slices, diagnosed as cervical squamous cell carcinoma, cervical intraepithelial neoplasia II-III, or normal cervix from ethnic Uighur and Han women. Human papillomavirus infection by eight oncogenic human papillomavirus types was detected in tissue DNA samples using a quantitative polymerase chain reaction. The protein profile of cervical specimens from human papillomavirus 16-positive squamous cell carcinoma and human papillomavirus-negative normal controls was analyzed by proteomics and bioinformatics. The expression of candidate proteins was further determined by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. We identified 67 proteins that were differentially expressed in human papillomavirus 16-positive squamous cell carcinoma compared to normal cervix. The quantitative reverse transcriptase-polymerase chain reaction analysis verified the upregulation of ASAH1, PCBP2, DDX5, MCM5, TAGLN2, hnRNPA1, ENO1, TYPH, CYC, and MCM4 in squamous cell carcinoma compared to normal cervix ( p < 0.05). In addition, the transcription of PCBP2, MCM5, hnRNPA1, TYPH, and CYC was also significantly increased in cervical intraepithelial neoplasia II-III compared to normal cervix. Immunohistochemistry staining further confirmed the overexpression of PCBP2, hnRNPA1, ASAH1, and DDX5 in squamous cell carcinoma and cervical intraepithelial neoplasia II-III compared to normal controls ( p < 0.05). Our data suggest that the expression of ASAH1, PCBP2, DDX5, and hnRNPA1, and possibly MCM4, MCM5, CYC, ENO1, and TYPH, is upregulated during cervical carcinogenesis and potentially associated with human papillomavirus infection. Further validation studies of the profile will contribute to establishing auxiliary diagnostic markers for human papillomavirus-based cancer prognosis.

Liu C, Zhang YH, Huang T, Cai Y
Identification of transcription factors that may reprogram lung adenocarcinoma.
Artif Intell Med. 2017; 83:52-57 [PubMed] Related Publications
BACKGROUND: Lung adenocarcinoma is one of most threatening disease to human health. Although many efforts have been devoted to its genetic study, few researches have been focused on the transcription factors which regulate tumor initiation and progression by affecting multiple downstream gene transcription. It is proved that proper transcription factors may mediate the direct reprogramming of cancer cells, and reverse the tumorigenesis on the epigenetic and transcription levels.
METHODS: In this paper, a computational method is proposed to identify the core transcription factors that can regulate as many as possible lung adenocarcinoma associated genes with as little as possible redundancy. A greedy strategy is applied to find the smallest collection of transcription factors that can cover the differentially expressed genes by its downstream targets. The optimal subset which is mostly enriched in the differentially expressed genes is then selected.
RESULTS: Seven core transcription factors (MCM4, VWF, ECT2, RBMS3, LIMCH1, MYBL2 and FBXL7) are detected, and have been reported to contribute to tumorigenesis of lung adenocarcinoma. The identification of the transcription factors provides a new insight into its oncogenic role in tumor initiation and progression, and benefits the discovery of functional core set that may reverse malignant transformation and reprogram cancer cells.

Chian CF, Hwang YT, Terng HJ, et al.
Panels of tumor-derived RNA markers in peripheral blood of patients with non-small cell lung cancer: their dependence on age, gender and clinical stages.
Oncotarget. 2016; 7(31):50582-50595 [PubMed] Free Access to Full Article Related Publications
Peripheral blood mononuclear cell (PBMC)-derived gene signatures were investigated for their potential use in the early detection of non-small cell lung cancer (NSCLC). In our study, 187 patients with NSCLC and 310 age- and gender-matched controls, and an independent set containing 29 patients for validation were included. Eight significant NSCLC-associated genes were identified, including DUSP6, EIF2S3, GRB2, MDM2, NF1, POLDIP2, RNF4, and WEE1. The logistic model containing these significant markers was able to distinguish subjects with NSCLC from controls with an excellent performance, 80.7% sensitivity, 90.6% specificity, and an area under the receiver operating characteristic curve (AUC) of 0.924. Repeated random sub-sampling for 100 times was used to validate the performance of classification training models with an average AUC of 0.92. Additional cross-validation using the independent set resulted in the sensitivity 75.86%. Furthermore, six age/gender-dependent genes: CPEB4, EIF2S3, GRB2, MCM4, RNF4, and STAT2 were identified using age and gender stratification approach. STAT2 and WEE1 were explored as stage-dependent using stage-stratified subpopulation. We conclude that these logistic models using different signatures for total and stratified samples are potential complementary tools for assessing the risk of NSCLC.

Nan YL, Hu YL, Liu ZK, et al.
Relationships between cell cycle pathway gene polymorphisms and risk of hepatocellular carcinoma.
World J Gastroenterol. 2016; 22(24):5558-67 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the associiations between the polymorphisms of cell cycle pathway genes and the risk of hepatocellular carcinoma (HCC).
METHODS: We enrolled 1127 cases newly diagnosed with HCC from the Tumor Hospital of Guangxi Medical University and 1200 non-tumor patients from the First Affiliated Hospital of Guangxi Medical University. General demographic characteristics, behavioral information, and hematological indices were collected by unified questionnaires. Genomic DNA was isolated from peripheral venous blood using Phenol-Chloroform. The genotyping was performed using the Sequenom MassARRAY iPLEX genotyping method. The association between genetic polymorphisms and risk of HCC was shown by P-value and the odd ratio (OR) with 95% confidence interval (CI) using the unconditional logistic regression after adjusting for age, sex, nationality, smoking, drinking, family history of HCC, and hepatitis B virus (HBV) infection. Moreover, stratified analysis was conducted on the basis of the status of HBV infection, smoking, and alcohol drinking.
RESULTS: The HCC risk was lower in patients with the MCM4 rs2305952 CC (OR = 0.22, 95%CI: 0.08-0.63, P = 0.01) and with the CHEK1 rs515255 TC, TT, TC/TT (OR = 0.73, 95%CI: 0.56-0.96, P = 0.02; OR = 0.67, 95%CI: 0.46-0.97, P = 0.04; OR = 0.72, 95%CI: 0.56-0.92, P = 0.01, respectively). Conversely, the HCC risk was higher in patients with the KAT2B rs17006625 GG (OR = 1.64, 95%CI: 1.01-2.64, P = 0.04). In addition, the risk was markedly lower for those who were carriers of MCM4 rs2305952 CC and were also HBsAg-positive and non-drinking and non-smoking (P < 0.05, respectively) and for those who were carriers of CHEK1 rs515255 TC, TT, TC/TT and were also HBsAg-negative and non-drinking (P < 0.05, respectively). Moreover, the risk was higher for those who were carriers of KAT2B rs17006625 GG and were also HBsAg-negative (P < 0.05).
CONCLUSION: Of 12 cell cycle pathway genes, MCM4, CHEK1 and KAT2B polymorphisms may be associated with the risk of HCC.

Zhai DK, Liu B, Bai XF, Wen JA
Identification of biomarkers and pathway-related modules involved in ovarian cancer based on topological centralities.
J BUON. 2016 Jan-Feb; 21(1):208-20 [PubMed] Related Publications
PURPOSE: The present study was designed to explore the significant biomarkers and pathway-related modules for predicting the effects of eribulin relative to paclitaxel in ovarian cancer.
METHODS: The gene expression data E-GEOD-50831 were downloaded from the European Bioinformatics Institute (EBI) database. Differentially expressed genes (DEGs) were screened. Subsequently, differential coexpression network was constructed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and pathway-related modules mining were conducted. Topological centralities (degree, betweenness, closeness and stress) analyses for coexpression network and pathway-related modules were performed to explore hub genes and the most significant pathways. Then, we verified our findings in an independent sample set via RT-PCR and Western blotting.
RESULTS: Centralities results of ESCO1, CDC27and MCM4 ranked the top five. Moreover, among the top 10% hub genes, CDC27, MCM4 and SOS1 were pathway-enriched genes in two networks. A total of 5 and 6 pathway-related modules were obtained under two drugs treatment. Based analyses of degree, betweenness and other centralities, DNA replication pathway-related module was the most significant under paclitaxel treatment, while cell cycle pathway-related module was the most significant under eribulin treatment. RT-PCR and Western blotting results were consistent with the bioinformatics results. The expression level of MCM4 was remarkably decreased under eribulin treatment relative to paclitaxel.
CONCLUSIONS: The inhibition of ovarian cancer growth by paclitaxel and eribulin might be connected with downregulation of cell cycle and DNA replication pathway. Moreover, MCM4 signature might be a potential biomarker to predict the effect of eribulin in ovarian cancer.

Wu X, Ruan L, Yang Y, Mei Q
Identification of crucial regulatory relationships between long non-coding RNAs and protein-coding genes in lung squamous cell carcinoma.
Mol Cell Probes. 2016; 30(3):146-52 [PubMed] Related Publications
PURPOSE: This study aimed to analyze the relationships of long non-coding RNAs (lncRNAs) and protein-coding genes in lung squamous cell carcinoma (LUSC).
METHODS: RNA-seq data of LUSC deposited in the TCGA database were used to identify differentially expressed protein-coding genes (DECGs) and differentially expressed lncRNA genes (DE-lncRNAs) between LUSC samples and normal samples. Functional enrichment analysis of DECGs was then performed. Subsequently, the target genes and regulators of DE-lncRNAs were predicted from the DECGs. Additionally, expression levels of target genes of DE-lncRNAs were validated by RT-qPCR after the silence of DE-lncRNAs.
RESULTS: In total, 5162 differentially expressed genes (DEGs) were screened from the LUSC samples, and there were seven upregulated lncRNA genes in the DEGs. The upregulated DECGs were enriched in GO terms like RNA binding and metabolic process. Meanwhile, the downregulated DECGs were enriched in GO terms like cell cycle. Furthermore, the lncRNAs PVT1 and TERC targeted multiple DECGs. PVT1 targeted genes related to cell cycle (e.g. POLA2, POLD1, MCM4, MCM5 and MCM6), and reduced expression of PVT1 decreased expression of the genes. TERC regulated several genes (e.g. NDUFAB1, NDUFA11 and NDUFB5), and reduced expression of TERC increased expression of the genes. Additionally, PVT1 was regulated by multiple transcription factors (TFs) identified from DECGs, such as HSF1; and TERC was modulated by TFs, such as PIR.
CONCLUSION: A set of regulatory relationships between PVT1 and its targets and regulators, as well as TERC and its targets and regulators, may play crucial roles in the progress of LUSC.

Turnbull AK, Arthur LM, Renshaw L, et al.
Accurate Prediction and Validation of Response to Endocrine Therapy in Breast Cancer.
J Clin Oncol. 2015; 33(20):2270-8 [PubMed] Related Publications
PURPOSE: Aromatase inhibitors (AIs) have an established role in the treatment of breast cancer. Response rates are only 50% to 70% in the neoadjuvant setting and lower in advanced disease. Accurate biomarkers are urgently needed to predict response in these settings and to determine which individuals will benefit from adjuvant AI therapy.
PATIENTS AND METHODS: Pretreatment and on-treatment (after 2 weeks and 3 months) biopsies were obtained from 89 postmenopausal women who had estrogen receptor-alpha positive breast cancer and were receiving neoadjuvant letrozole for transcript profiling. Dynamic clinical response was assessed with use of three-dimensional ultrasound measurements.
RESULTS: The molecular response to letrozole was characterized and a four-gene classifier of clinical response was established (accuracy of 96%) on the basis of the level of two genes before treatment (one gene [IL6ST] was associated with immune signaling, and the other [NGFRAP1] was associated with apoptosis) and the level of two proliferation genes (ASPM, MCM4) after 2 weeks of therapy. The four-gene signature was found to be 91% accurate in a blinded, completely independent validation data set of patients treated with anastrozole. Matched 2-week on-treatment biopsies were associated with improved predictive power as compared with pretreatment biopsies alone. This signature also significantly predicted recurrence-free survival (P = .029) and breast cancer -specific survival (P = .009). We demonstrate that the test can also be performed with use of quantitative polymerase chain reaction or immunohistochemistry.
CONCLUSION: A four-gene predictive model of clinical response to AIs by 2 weeks has been generated and validated. Deregulated immune and apoptotic responses before treatment and cell proliferation that is not reduced 2 weeks after initiation of treatment are functional characteristics of breast tumors that do not respond to AIs.

Chen J, Yang R, Zhang W, Wang Y
Candidate pathways and genes for nasopharyngeal carcinoma based on bioinformatics study.
Int J Clin Exp Pathol. 2015; 8(2):2026-32 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To reveal the potential microRNAs (miRNAs), genes, pathways and regulatory network involved in the process of nasopharyngeal carcinoma (NPC) by using the method of bioinformatics.
METHODS: Gene expression profiles GSE12452 (31 NPC and 10 normal samples) and GSE53819 (18 NPC and 18 normal samples), as well as miRNA expression profiles GSE32960 (312 NPC and 18 normal samples) and GSE36682 (62 NPC and 6 normal samples) were obtained from Gene Expression Omnibus database. The differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) between NPC and normal samples were identified by using t-test based on MATLAB software (FDR < 0.01), followed by pathway enrichment analysis based on DAVID software (P-value < 0.1). Then, DEmiRNA-DEG regulatory network was constructed.
RESULTS: A total of 1254 DEGs and 107 DEmiRNAs were identified, respectively. Then, 16 pathways (including cell cycle) and 32 pathways (including pathways in cancer) were enriched by DEGs and target genes of DEmiRNAs, respectively. Furthermore, DEmiRNA-DEG regulatory network was constructed, containing 12 DEmiRNAs (including has-miR-615-3P) and 180 DEGs (including MCM4 and CCNE2).
CONCLUSION: has-miR-615-3p might take part in the pathogenetic process of NPC through regulating MCM4 which is enriched in cell cycle. The DEmiRNAs identified in the present study might serve as new biomarkers for NPC.

Zekri AR, Hassan ZK, Bahnassy AA, et al.
Differentially expressed genes in metastatic advanced Egyptian bladder cancer.
Asian Pac J Cancer Prev. 2015; 16(8):3543-9 [PubMed] Related Publications
BACKGROUND: Bladder cancer is one of the most common cancers worldwide. Gene expression profiling using microarray technologies improves the understanding of cancer biology. The aim of this study was to determine the gene expression profile in Egyptian bladder cancer patients.
MATERIALS AND METHODS: Samples from 29 human bladder cancers and adjacent non-neoplastic tissues were analyzed by cDNA microarray, with hierarchical clustering and multidimensional analysis.
RESULTS: Five hundred and sixteen genes were differentially expressed of which SOS1, HDAC2, PLXNC1, GTSE1, ULK2, IRS2, ABCA12, TOP3A, HES1, and SRP68 genes were involved in 33 different pathways. The most frequently detected genes were: SOS1 in 20 different pathways; HDAC2 in 5 different pathways; IRS2 in 3 different pathways. There were 388 down-regulated genes. PLCB2 was involved in 11 different pathways, MDM2 in 9 pathways, FZD4 in 5 pathways, p15 and FGF12 in 4 pathways, POLE2 in 3 pathways, and MCM4 and POLR2E in 2 pathways. Thirty genes showed significant differences between transitional cell cancer (TCC) and squamous cell cancer (SCC) samples. Unsupervised cluster analysis of DNA microarray data revealed a clear distinction between low and high grade tumors. In addition 26 genes showed significant differences between low and high tumor stages, including fragile histidine triad, Ras and sialyltransferase 8 (alpha) and 16 showed significant differences between low and high tumor grades, like methionine adenosyl transferase II, beta.
CONCLUSIONS: The present study identified some genes, that can be used as molecular biomarkers or target genes in Egyptian bladder cancer patients.

Jian T, Chen Y
Regulatory mechanisms of transcription factors and target genes on gastric cancer by bioinformatics method.
Hepatogastroenterology. 2015 Mar-Apr; 62(138):524-8 [PubMed] Related Publications
BACKGROUND/AIMS: Gastric cancer is one of the most lethal diseases and has caused a global health problem. We aimed to elucidate the major mechanisms involved in the gastric cancer progression.
METHODOLOGY: The expression profile GSE13911 was downloaded from GEO database, composing of 31 normal and 38 tumor samples. The transcription factor (TF)--target gene regulatory network and protein-protein interaction (PPI) network related to gastric cancer were obtained from TRED and TRANSFAC databases. After combining the two networks, we constructed an integrated network.
RESULTS: In total, 5255 DEGs in tumor samples were identified, which were mainly enriched in 12 pathways including cell cycle. The integrated network of TF--target gene--protein interaction included 7 genes related to cell cycle, in which E2F1 was predicted to mediate the expression of MCM4, MCM5 and CDC6 through regulating the expression of its target gene MCM3.
CONCLUSION: In gastric cancer progression, E2F1 may play vital roles in the involvement of cell cycle pathway through regulating its target gene MCM3, which might interact with MCM4, MCM5 and MCM7. Besides, STAT1 was another potentially critical transcription factor which could regulate multiple target genes.

Melaiu O, Melissari E, Mutti L, et al.
Expression status of candidate genes in mesothelioma tissues and cell lines.
Mutat Res. 2015; 771:6-12 [PubMed] Related Publications
In order to broaden knowledge on the pathogenesis of malignant pleural mesothelioma (MPM), we reviewed studies on the MPM-transcriptome and identified 119 deregulated genes. However, there was poor consistency among the studies. Thus, the expression of these genes was further investigated in the present work using reverse transcriptase-quantitative PCR (RT-qPCR) in 15 MPM and 20 non-MPM tissue samples. Fifty-nine genes showed a statistically significant deregulation and were further evaluated in two epithelioid MPM cell lines (compared to MET-5A, a non-MPM cell line). Nine genes (ACSL1, CCNO, CFB, PDGFRB, SULF1, TACC1, THBS2, TIMP3, XPOT) were deregulated with statistical significance in both cell lines, 12 (ASS1, CCNB1, CDH11, COL1A1, CXADR, EIF4G1, GALNT7, ITGA4, KRT5, PTGIS, RAN, SOD1) in at least one cell line, whereas 7 (DSP, HEG1, MCM4, MSLN, NME2, NMU, TNPO2) were close but did not reach the statistical significance in any of the cell line. Patients whose MPM tissues expressed elevated mRNA levels of BIRC5, DSP, NME2, and THBS2 showed a statistically significant shorter overall survival. Although MPM is a poorly studied cancer, some features are starting to emerge. Novel cancer genes are suggested here, in particular those involved in cell-cell and cell-matrix interactions.

Ishimi Y, Irie D
G364R mutation of MCM4 detected in human skin cancer cells affects DNA helicase activity of MCM4/6/7 complex.
J Biochem. 2015; 157(6):561-9 [PubMed] Related Publications
A number of gene mutations are detected in cells derived from human cancer tissues, but roles of these mutations in cancer cell development are largely unknown. We examined G364R mutation of MCM4 detected in human skin cancer cells. Formation of MCM4/6/7 complex is not affected by the mutation. Consistent with this notion, the binding to MCM6 is comparable between the mutant MCM4 and wild-type MCM4. Nuclear localization of this mutant MCM4 expressed in HeLa cells supports this conclusion. Purified MCM4/6/7 complex containing the G364R MCM4 exhibited similar levels of single-stranded DNA binding and ATPase activities to the complex containing wild-type MCM4. However, the mutant complex showed only 30-50% of DNA helicase activity of the wild-type complex. When G364R MCM4 was expressed in HeLa cells, it was fractionated into nuclease-sensitive chromatin fraction, similar to wild-type MCM4. These results suggest that this mutation does not affect assembly of MCM2-7 complex on replication origins but it interferes some step at function of MCM2-7 helicase. Thus, this mutation may contribute to cancer cell development by disturbing DNA replication.

Zhang W, Gong W, Ai H, et al.
Gene expression analysis of lung adenocarcinoma and matched adjacent non-tumor lung tissue.
Tumori. 2014 May-Jun; 100(3):338-45 [PubMed] Related Publications
AIMS AND BACKGROUND: The aim of this study was to find disease-associated genes and gene functions in lung adenocarcinoma and matched adjacent non-tumor lung tissues with DNA microarray.
METHODS: We downloaded the gene expression profile GSE32863 from the Gene Expression Omnibus database including 58 lung adenocarcinoma and 58 adjacent non-tumor lung tissue samples. Data were preprocessed and the differentially expressed genes (DEGs) were identified using packages in the R computing language. The selected DEGs were further analyzed with bioinformatics methods. After the coexpression network of DEGs was constructed by STRING (Search Tool for the Retrieval of Interacting Genes/Proteins), we analyzed gene functions with DAVID (The Database for Annotation, Visualization and Integrated Discovery) and WebGestalt (WEB-based Gene Set Analysis Toolkit).
RESULTS: A total of 1429 genes were filtered as DEGs, including 873 downregulated genes and 556 upregulated genes, and the DEGs including CDC45, CCNB2, CDC20, MCM2, PTTG1, MCM4 and FEN1 were most significantly related to cell cycle and DNA replication.
CONCLUSION: The discovery of featured genes which were significantly related to cell cycle and DNA replication has potential for use in the clinic for the diagnosis of lung adenocarcinoma in the future. However, further experiments will be needed to confirm our result.

Welinder C, Jönsson G, Ingvar C, et al.
Feasibility study on measuring selected proteins in malignant melanoma tissue by SRM quantification.
J Proteome Res. 2014; 13(3):1315-26 [PubMed] Related Publications
Currently there are no clinically recognized molecular biomarkers for malignant melanoma (MM) for either diagnosing disease stage or measuring response to therapy. The aim of this feasibility study was to develop targeted selected reaction monitoring (SRM) assays for identifying candidate protein biomarkers in metastatic melanoma tissue lysate. In a pilot study applying the SRM assay, the tissue expression of nine selected proteins [complement 3 (C3), T-cell surface glycoprotein CD3 epsilon chain E (CD3E), dermatopontin, minichromosome maintenance complex component (MCM4), premelanosome protein (PMEL), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A13 (S100A13), transgelin-2 and S100B] was quantified in a small cohort of metastatic malignant melanoma patients. The SRM assay was developed using a TSQ Vantage triple quadrupole mass spectrometer that generated highly accurate peptide quantification. Repeated injection of internal standards spiked into matrix showed relative standard deviation (RSD) from 6% to 15%. All nine target proteins were identified in tumor lysate digests spiked with heavy peptide standards. The multiplex SRM peptide assay panel was then measured and quantified on a set of frozen MM tissue samples obtained from the Malignant Melanoma Biobank collected in Lund, Sweden. All nine proteins could be accurately quantified using the new SRM assay format. This study provides preliminary data on the heterogeneity of biomarker expression within MM patients. The S100B protein, which is clinically used as the pathology identifier of MM, was identified in 9 out of 10 MM tissue lysates. The use of the targeted SRM assay provides potential advancements in the diagnosis of MM that can aid in future assessments of disease in melanoma patients.

Morrison CD, Liu P, Woloszynska-Read A, et al.
Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer.
Proc Natl Acad Sci U S A. 2014; 111(6):E672-81 [PubMed] Free Access to Full Article Related Publications
Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.

Lian M, Fang J, Han D, et al.
Microarray gene expression analysis of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma.
PLoS One. 2013; 8(12):e84854 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the most common type in head and neck squamous cell carcinoma (HNSCC), and the development and progression of LSCC are multistep processes accompanied by changes of molecular biology.
OBJECTIVE: The purpose of this study was to investigate the molecular basis of tumorigenesis and regional lymph node metastasis in LSCC, and provide a set of genes that may be useful for the development of novel diagnostic markers and/or more effective therapeutic strategies.
METHODS: A total number of 10 patients who underwent surgery for primary laryngeal squamous cell carcinoma were recruited for microarray analysis. LSCC tissues compared with corresponding adjacent non-neoplastic tissues were analysed by Illumina mRNA microarrays, and LSCC tissues with regional lymph node metastasis and LSCC tissues without regional lymph node metastasis were analyzed in the same manner. The most frequently differently expressed genes screened by microarrays were also validated by qRT-PCR in another 42 patients diagnosed for LSCC.
RESULTS: Analysed by Illumina mRNA microarrays, there were 361 genes significantly related to tumorigenesis while 246 genes significantly related to regional lymph node metastasis in LSCC. We found that the six genes (CDK1, CDK2, CDK4, MCM2, MCM3, MCM4) were most frequently differently expressed functional genes related to tumorigenesis while eIF3a and RPN2 were most frequently differently expressed functional genes related to regional lymph node metastasis in LSCC. The expressions of these genes were also validated by qRT-PCR.
CONCLUSIONS: The research revealed a gene expression signature of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma. Of the total, the deregulation of several genes (CDK1, CDK2, CDK4, MCM2, MCM3, MCM4, EIF3a and RPN2) were potentially associated with disease development and progression. The result will contribute to the understanding of the molecular basis of LSCC and help to improve diagnosis and treatment.

Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, et al.
Stem cell-like ALDH(bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin.
Cell Cycle. 2013; 12(21):3390-404 [PubMed] Free Access to Full Article Related Publications
The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, - 2, CDC2, -6) and DNA replication-related genes (MCM4, - 5, - 6, - 7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (> 4500%) of ALDH(bright) cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDH(bright) cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells. This report is the first to show that: (1) loss of responsiveness to erlotinib in EGFR-mutant NSCLC can be explained in terms of erlotinib-refractory ALDH(bright) cells, which have been shown to exhibit stem cell-like properties; and (2) erlotinib-refractory ALDH(bright) cells are sensitive to the natural agent silibinin. Our findings highlight the benefit of administration of silibinin in combination with EGFR TKIs to target CSCs and minimize the ability of tumor cells to escape cell death in EGFR-mutant NSCLC patients.

Das M, Prasad SB, Yadav SS, et al.
Over expression of minichromosome maintenance genes is clinically correlated to cervical carcinogenesis.
PLoS One. 2013; 8(7):e69607 [PubMed] Free Access to Full Article Related Publications
Minichromosome Maintenance (MCM) proteins play important roles in cell cycle progression by mediating DNA replication initiation and elongation. Among 10 MCM homologues MCM 2-7 form a hexamer and assemble to the pre-replication complex acting as replication licensing factors. Binding and function of MCM2-7 to pre-replication complex is regulated by MCM10 mediated binding of RECQL4 with MCM2-7. The purpose of this study is to explore the role of MCMs in cervical cancer and their correlation with the clinical parameters of cervical cancer. We have investigated sixty primary cervical cancer tissue samples, eight cervical cancer cell lines and thirty hysterectomised normal cervical tissue. The expression profiling of MCMs was done using semi-quantitative RT-PCR, immunoblotting and immunohistochemistry. MCM2, 4, 5, 6, 7, 10 and RECQL4 are significantly over-expressed in cervical cancer. Among these, MCM4, 6 and 10 show increased frequency of over expression along with advancement of tumor stages. MCM4, 5 and 6 also show differential expression in different types of lesion, while MCM2 and MCM10 are over expressed in cervical cancer irrespective of clinico-pathological parameters. Our data indicates the role of MCM4, MCM5, MCM6, MCM10 and RECQL4 in the progression of cervical cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MCM4, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999