MAPKAPK2

Gene Summary

Gene:MAPKAPK2; MAPK activated protein kinase 2
Aliases: MK2, MK-2, MAPKAP-K2
Location:1q32.1
Summary:This gene encodes a member of the Ser/Thr protein kinase family. This kinase is regulated through direct phosphorylation by p38 MAP kinase. In conjunction with p38 MAP kinase, this kinase is known to be involved in many cellular processes including stress and inflammatory responses, nuclear export, gene expression regulation and cell proliferation. Heat shock protein HSP27 was shown to be one of the substrates of this kinase in vivo. Two transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:MAP kinase-activated protein kinase 2
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (41)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Enzyme Activation
  • Transfection
  • Thrombocytopenia
  • Intracellular Signaling Peptides and Proteins
  • Staurosporine
  • Nuclear Proteins
  • p53 Protein
  • RTPCR
  • Up-Regulation
  • Pancreatic Cancer
  • Imidazoles
  • Western Blotting
  • Chromosome 1
  • Phosphorylation
  • Immunoblotting
  • DNA Damage
  • Messenger RNA
  • Signal Transduction
  • Cell Cycle
  • Mitogen-Activated Protein Kinases
  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Protein-Serine-Threonine Kinases
  • Neoplasm Proteins
  • Protein Kinases
  • Neuroblastoma
  • Protein Kinase Inhibitors
  • Risk Factors
  • DNA Repair
  • Antineoplastic Agents
  • Pyridines
  • p38 Mitogen-Activated Protein Kinases
  • Apoptosis
  • Cytokines
  • Gene Expression Profiling
  • Cell Movement
  • DNA-Binding Proteins
  • HSP27 Heat-Shock Proteins
  • RNA Interference
  • Drug Resistance
  • Lung Cancer
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAPKAPK2 (cancer-related)

Shi DB, Ma RR, Zhang H, et al.
GAGE7B promotes tumor metastasis and growth via activating the p38δ/pMAPKAPK2/pHSP27 pathway in gastric cancer.
J Exp Clin Cancer Res. 2019; 38(1):124 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer is the second most common cause of cancer-related mortality; thus, the mechanisms underlying tumor metastasis and growth in gastric cancer need to be extensively explored.
METHODS: Differentially expressed genes were examined in gastric cancer samples with lymph node metastasis (LNM) and without LNM using mRNA microarray and RT-qPCR. The effects of G antigen 7B (GAGE7B) on the metastasis, growth, and angiogenesis of gastric cancer were investigated in vitro and in vivo. GAGE7B protein expression was detected by immunohistochemical (IHC) analysis. Microarray, RT-qPCR, and western blot assays were performed to detect downstream target genes of GAGE7B. Dual-luciferase reporter and western blot assays were used to identify miRNAs that could negatively regulate GAGE7B.
RESULTS: GAGE7B was significantly overexpressed in samples with LNM. High expression levels of GAGE7B were associated with advanced clinical stage and poor patient survival. GAGE7B dramatically enhanced the metastasis, growth, and angiogenesis ability of gastric cancer. GAGE7B was further demonstrated to promote the progression of gastric cancer by activating the p38δ/pMAPKAPK2/pHSP27 pathway. However, the GAGE7B-induced p38δ/pMAPKAPK2/pHSP27 pathway was inactivated by miR-30c, as the expression levels of both GAGE7B and p38δ were found to be directly suppressed by miR-30c. Intriguingly, GAGE7B was found to be a ceRNA for p38δ, as it activated the p38δ/pMAPKAPK2/pHSP27 pathway by competitively binding miR-30c.
CONCLUSIONS: GAGE7B may serve as a prognostic indicator in gastric cancer. GAGE7B significantly promotes gastric cancer progression by upregulating the p38δ/pMAPKAPK2/pHSP27 pathway, but it is negatively regulated by miR-30c. GAGE7B and miR-30c may be potential therapeutic targets in gastric cancer.

Soni S, Anand P, Padwad YS
MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression.
J Exp Clin Cancer Res. 2019; 38(1):121 [PubMed] Free Access to Full Article Related Publications
The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.

Nafees S, Mehdi SH, Zafaryab M, et al.
Synergistic Interaction of Rutin and Silibinin on Human Colon Cancer Cell Line.
Arch Med Res. 2018; 49(4):226-234 [PubMed] Related Publications
AIM OF THE STUDY: Rutin and Silibinin are active flavonoid compounds, well-known for possessing multiple biological activities. We have studied how Rutin and Silibinin in combination modulate wide range intracellular signaling cascades as evidenced by in-vitro research. Data obtained from preclinical studies provide evidence to be supportive to bridge basic and translational studies.
METHODS: In this study, cytotoxic effect of Rutin and Silibinin individually and in combination on the viability of colon cancer cell line (HT-29) was revealed using the MTT assay. Mechanism involved in the cytotoxic effect were then investigated in terms of apoptosis using comet assay, DNA fragmentation and fluorescent microscopy analyses. The apoptosis associated proteins viz; Caspase-3, 8, 9, Bax, Bcl-2, p53, inflammation associated proteins viz; NFκB, IKK-α IKK-β and MAPK pathway associated proteins viz; p38 and MK-2 were determined by western-blot and Real Time-PCR analysis.
RESULTS: Results suggest that Rutin and Silibinin produce anticancer effects via induction of apoptosis as well as regulating the expressions of genes related to apoptosis, inflammation and MAPK pathway proteins more effectively in combination than individually.
CONCLUSION: Our study supports the viability of developing Rutin and Silibinin in combination as a novel therapeutic prodrug for colon cancer treatment and may have a promising role in the development of new anticancer drugs in the future.

Deng X, Liu Z, Liu X, et al.
miR-296-3p Negatively Regulated by Nicotine Stimulates Cytoplasmic Translocation of c-Myc via MK2 to Suppress Chemotherapy Resistance.
Mol Ther. 2018; 26(4):1066-1081 [PubMed] Free Access to Full Article Related Publications
This study aimed to identify mechanisms by which microRNA 296-3p (miR-296-3p) functions as a tumor suppressor to restrain nasopharyngeal carcinoma (NPC) cell growth, metastasis, and chemoresistance. Mechanistic studies revealed that miR-296-3p negatively regulated by nicotine directly targets the oncogenic protein mitogen-activated protein kinase-activated protein kinase-2 (Mapkapk2) (MK2). Suppression of MK2 downregulated Ras/Braf/Erk/Mek/c-Myc and phosphoinositide-3-kinase (PI3K)/Akt/c-Myc signaling and promoted cytoplasmic translocation of c-Myc, which activated miR-296-3p expression by a feedback loop. This ultimately inhibited cell cycle progression, epithelial-to-mesenchymal transition (EMT), and chemoresistance of NPC. In addition, nicotine as a key component of tobacco was observed to suppress miR-296-3p and thus elevate MK2 expression by inducing PI3K/Akt/c-Myc signaling. In clinical samples, reduced miR-296-3p as an unfavorable factor was inversely correlated with MK2 and c-Myc expression. These results reveal a novel mechanism by which miR-296-3p negatively regulated by nicotine directly targets MK2-induced Ras/Braf/Erk/Mek/c-Myc or PI3K/AKT/c-Myc signaling to stimulate its own expression and suppress NPC cell proliferation and metastasis. miR-296-3p may thus serve as a therapeutic target to reverse chemotherapy resistance of NPC.

Coelho MA, de Carné Trécesson S, Rana S, et al.
Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA.
Immunity. 2017; 47(6):1083-1099.e6 [PubMed] Free Access to Full Article Related Publications
The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP). TTP negatively regulates PD-L1 expression through AU-rich elements in the 3' UTR of PD-L1 mRNA. MEK signaling downstream of RAS leads to phosphorylation and inhibition of TTP by the kinase MK2. In human lung and colorectal tumors, RAS pathway activation is associated with elevated PD-L1 expression. In vivo, restoration of TTP expression enhances anti-tumor immunity dependent on degradation of PD-L1 mRNA. We demonstrate that RAS can drive cell-intrinsic PD-L1 expression, thus presenting therapeutic opportunities to reverse the innately immunoresistant phenotype of RAS mutant cancers.

Fang Y, Wang J, Wang G, et al.
Inactivation of p38 MAPK contributes to stem cell-like properties of non-small cell lung cancer.
Oncotarget. 2017; 8(16):26702-26717 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells (CSCs) are recognized as the major source for cancer initiation and recurrence. Yet, the mechanism by which the cancer stem cell properties are acquired and maintained in a cancer cell population is not well understood. In the current study, we observed that the level of active p38 MAPK is downregulated, while the level of the stemness marker SOX2 is upregulated in lung cancer tissues as compared to normal tissues. We further demonstrated that inactivation of p38 is a potential mechanism contributing to acquisition and maintenance of cancer stem cell properties in non-small cell lung cancer (NSCLC) cells. p38, in particular the p38γ and p38δ isoforms, suppresses the cancer stem cell properties and tumor initiating ability of NSCLC cells by promoting the ubiquitylation and degradation of stemness proteins such as SOX2, Oct4, Nanog, Klf4 and c-Myc, through MK2-mediated phosphorylation of Hsp27 that is an essential component of the proteasomal degradation machinery. In contrast, inactivation of p38 in lung cancer cells leads to upregulation of the stemness proteins, thus promoting the cancer stem cell properties of these cells. These findings have demonstrated a novel mechanism by which cancer stem cell properties are acquired and maintained in a cancer cell population, and have revealed a new function of the p38 pathway in suppressing cancer development. These studies have also identified a new pathway that can potentially serve as a target for cancer therapies aimed at eliminating CSCs.

Wang X, Liu F, Qin X, et al.
Expression of Rab1A is upregulated in human lung cancer and associated with tumor size and T stage.
Aging (Albany NY). 2016; 8(11):2790-2798 [PubMed] Free Access to Full Article Related Publications
Rab1A expression is associated with malignant phenotypes in several human tumors; however, the role of Rab1A in lung cancer is still unclear. In this study, we attempted to establish the role of Rab1A in major human lung cancer subtypes. Rab1A expression in different histological types of human lung cancer was analyzed in lung cancer tissues with paired adjacent noncancerous tissues and a large panel of lung cancer cell lines. The effect of Rab1A expression on multiple cancer-associated signaling pathways was also examined. The results demonstrated that Rab1A was significantly overexpressed in the different histological types of lung cancer as compared to non-cancerous tissues, and Rab1A expression was correlated with tumor volume and stage. In a large panel of lung cancer cell lines, high Rab1A expression was observed as compared to a normal lung/bronchus epithelial cell line. However, Rab1A protein levels were not correlated with mTORC1 (P-S6K1), mTORC2 (P-AKT), MEK (P-ERK), JNK (P-c-Jun) or p38MAPK (P-MK2) signaling. Rab1A knockdown had no effect on mTOR signaling or cell growth. These data suggested that Rab1A may be involved in the pathogenesis of human lung cancer in an mTOR- and MAPK-independent manner.

Tran DDH, Koch A, Allister A, et al.
Treatment with MAPKAP2 (MK2) inhibitor and DNA methylation inhibitor, 5-aza dC, synergistically triggers apoptosis in hepatocellular carcinoma (HCC) via tristetraprolin (TTP).
Cell Signal. 2016; 28(12):1872-1880 [PubMed] Related Publications
Over 100 putative driver genes that are associated with multiple recurrently altered pathways were detected in hepatocellular carcinoma (HCC), suggesting that multiple pathways will need to be inhibited for any therapeutic method to be effective. In this context, functional modification of the RNA regulating protein, tristetraprolin (TTP) that regulates approximately 2500 genes represents a promising strategy in HCC therapy. Since overexpression of TTP induces cell death in all cell types, it would be useful to target the regulator of TTP. In this study, we applied an inhibitor to MAPKAP2 (MK2) that suppresses TTP function. Importantly, cBIOportal for HCC genomics shows that expression level of the MK2 gene correlates with clinical outcome of HCC. We show that upon treatment with MK2 inhibitor, all 5 HCC cell lines, namely HepG2, Huh7, Hep3B, HLE and HLF, reduced cell growth, especially HepG2 and Hep3B cells underwent apoptosis. Simultaneously, TTP target genes such as c-Myc, IER3 or AKT-1 were downregulated. Depletion of the TTP gene rescued cells from apoptosis and restored the TTP-target mRNA expression in the presence of MK2 inhibitor. Furthermore, MK2 was activated in primary HCC that express TTP at high level. The TTP gene was induced upon treatment with DNA methylation inhibitor, 5-aza dC or interferon in three other cell lines, Huh7, HLE or HLF. Upon treatment with MK2 inhibitor and 5-aza dC or interferon these cells underwent apoptosis. The depletion of TTP in these cells partially rescued them from apoptosis, suggesting that the MK2/TTP pathway plays a role in proliferation and maintenance of HCCs. Notably, under the same conditions human hepatocyte cells (THLE-2) did not undergo apoptosis. These data also suggest that MK2 inhibitor with 5-aza dC or interferon may be a useful tool for therapy against HCC.

Lalaoui N, Hänggi K, Brumatti G, et al.
Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics.
Cancer Cell. 2016; 29(2):145-58 [PubMed] Related Publications
Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.

Okuno M, Adachi S, Kozawa O, et al.
The Clinical Significance of Phosphorylated Heat Shock Protein 27 (HSPB1) in Pancreatic Cancer.
Int J Mol Sci. 2016; 17(1) [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is one of most aggressive forms of cancer. After clinical detection it exhibits fast metastatic growth. Heat shock protein 27 (HSP27; HSPB1) has been characterized as a molecular chaperone which modifies the structures and functions of other proteins in cells when they are exposed to various stresses, such as chemotherapy. While the administration of gemcitabine, an anti-tumor drug, has been the standard treatment for patients with advanced pancreatic cancer, accumulating evidence shows that HSP27 plays a key role in the chemosensitivity to gemcitabine. In addition, phosphorylated HSP27 induced by gemcitabine has been associated with the inhibition of pancreatic cancer cell growth. In this review, we summarize the role of phosphorylated HSP27, as well as HSP27, in the regulation of chemosensitivity in pancreatic cancer.

Cannell IG, Merrick KA, Morandell S, et al.
A Pleiotropic RNA-Binding Protein Controls Distinct Cell Cycle Checkpoints to Drive Resistance of p53-Defective Tumors to Chemotherapy.
Cancer Cell. 2015; 28(5):623-637 [PubMed] Free Access to Full Article Related Publications
In normal cells, p53 is activated by DNA damage checkpoint kinases to simultaneously control the G1/S and G2/M cell cycle checkpoints through transcriptional induction of p21(cip1) and Gadd45α. In p53-mutant tumors, cell cycle checkpoints are rewired, leading to dependency on the p38/MK2 pathway to survive DNA-damaging chemotherapy. Here we show that the RNA binding protein hnRNPA0 is the "successor" to p53 for checkpoint control. Like p53, hnRNPA0 is activated by a checkpoint kinase (MK2) and simultaneously controls both cell cycle checkpoints through distinct target mRNAs, but unlike p53, this is through the post-transcriptional stabilization of p27(Kip1) and Gadd45α mRNAs. This pathway drives cisplatin resistance in lung cancer, demonstrating the importance of post-transcriptional RNA control to chemotherapy response.

Shi Y, Ma IT, Patel RH, et al.
NSC-87877 inhibits DUSP26 function in neuroblastoma resulting in p53-mediated apoptosis.
Cell Death Dis. 2015; 6:e1841 [PubMed] Free Access to Full Article Related Publications
Dual specificity protein phosphatase 26 (DUSP26) is overexpressed in high-risk neuroblastoma (NB) and contributes to chemoresistance by inhibiting p53 function. In vitro, DUSP26 has also been shown to effectively inhibit p38 MAP kinase. We hypothesize that inhibiting DUSP26 will result in decreased NB cell growth in a p53 and/or p38-mediated manner. NSC-87877 (8-hydroxy-7-[(6-sulfo-2-naphthyl)azo]-5-quinolinesulfonic acid), a novel DUSP26 small molecule inhibitor, shows effective growth inhibition and induction of apoptosis in NB cell lines. NB cell lines treated with small hairpin RNA (shRNA) targeting DUSP26 also exhibit a proliferation defect both in vitro and in vivo. Treatment of NB cell lines with NSC-87877 results in increased p53 phosphorylation (Ser37 and Ser46) and activation, increased activation of downstream p38 effector proteins (heat shock protein 27 (HSP27) and MAP kinase-activated protein kinase 2 (MAPKAPK2)) and poly ADP ribose polymerase/caspase-3 cleavage. The cytotoxicity resulting from DUSP26 inhibition is partially reversed by knocking down p53 expression with shRNA and also by inhibiting p38 activity with SB203580 (4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine). In an intrarenal mouse model of NB, NSC-87877 treatment results in decreased tumor growth and increased p53 and p38 activity. Together, these results suggest that DUSP26 inhibition with NSC-87877 is an effective strategy to induce NB cell cytotoxicity in vitro and in vivo through activation of the p53 and p38 mitogen-activated protein kinase (MAPK) tumor-suppressor pathways.

Nguyen Ho-Bouldoires TH, Clapéron A, Mergey M, et al.
Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells.
Free Radic Biol Med. 2015; 89:34-46 [PubMed] Related Publications
The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied. We identified the MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) signaling pathway mediating defenses against oxidative stress. In addition to MK2 and Hsp27 overexpression in primary liver tumors compared to adjacent nontumorous tissues, the MK2/Hsp27 pathway is activated by hydrogen peroxide-induced oxidative stress in hepatobiliary cancer cells. MK2 inactivation or inhibition of MK2 or Hsp27 expression increases caspase-3 and PARP cleavage and DNA breaks and therefore cell death. Interestingly, MK2/Hsp27 inhibition decreases antioxidant defenses such as heme oxygenase 1 through downregulation of the transcription factor nuclear factor erythroid-derived 2-like 2. Moreover, MK2/Hsp27 inhibition decreases both phosphorylation of epidermal growth factor receptor (EGFR) and expression of its ligand, heparin-binding EGF-like growth factor. A new identified partner of MK2, the scaffold PDZ protein EBP50, could facilitate these effects through MK2/Hsp27 pathway regulation. These findings demonstrate that the MK2/Hsp27 pathway actively participates in resistance to oxidative stress and may contribute to liver cancer progression.

Kuramitsu Y, Wang Y, Kitagawa T, et al.
High-mobility Group Box 1 and Mitogen-activated Protein Kinase activated Protein Kinase-2 Are Up-regulated in Gemcitabine-resistant Pancreatic Cancer Cells.
Anticancer Res. 2015; 35(7):3861-5 [PubMed] Related Publications
BACKGROUND: Results of our previous studies demonstrated that the expression of heat-shock protein 27 (HSP27) was increased and HSP27 was phosphorylated in the GEM-resistant pancreatic cancer cell line, KLM1-R. The expression of HSP27 is regulated mainly by heat-shock factor 1, but other transcription factors or kinases have been reported to activate HSP27. High-mobility group box 1 (HMGB1) is a nuclear transcription factor. It has been reported that HMGB1 regulates HSP27 gene expression. Mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2) phosphorylates HSP27. In the present study, we investigated the expression of HMGB1 and MAPKAPK2 in KLM1-R cells.
MATERIALS AND METHODS: The expression levels of HMGB1 and MAPKAPK2 were compared between KLM1 and KLM1-R cells by western blotting.
RESULTS: The protein expression of both HMGB1 and MAPKAPK2 were increased in KLM1-R cells compared to KLM1 cells.
CONCLUSION: The increase of both HMGB1 and MAPKAPK2 in KLM1-R cells compared to KLM1 suggest the possibility of the activation of the pathway of HSP27 by HMGB1 and MAPKAPK2 in gemcitabine-resistant KLM1-R cells.

Boucas J, Fritz C, Schmitt A, et al.
Label-Free Protein-RNA Interactome Analysis Identifies Khsrp Signaling Downstream of the p38/Mk2 Kinase Complex as a Critical Modulator of Cell Cycle Progression.
PLoS One. 2015; 10(5):e0125745 [PubMed] Free Access to Full Article Related Publications
Growing evidence suggests a key role for RNA binding proteins (RBPs) in genome stability programs. Additionally, recent developments in RNA sequencing technologies, as well as mass-spectrometry techniques, have greatly expanded our knowledge on protein-RNA interactions. We here use full transcriptome sequencing and label-free LC/MS/MS to identify global changes in protein-RNA interactions in response to etoposide-induced genotoxic stress. We show that RBPs have distinct binding patterns in response to genotoxic stress and that inactivation of the RBP regulator module, p38/MK2, can affect the entire spectrum of protein-RNA interactions that take place in response to stress. In addition to validating the role of known RBPs like Srsf1, Srsf2, Elavl1 in the genotoxic stress response, we add a new collection of RBPs to the DNA damage response. We identify Khsrp as a highly regulated RBP in response to genotoxic stress and further validate its role as a driver of the G(1/)S transition through the suppression of Cdkn1a(P21) transcripts. Finally, we identify KHSRP as an indicator of overall survival, as well as disease free survival in glioblastoma multiforme.

Corcoran JA, Johnston BP, McCormick C
Viral activation of MK2-hsp27-p115RhoGEF-RhoA signaling axis causes cytoskeletal rearrangements, p-body disruption and ARE-mRNA stabilization.
PLoS Pathog. 2015; 11(1):e1004597 [PubMed] Free Access to Full Article Related Publications
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5' to 3' decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion.

Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A
miRNA biogenesis: biological impact in the development of cancer.
Cancer Biol Ther. 2014; 15(11):1444-55 [PubMed] Free Access to Full Article Related Publications
microRNAs (miRNAs) are non coding RNAs with different biological functions and pathological implications. Given their role as post-transcriptional gene expression regulators, they are involved in several important physiological processes like development, cell differentiation and cell signaling. miRNAs act as modulators of gene expression programs in different diseases, particularly in cancer, where they act through the repression of genes which are critical for carcinogenesis. The expression level of mature miRNAs is the result of a fine mechanism of biogenesis, carried out by different enzymatic complexes that exert their function at transcriptional and post-transcriptional levels. In this review, we will focus our discussion on the alterations in the miRNA biogenesis machinery, and its impact on the establishment and development of cancer programs.

Seiwert TY, Wang X, Heitmann J, et al.
DNA repair biomarkers XPF and phospho-MAPKAP kinase 2 correlate with clinical outcome in advanced head and neck cancer.
PLoS One. 2014; 9(7):e102112 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Induction chemotherapy is a common therapeutic option for patients with locoregionally-advanced head and neck cancer (HNC), but it remains unclear which patients will benefit. In this study, we searched for biomarkers predicting the response of patients with locoregionally-advanced HNC to induction chemotherapy by evaluating the expression pattern of DNA repair proteins.
METHODS: Expression of a panel of DNA-repair proteins in formalin-fixed paraffin embedded specimens from a cohort of 37 HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation were analyzed using quantitative immunohistochemistry.
RESULTS: We found that XPF (an ERCC1 binding partner) and phospho-MAPKAP Kinase 2 (pMK2) are novel biomarkers for HNSCC patients undergoing platinum-based induction chemotherapy. Low XPF expression in HNSCC patients is associated with better response to induction chemoradiotherapy, while high XPF expression correlates with a worse response (p = 0.02). Furthermore, low pMK2 expression was found to correlate significantly with overall survival after induction plus chemoradiation therapy (p = 0.01), suggesting that pMK2 may relate to chemoradiation therapy.
CONCLUSIONS: We identified XPF and pMK2 as novel DNA-repair biomarkers for locoregionally-advanced HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation. Our study provides insights for the use of DNA repair biomarkers in personalized diagnostics strategies. Further validation in a larger cohort is indicated.

Wang L, Yang H, Palmbos PL, et al.
ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells.
Cancer Res. 2014; 74(6):1778-88 [PubMed] Free Access to Full Article Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is characterized by therapeutic resistance for which the basis is poorly understood. Here, we report that the DNA and p53-binding protein ATDC/TRIM29, which is highly expressed in PDAC, plays a critical role in DNA damage signaling and radioresistance in pancreatic cancer cells. Ataxia-telangiectasia group D-associated gene (ATDC) mediated resistance to ionizing radiation in vitro and in vivo in mouse xenograft assays. ATDC was phosphorylated directly by MAPKAP kinase 2 (MK2) at Ser550 in an ATM-dependent manner. Phosphorylation at Ser-550 by MK2 was required for the radioprotective function of ATDC. Our results identify a DNA repair pathway leading from MK2 and ATM to ATDC, suggesting its candidacy as a therapeutic target to radiosensitize PDAC and improve the efficacy of DNA-damaging treatment.

Ding J, Romani J, Zaborski M, et al.
Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2.
PLoS One. 2013; 8(12):e83510 [PubMed] Free Access to Full Article Related Publications
Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia.

Morandell S, Reinhardt HC, Cannell IG, et al.
A reversible gene-targeting strategy identifies synthetic lethal interactions between MK2 and p53 in the DNA damage response in vivo.
Cell Rep. 2013; 5(4):868-77 [PubMed] Free Access to Full Article Related Publications
A fundamental limitation in devising new therapeutic strategies for killing cancer cells with DNA damaging agents is the need to identify synthetic lethal interactions between tumor-specific mutations and components of the DNA damage response (DDR) in vivo. The stress-activated p38 mitogen-activated protein kinase (MAPK)/MAPKAP kinase-2 (MK2) pathway is a critical component of the DDR network in p53-deficient tumor cells in vitro. To explore the relevance of this pathway for cancer therapy in vivo, we developed a specific gene targeting strategy in which Cre-mediated recombination simultaneously creates isogenic MK2-proficient and MK2-deficient tumors within a single animal. This allows direct identification of MK2 synthetic lethality with mutations that promote tumor development or control response to genotoxic treatment. In an autochthonous model of non-small-cell lung cancer (NSCLC), we demonstrate that MK2 is responsible for resistance of p53-deficient tumors to cisplatin, indicating synthetic lethality between p53 and MK2 can successfully be exploited for enhanced sensitization of tumors to DNA-damaging chemotherapeutics in vivo.

Yang L, Liu B, Qiu F, et al.
The effect of functional MAPKAPK2 copy number variation CNV-30450 on elevating nasopharyngeal carcinoma risk is modulated by EBV infection.
Carcinogenesis. 2014; 35(1):46-52 [PubMed] Related Publications
UNLABELLED: Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) is recognized as oncogenic and simulative role on tumorigenesis by virtue of abnormal expression in cancer including nasopharyngeal carcinoma (NPC). We hypothesized that the copy number variation (CNV)-30450, which duplicates the MAPKAPK2 promoter, may affect MAPKAPK2 expression and be associated with NPC risk. In two independent case-control panels of southern and eastern Chinese with a total of 1590 NPC patients and 1979 cancer-free controls, we investigated the association between CNV-30450 and NPC risk by genotyping the CNV-30450 with the TaqMan assay, and tested its biological effect. Consistent findings were observed in the two populations, that the increased copy number of CNV-30450 was associated with increased risk of NPC (3/4-copy versus 2-copy: odds ratio = 1.28, 95% confidence interval = 1.10-1.49), in which lies a biological mechanism that the adverse genotypes enhanced the promoter activity of MAPKAPK2 and elevated MAPKAPK2 expression. Moreover, the CNV-30450 adverse genotypes significantly interacted with Epstein-Barr virus (EBV) infection on increasing NPC risk (P = 0.035), and the genotype-phenotype correlation was only significant in EBV-positive cases (P = 0.037) but not in EBV-negative ones (P = 0.366). These data suggest that the functional CNV-30450 in the MAPKAPK2 promoter elevates the NPC risk with a modulation by EBV infection, which may be an indicator of susceptibility to NPC.
SUMMARY: This case-control study suggests that the functional CNV-30450 in the MAPKAPK2 promoter elevates the NPC risk with a modulation by EBV infection, which may be an indicator of susceptibility to NPC.

Novellasdemunt L, Bultot L, Manzano A, et al.
PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli.
Biochem J. 2013; 452(3):531-43 [PubMed] Related Publications
PFK-2/FBPase-2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose 2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is involved in cell proliferation owing to its role in carbohydrate metabolism. In the present study we analysed the mechanism of regulation of PFKFB3 as an immediate early gene controlled by stress stimuli that activates the p38/MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2] pathway. We report that exposure of HeLa and T98G cells to different stress stimuli (NaCl, H2O2, UV radiation and anisomycin) leads to a rapid increase (15-30 min) in PFKFB3 mRNA levels. The use of specific inhibitors in combination with MK2-deficient cells implicate control by the protein kinase MK2. Transient transfection of HeLa cells with deleted gene promoter constructs allowed us to identify an SRE (serum-response element) to which SRF (serum-response factor) binds and thus transactivates PFKFB3 gene transcription. Direct binding of phospho-SRF to the SRE sequence (-918 nt) was confirmed by ChIP (chromatin immunoprecipiation) assays. Moreover, PFKFB3 isoenzyme phosphorylation at Ser461 by MK2 increases PFK-2 activity. Taken together, the results of the present study suggest a multimodal mechanism of stress stimuli affecting PFKFB3 transcriptional regulation and kinase activation by protein phosphorylation, resulting in an increase in Fru-2,6-P2 concentration and stimulation of glycolysis in cancer cells.

Olajide OA, Bhatia HS, de Oliveira AC, et al.
Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: possible involvement of NF-κB and p38 MAPK inhibition.
Eur J Med Chem. 2013; 63:333-9 [PubMed] Related Publications
Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C. sanguinolenta (CSE) and cryptolepine (CAS) on neuroinflammation induced with IL-1β in SK-N-SH neuroblastoma cells. We then attempted to elucidate the mechanisms underlying the anti-neuroinflammatory effects of CAS in SK-N-SH cells. Cells were stimulated with 10 U/ml of IL-1β in the presence or absence of different concentrations of CSE (25-200 μg/ml) and CAS (2.5-20 μM). After 24 h incubation, culture media were collected to measure the production of PGE2 and the pro-inflammatory cytokines (TNFα and IL-6). Protein and gene expressions of cyclooxygenase (COX-2) and microsomal prostaglandin synthase-1 (mPGES-1) were studied by immunoblotting and qPCR, respectively. CSE produced significant (p < 0.05) inhibition of TNFα, IL-6 and PGE2 production in SK-N-SH cells. Studies on CAS showed significant and dose-dependent inhibition of TNFα, IL-6 and PGE2 production in IL-1β-stimulated cells without affecting viability. Pre-treatment with CAS (10 and 20 μM) was also found to inhibit IL-1β-induced protein and gene expressions of COX-2 and mPGES-1. Further studies to determine the mechanism of action of CAS showed inhibition of NF-κBp65 nuclear translocation, but not IκB phosphorylation. At 10 and 20 μM, CAS inhibited IL-1β-induced phosphorylation of p38 MAPK. Studies on the downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK2) showed that CAS produced significant (p < 0.05) and dose dependent inhibition of MAPKAPK2 phosphorylation in IL-1β-stimulated SK-N-SH cells. This study clearly shows that cryptolepine (CAS) inhibits neuroinflammation through mechanisms involving inhibition of COX-2 and mPGES-1. It is suggested that these actions are probably mediated through NF-κB and p38 signalling.

Tate CM, Blosser W, Wyss L, et al.
LY2228820 dimesylate, a selective inhibitor of p38 mitogen-activated protein kinase, reduces angiogenic endothelial cord formation in vitro and in vivo.
J Biol Chem. 2013; 288(9):6743-53 [PubMed] Free Access to Full Article Related Publications
LY2228820 dimesylate is a highly selective small molecule inhibitor of p38α and p38β mitogen-activated protein kinases (MAPKs) that is currently under clinical investigation for human malignancies. p38 MAPK is implicated in a wide range of biological processes, in particular those that support tumorigenesis. One such process, angiogenesis, is required for tumor growth and metastasis, and many new cancer therapies are therefore directed against the tumor vasculature. Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, we investigated the role of p38 MAPK in growth factor- and tumor-driven angiogenesis using LY2228820 dimesylate treatment and by shRNA gene knockdown. p38 MAPK was activated in endothelial cells upon growth factor stimulation, with inhibition by LY2228820 dimesylate treatment causing a significant decrease in VEGF-, bFGF-, EGF-, and IL-6-induced endothelial cord formation and an even more dramatic decrease in tumor-driven cord formation. In addition to involvement in downstream cytokine signaling, p38 MAPK was important for VEGF, bFGF, EGF, IL-6, and other proangiogenic cytokine secretion in stromal and tumor cells. LY2228820 dimesylate results were substantiated using p38α MAPK-specific shRNA and shRNA against the downstream p38 MAPK effectors MAPKAPK-2 and HSP27. Using in vivo models of functional neoangiogenesis, LY2228820 dimesylate treatment reduced hemoglobin content in a plug assay and decreased VEGF-A-stimulated vascularization in a mouse ear model. Thus, p38α MAPK is implicated in tumor angiogenesis through direct tumoral effects and through reduction of proangiogenic cytokine secretion via the microenvironment.

Lin SP, Lee YT, Wang JY, et al.
Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27.
PLoS One. 2012; 7(11):e49605 [PubMed] Free Access to Full Article Related Publications
Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133- cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133- cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133- cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.

Forthun RB, Sengupta T, Skjeldam HK, et al.
Cross-species functional genomic analysis identifies resistance genes of the histone deacetylase inhibitor valproic acid.
PLoS One. 2012; 7(11):e48992 [PubMed] Free Access to Full Article Related Publications
The mechanisms of successful epigenetic reprogramming in cancer are not well characterized as they involve coordinated removal of repressive marks and deposition of activating marks by a large number of histone and DNA modification enzymes. Here, we have used a cross-species functional genomic approach to identify conserved genetic interactions to improve therapeutic effect of the histone deacetylase inhibitor (HDACi) valproic acid, which increases survival in more than 20% of patients with advanced acute myeloid leukemia (AML). Using a bidirectional synthetic lethality screen revealing genes that increased or decreased VPA sensitivity in C. elegans, we identified novel conserved sensitizers and synthetic lethal interactors of VPA. One sensitizer identified as a conserved determinant of therapeutic success of HDACi was UTX (KDM6A), which demonstrates a functional relationship between protein acetylation and lysine-specific methylation. The synthetic lethal screen identified resistance programs that compensated for the HDACi-induced global hyper-acetylation, and confirmed MAPKAPK2, HSP90AA1, HSP90AB1 and ACTB as conserved hubs in a resistance program for HDACi that are drugable in human AML cell lines. Hence, these resistance hubs represent promising novel targets for refinement of combinatorial epigenetic anti-cancer therapy.

Höpker K, Hagmann H, Khurshid S, et al.
AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis.
EMBO J. 2012; 31(20):3961-75 [PubMed] Free Access to Full Article Related Publications
Following genotoxic stress, cells activate a complex signalling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumour suppressor p53 lies at the heart of this DNA damage response. However, it remains incompletely understood, which signalling molecules dictate the choice between these different cellular outcomes. Here, we identify the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 as a critical regulator of the cellular outcome of the p53 response. Upon genotoxic stress, AATF is phosphorylated by the checkpoint kinase MK2. Phosphorylation results in the release of AATF from cytoplasmic MRLC3 and subsequent nuclear translocation where AATF binds to the PUMA, BAX and BAK promoter regions to repress p53-driven expression of these pro-apoptotic genes. In xenograft experiments, mice exhibit a dramatically enhanced response of AATF-depleted tumours following genotoxic chemotherapy with adriamycin. The exogenous expression of a phospho-mimicking AATF point mutant results in marked adriamycin resistance in vivo. Nuclear AATF enrichment appears to be selected for in p53-proficient endometrial cancers. Furthermore, focal copy number gains at the AATF locus in neuroblastoma, which is known to be almost exclusively p53-proficient, correlate with an adverse prognosis and reduced overall survival. These data identify the p38/MK2/AATF signalling module as a critical repressor of p53-driven apoptosis and commend this pathway as a target for DNA damage-sensitizing therapeutic regimens.

Liu B, Yang L, Huang B, et al.
A functional copy-number variation in MAPKAPK2 predicts risk and prognosis of lung cancer.
Am J Hum Genet. 2012; 91(2):384-90 [PubMed] Free Access to Full Article Related Publications
Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) may promote cancer development and progression by inducing tumorigenesis and drug resistance. To assess whether the copy-number variation g.CNV-30450 located in the MAPKAPK2 promoter has any effect on lung cancer risk or prognosis, we investigated the association between g.CNV-30450 and cancer risk in three independent case-control studies of 2,332 individuals with lung cancer and 2,457 controls and the effects of g.CNV-30450 on cancer prognosis in 1,137 individuals with lung cancer with survival data in southern and eastern Chinese populations. We found that those subjects who had four copies of g.CNV-30450 had an increased cancer risk (odds ratio = 1.94, 95% confidence interval [CI] = 1.61-2.35) and a worse prognosis for individuals with lung cancer (with a median survival time of only 9 months) (hazard ratio = 1.47, 95% CI = 1.22-1.78) compared with those with two or three copies (with a median survival time of 14 months). Meanwhile, four copies of g.CNV-30450 significantly increased MAPKAPK2 expression, both in vitro and in vivo, compared with two or three copies. Our study establishes a robust association between the functional g.CNV-30450 in MAPKAPK2 and risk as well as prognosis of lung cancer, and it presents this functional copy-number variation as a potential biomarker for susceptibility to and prognosis for lung cancer.

Daemen A, Wolf DM, Korkola JE, et al.
Cross-platform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib.
Breast Cancer Res Treat. 2012; 135(2):505-17 [PubMed] Free Access to Full Article Related Publications
Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in DNA repair. PARP inhibitors can act as chemosensitizers, or operate on the principle of synthetic lethality when used as single agent. Clinical trials have shown drugs in this class to be promising for BRCA mutation carriers. We postulated that inability to demonstrate response in non-BRCA carriers in which BRCA is inactivated by other mechanisms or with deficiency in homologous recombination for DNA repair is due to lack of molecular markers that define a responding subpopulation. We identified candidate markers for this purpose for olaparib (AstraZeneca) by measuring inhibitory effects of nine concentrations of olaparib in 22 breast cancer cell lines and identifying features in transcriptional and genome copy number profiles that were significantly correlated with response. We emphasized in this discovery process genes involved in DNA repair. We found that the cell lines that were sensitive to olaparib had a significant lower copy number of BRCA1 compared to the resistant cell lines (p value 0.012). In addition, we discovered seven genes from DNA repair pathways whose transcriptional levels were associated with response. These included five genes (BRCA1, MRE11A, NBS1, TDG, and XPA) whose transcript levels were associated with resistance and two genes (CHEK2 and MK2) whose transcript levels were associated with sensitivity. We developed an algorithm to predict response using the seven-gene transcription levels and applied it to 1,846 invasive breast cancer samples from 8 U133A/plus 2 (Affymetrix) data sets and found that 8-21 % of patients would be predicted to be responsive to olaparib. A similar response frequency was predicted in 536 samples analyzed on an Agilent platform. Importantly, tumors predicted to respond were enriched in basal subtype tumors. Our studies support clinical evaluation of the utility of our seven-gene signature as a predictor of response to olaparib.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAPKAPK2, Cancer Genetics Web: http://www.cancer-genetics.org/MAPKAPK2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999