Gene Summary

Gene:MAD2L1; mitotic arrest deficient 2 like 1
Aliases: MAD2, HSMAD2
Summary:MAD2L1 is a component of the mitotic spindle assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate. MAD2L1 is related to the MAD2L2 gene located on chromosome 1. A MAD2 pseudogene has been mapped to chromosome 14. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:mitotic spindle assembly checkpoint protein MAD2A
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (24)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • siRNA
  • Stomach Cancer
  • Cell Cycle
  • Chromosome 4
  • Ubiquitin-Protein Ligases
  • Mad2 Proteins
  • Down-Regulation
  • Liver Cancer
  • Cancer Gene Expression Regulation
  • Messenger RNA
  • Spindle Apparatus
  • Aneuploidy
  • M Phase Cell Cycle Checkpoints
  • Gene Expression Profiling
  • Chromosomal Instability
  • Apoptosis
  • World Health Organization
  • Mitosis
  • Cell Proliferation
  • Nuclear Proteins
  • Transfection
  • Signal Transduction
  • Thyroid Cancer
  • Hepatocellular Carcinoma
  • Cell Cycle Proteins
  • Biomarkers, Tumor
  • Ultraviolet Rays
  • HeLa Cells
  • Bladder Cancer
  • Protein-Serine-Threonine Kinases
  • Secretory Leukocyte Peptidase Inhibitor
  • Transcriptional Activation
  • Protein Kinases
  • Calcium-Binding Proteins
  • Neoplastic Cell Transformation
  • Neoplasm Proteins
  • Lung Cancer
  • Repressor Proteins
  • Breast Cancer
  • Sex Factors
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAD2L1 (cancer-related)

Xiang Y, Zhang L, Huang Y, et al.
Microarray-based data mining reveals key genes and potential therapeutic drugs for Cadmium-induced prostate cell malignant transformation.
Environ Toxicol Pharmacol. 2019; 68:141-147 [PubMed] Related Publications
Increasing evidence showed that Cadmium (Cd) can accumulate in the body and damage cells, resulting in cancerigenesis of the prostate with complex mechanisms. In the present study, we aimed to explore the possible key genes, pathways and therapeutic drugs using bioinformatics methods. Microarray-based data were retrieved and analyzed to screen differentially expressed genes (DEGs) between Cd-treated prostate cells and controls. Then, functions of the DEGs were annotated and hub genes were screened. Next, key genes were selected from the hub genes via validation in a prostate cancer cohort from The Cancer Genome Atlas (TCGA). Afterward, potential drugs were further predicted. Consequently, a gene expression profile, GSE9951, was retrieved. Then, 361 up-regulated and 30 down-regulated DEGs were screened out, which were enriched in various pathways. Among the DEGs, seven hub genes (HSPA5, HSP90AB1, RHOA, HSPD1, MAD2L1, SKP2, and CCT2) were dysregulated in prostate cancer compared to normal controls, and two of them (HSPD1 and CCT2) might influence the prostate cancer prognosis. Lastly, ionomycin was predicted to be a potential agent reversing Cd-induced prostate cell malignant transformation. In summary, the present study provided novel evidence regarding the mechanisms of Cd-induced prostate cell malignant transformation, and identified ionomycin as a potential small molecule against Cd toxicity.

Gu C, Luo J, Lu X, et al.
REV7 confers radioresistance of esophagus squamous cell carcinoma by recruiting PRDX2.
Cancer Sci. 2019; 110(3):962-972 [PubMed] Free Access to Full Article Related Publications
Radiotherapy has been widely used for the clinical management of esophageal squamous cell carcinoma. However, radioresistance remains a serious concern that prevents the efficacy of esophageal squamous cell carcinoma (ESCC) radiotherapy. REV7, the structural subunit of eukaryotic DNA polymerase ζ, has multiple functions in bypassing DNA damage and modulating mitotic arrest in human cell lines. However, the expression and molecular function of REV7 in ESCC progression remains unclear. In this study, we first examined the expression of REV7 in clinical ESCC samples, and we found higher expression of REV7 in ESCC tissues compared to matched adjacent or normal tissues. Knockdown of REV7 resulted in decreased colony formation and increased apoptosis in irradiated Eca-109 and TE-1 cells coupled with decreased tumor weight in a xenograft nude mouse model postirradiation. Conversely, overexpression of REV7 resulted in radioresistance in vitro and in vivo. Moreover, silencing of REV7 induced increased reactive oxygen species levels postirradiation. Proteomic analysis of REV7-interacting proteins revealed that REV7 interacted with peroxiredoxin 2 (PRDX2), a well-known antioxidant protein. Existence of REV7-PRDX2 complex and its augmentation postirradiation were further validated by immunoprecipitation and immunofluorescence assays. REV7 knockdown significantly disrupted the presence of nuclear PRDX2 postirradiation, which resulted in oxidative stress. REV7-PRDX2 complex also assembled onto DNA double-strand breaks, whereas REV7 knockdown evidently increased double-strand breaks that were unmerged by PRDX2. Taken together, the present study sheds light on REV7-modulated radiosensitivity through interacting with PRDX2, which provides a novel target for ESCC radiotherapy.

Bashanfer SAA, Saleem M, Heidenreich O, et al.
Disruption of MAPK1 expression in the ERK signalling pathway and the RUNX1‑RUNX1T1 fusion gene attenuate the differentiation and proliferation and induces the growth arrest in t(8;21) leukaemia cells.
Oncol Rep. 2019; 41(3):2027-2040 [PubMed] Related Publications
The t(8;21) translocation is one of the most frequent chromosome abnormalities associated with acute myeloid leukaemia (AML). This abberation deregulates numerous molecular pathways including the ERK signalling pathway among others. Therefore, the aim of the present study was to investigate the gene expression patterns following siRNA‑mediated suppression of RUNX1‑RUNX1T1 and MAPK1 in Kasumi‑1 and SKNO‑1 cells and to determine the differentially expressed genes in enriched biological pathways. BeadChip microarray and gene ontology analysis revealed that RUNX1‑RUNX1T1 and MAPK1 suppression reduced the proliferation rate of the t(8;21) cells with deregulated expression of several classical positive regulator genes that are otherwise known to enhance cell proliferation. RUNX1‑RUNX1T1 suppression exerted an anti‑apoptotic effect through the overexpression of BCL2, BIRC3 and CFLAR genes, while MAPK1 suppression induced apopotosis in t(8;21) cells by the apoptotic mitochondrial changes stimulated by the activity of upregulated TP53 and TNFSF10, and downregulated JUN gene. RUNX1‑RUNX1T1 suppression supported myeloid differentiation by the differential expression of CEBPA, CEBPE, ID2, JMJD6, IKZF1, CBFB, KIT and CDK6, while MAPK1 depletion inhibited the differentiation of t(8;21) cells by elevated expression of ADA and downregulation of JUN. RUNX1‑RUNX1T1 and MAPK1 depletion induced cell cycle arrest at the G0/G1 phase. Accumulation of cells in the G1 phase was largely the result of downregulated expression of TBRG4, CCNE2, FOXO4, CDK6, ING4, IL8, MAD2L1 and CCNG2 in the case of RUNX1‑RUNX1T1 depletion and increased expression of RASSF1, FBXO6, DADD45A and P53 in the case of MAPK1 depletion. Taken together, the current results demonstrate that MAPK1 promotes myeloid cell proliferation and differentiation simultaneously by cell cycle progression while suppresing apoptosis.

Guo X, Dai X, Ni J, et al.
Geraniin Differentially Modulates Chromosome Stability of Colon Cancer and Noncancerous Cells by Oppositely Regulating their Spindle Assembly Checkpoint.
Environ Mol Mutagen. 2019; 60(3):254-268 [PubMed] Related Publications
Geraniin has been reported to specifically induce apoptosis in multiple human cancers, but the underlying mechanism is poorly defined. The spindle assembly checkpoint (SAC) is a surveillance system to ensure high-fidelity chromosome segregation during mitosis. Weakening of SAC to enhance chromosome instability (CIN) can be therapeutic because very high levels of CIN are lethal. In this study, we have investigated the effects of geraniin on the SAC of colorectal cancer HCT116 cells and noncancerous colon epithelial CCD841 cells. We find that treatment of HCT116 cells with geraniin leads to dose-dependent decrease of cell proliferation, colony formation, and anchorage-independent growth. Geraniin is found to induce apoptosis in mitotic and postmitotic HCT116 cells. Furthermore, geraniin weakens the SAC function of HCT116 cells by decreasing the transcriptional expression of several SAC kinases (particularly Mad2 and Bub1), which in turn leads to premature anaphase entry, mitotic aberrations, and CIN in HCT116 cells. In contrast, the proliferation of CCD841 cells is slightly inhibited by geraniin. Even more interestingly, geraniin increases the transcriptional expression of several SAC kinases (e.g., Mad1 and BubR1) to strengthen SAC efficiency, which contributes to the reduction of mitotic aberrations and CIN in CCD841 cells. Altogether, our findings reveal that the SAC pathway in human colon cancer and noncancerous cell lineages responses oppositely to geraniin treatment, resulting CIN promotion and suppression, respectively. Specific abrogation of SAC to induce catastrophic CIN in HCT116 cells may account for the selective anticancer action of geraniin.. Environ. Mol. Mutagen. 60:254-268, 2019. © 2018 Wiley Periodicals, Inc.

Zhuang L, Yang Z, Meng Z
Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in Tumor Tissues Predicted Worse Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma Patients.
Biomed Res Int. 2018; 2018:7897346 [PubMed] Free Access to Full Article Related Publications
Objective: To evaluate the association between upregulated differentially expressed genes (DEGs) and the outcomes of patients with hepatocellular carcinoma (HCC).
Methods: Using Gene Expression Omnibus (GEO) datasets including GSE45436, GSE55092, GSE60502, GSE84402, and GSE17548, we detected upregulated DEGs in tumors. KEGG, GO, and Reactome enrichment analysis of the DEGs was conducted to clarify their function. The impact of the upregulated DEGs on patients' survival was analyzed based on TCGA profile.
Results: 161 shared upregulated DEGs were identified among GSE45436, GSE55092, GSE60502, and GSE84402 profiles. Cell cycle was the shared pathway/biological process in the gene sets investigation among databases of KEGG, GO, and Reactome. After being validated in GSE17548, 13 genes including BUB1B, CCNA2, CCNB1, CCNE2, CDC20, CDC6, CDC7, CDK1, CDK4, CDKN2A, CHEK1, MAD2L1, and MCM3 in cell cycle pathway were shared in the three databases for enrichment. The expression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 was upregulated in HCC tissues when compared with adjacent normal tissues in 6.67%, 7.5%, 8.06%, 5.56%, and 9.72% of HCC patients, respectively. Overexpression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues accounted for poorer overall survival (OS) and disease-free survival (DFS) in HCC patients (all log rank
Conclusion: Correlated with advanced histologic grade and/or vascular invasion, upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues predicted worse OS and DFS in HCC patients. These genes could be novel therapeutic targets for HCC treatment.

Wu Y, Tan L, Chen J, et al.
MAD2 Combined with Mitotic Spindle Apparatus (MSA) and Anticentromere Antibody (ACA) for Diagnosis of Small Cell Lung Cancer (SCLC).
Med Sci Monit. 2018; 24:7541-7547 [PubMed] Free Access to Full Article Related Publications
BACKGROUND MAD2 is the gene controlling mitosis. Many studies have assessed MAD2 in various types of carcinoma. Antinuclear mitotic spindle apparatus antibody (MSA) and anticentromere antibody (ACA) are related mitotic antibodies, playing roles in autoimmune diseases and carcinomas, but the expression of MAD2, MSA, and ACA in SCLC is unclear. MATERIAL AND METHODS We enrolled 70 SCLC patients, 72 non-small cell lung cancer (NSCLC) patients, and 65 pulmonary nodule (PN) patients. MAD2 expression was measured through agarose electrophoresis and qt-PCR. Antinuclear mitotic spindle apparatus antibody (MSA) and anticentromere antibody (ACA) were detected by indirect immunofluorescence (IIF). RESULTS MAD2 was found both in SCLC and NSCLC. Interestingly, there was a significant difference found between SCLC and NSCLC using qt-PCR (P<0.05). The area under the ROC curve of MAD2 expression was 0.799, with medium diagnostic value. MAD2 expression was related to age, lymphatic metastasis, and survival time, but not with sex. The positivity for MSA and ACA by IIF assay were 37.20% and 34.00%, respectively, in the SCLC group, which were higher than in the NSCLC and pulmonary nodule groups (P<0.05). The kappa values of MSA and ACA with MAD2 expression were 0.73 and 0.65, respectively, with moderate consistency. Combining MAD2 with MSA and ACA enhanced the sensitivity and specificity for diagnosing SCLC. CONCLUSIONS MAD2 expression was found to be involved in carcinogenesis and prognosis of SCLC. The combination of MAD2 with MSA and ACA is useful for early diagnosis and shows promise in treatment of SCLC.

Gao X, Wang X, Zhang S
Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma.
Biosci Rep. 2018; 38(6) [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Up to date, HCC pathogenesis has not been fully understood. The aim of the present study was to identify crucial genes and pathways associated with HCC by bioinformatics methods. The differentially expressed genes (DEGs) between 14 HCC tissues and corresponding non-cancerous tissues were identified using limma package. Gene Ontology (GO) and KEGG pathway enrichment analysis of DEGs were performed by clusterProfiler package. The protein-protein interaction (PPI) network of DEGs was constructed and visualized by STRING database and Cytoscape software, respectively. The crucial genes in PPI network were identified using a Cytoscape plugin, CytoNCA. Furthermore, the effect of the expression level of the crucial genes on HCC patient survival was analyzed by an interactive web-portal, UALCAN. A total of 870 DEGs including 237 up-regulated and 633 down-regulated genes were identified in HCC tissues. KEGG pathway analysis revealed that DEGs were mainly enriched in complement and coagulation cascades pathway, chemical carcinogenesis pathway, retinol metabolism pathway, fatty acid degradation pathway, and valine, leucine and isoleucine degradation pathway. PPI network analysis showed that

Hu S, Liao Y, Chen L
Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis.
Med Sci Monit. 2018; 24:6438-6448 [PubMed] Free Access to Full Article Related Publications
BACKGROUND To provide a better understanding of anaplastic thyroid carcinoma (ATC) at the molecular level, this study aimed to identify the genes and key pathways associated with ATC by using integrated bioinformatics analysis. MATERIAL AND METHODS Based on the microarray data GSE9115, GSE65144, and GSE53072 derived from the Gene Expression Omnibus, the differentially expressed genes (DEGs) between ATC samples and normal controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein-protein interaction (PPI) network was constructed and visualized, with which the hub gene nodes were screened out. Finally, modules analysis for the PPI network was performed to further investigate the potential relationships between DEGs and ATC. RESULTS A total of 537 common DEGs were screened out from all 3 datasets, among which 247 genes were upregulated and 275 genes were downregulated. GO analysis indicated that upregulated DEGs were mainly involved in cell division and mitotic nuclear division and the downregulated DEGs were significantly enriched in ventricular cardiac muscle cell action potential. KEGG pathway analysis showed that the upregulated DEGs were mainly enriched in cell cycle and ECM-receptor interaction and the downregulated DEGs were mainly enriched in thyroid hormone synthesis, insulin resistance, and pathways in cancer. The top 10 hub genes in the constructed PPI network were CDK1, CCNB1, TOP2A, AURKB, CCNA2, BUB1, AURKA, CDC20, MAD2L1, and BUB1B. The modules analysis showed that genes in the top 2 significant modules of PPI network were mainly associated with mitotic cell cycle and positive regulation of mitosis, respectively. CONCLUSIONS We identified a series of key genes along with the pathways that were most closely related with ATC initiation and progression. Our results provide a more detailed molecular mechanism for the development of ATC, shedding light on the potential biomarkers and therapeutic targets.

Brough R, Gulati A, Haider S, et al.
Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer.
Oncogene. 2018; 37(43):5701-5718 [PubMed] Free Access to Full Article Related Publications
Although defects in the RB1 tumour suppressor are one of the more common driver alterations found in triple-negative breast cancer (TNBC), therapeutic approaches that exploit this have not been identified. By integrating molecular profiling data with data from multiple genetic perturbation screens, we identified candidate synthetic lethal (SL) interactions associated with RB1 defects in TNBC. We refined this analysis by identifying the highly penetrant effects, reasoning that these would be more robust in the face of molecular heterogeneity and would represent more promising therapeutic targets. A significant proportion of the highly penetrant RB1 SL effects involved proteins closely associated with RB1 function, suggesting that this might be a defining characteristic. These included nuclear pore complex components associated with the MAD2 spindle checkpoint protein, the kinase and bromodomain containing transcription factor TAF1, and multiple components of the SCF

Tomida J, Takata KI, Bhetawal S, et al.
FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells.
EMBO J. 2018; 37(12) [PubMed] Free Access to Full Article Related Publications
To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double-strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non-homologous end-joining. We searched for REV7-associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N-terminal region and a C-terminal region harboring three OB-fold domains similar to single-stranded DNA-binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re-localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA-damaging agents. In a BRCA1-mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1-mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.

Wen DY, Lin P, Pang YY, et al.
Expression of the Long Intergenic Non-Protein Coding RNA 665 (LINC00665) Gene and the Cell Cycle in Hepatocellular Carcinoma Using The Cancer Genome Atlas, the Gene Expression Omnibus, and Quantitative Real-Time Polymerase Chain Reaction.
Med Sci Monit. 2018; 24:2786-2808 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Long non-coding RNAs (lncRNAs) have a role in physiological and pathological processes, including cancer. The aim of this study was to investigate the expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma (HCC) using database analysis including The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and quantitative real-time polymerase chain reaction (qPCR). MATERIAL AND METHODS Expression levels of LINC00665 were compared between human tissue samples of HCC and adjacent normal liver, clinicopathological correlations were made using TCGA and the GEO, and qPCR was performed to validate the findings. Other public databases were searched for other genes associated with LINC00665 expression, including The Atlas of Noncoding RNAs in Cancer (TANRIC), the Multi Experiment Matrix (MEM), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) networks. RESULTS Overexpression of LINC00665 in patients with HCC was significantly associated with gender, tumor grade, stage, and tumor cell type. Overexpression of LINC00665 in patients with HCC was significantly associated with overall survival (OS) (HR=1.47795%; CI: 1.046-2.086). Bioinformatics analysis identified 469 related genes and further analysis supported a hypothesis that LINC00665 regulates pathways in the cell cycle to facilitate the development and progression of HCC through ten identified core genes: CDK1, BUB1B, BUB1, PLK1, CCNB2, CCNB1, CDC20, ESPL1, MAD2L1, and CCNA2. CONCLUSIONS Overexpression of the lncRNA, LINC00665 may be involved in the regulation of cell cycle pathways in HCC through ten identified hub genes.

Shen H, Wang W, Ni B, et al.
Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays.
Int J Mol Med. 2018; 42(1):21-30 [PubMed] Free Access to Full Article Related Publications
Osteosarcoma (OS) is the most frequently occurring primary bone malignancy with a rapid progression and poor survival. In the present study, in order to examine the molecular mechanisms of OS, we analyzed the microarray of GSE28425. GSE28425 was downloaded from Gene Expression Omnibus, which also included the miRNA expression profile, GSE28423, and the mRNA expression profile, GSE28424. Each of the expression profiles included 19 OS cell lines and 4 normal bones. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DE-miRNAs) were screened using the limma package in Bioconductor. The DEGs associated with tumors were screened and annotated. Subsequently, the potential functions of the DEGs were analyzed by Gene Ontology (GO) and pathway enrichment analyses. Furthermore, the protein-protein interaction (PPI) network was constructed using the STRING database and Cytoscape software. Furthermore, modules of the PPI network were screened using the ClusterOne plugin in Cytoscape. Additionally, the transcription factor (TF)-DEG regulatory network, DE-miRNA-DEG regulatory network and miRNA-function collaborative network were separately constructed to obtain key DEGs and DE-miRNAs. In total, 1,609 DEGs and 149 DE-miRNAs were screened. Upregulated FOS-like antigen 1 (FOSL1) also had the function of an oncogene. MAD2 mitotic arrest deficient-like 1 (MAD2L1; degree, 65) and aurora kinase A (AURKA; degree, 64) had higher degrees in the PPI network of the DEGs. In the TF-DEG regulatory network, the TF, signal transducer and activator of transcription 3 (STAT3) targeted the most DEGs. Moreover, in the DE-miRNA-DEG regulatory network, downregulated miR‑1 targeted many DEGs and estrogen receptor 1 (ESR1) was targeted by several highly expressed miRNAs. Moreover, in the miRNA-function collaborative networks of upregulated miRNAs, miR‑128 targeted myeloid dendritic associated functions. On the whole, our data indicate that MAD2L1, AURKA, STAT3, ESR1, FOSL1, miR‑1 and miR‑128 may play a role in the development and/or progressio of OS.

Shi G, Wang Y, Zhang C, et al.
Identification of genes involved in the four stages of colorectal cancer: Gene expression profiling.
Mol Cell Probes. 2018; 37:39-47 [PubMed] Related Publications
BACKGROUND: Colorectal cancer (CRC) is a common cancer with high morbidity and mortality. However, its molecular mechanism is not clear, nor the genes related to CRC stages.
METHODS: Gene expression data in CRC and healthy colorectal tissues were obtained from gene expression omnibus. Limma package was used to identify the differentially expressed genes (DEGs) between control and CRC (stage I, II, III, and IV), obtaining 4 DEG sets. VennPlex was utilized to find all DEGs and intersection DEGs. Functional interactions between all DEGs and protein-protein interactions (PPIs) between intersection DEGs were analyzed using ReactomeFIViz and STRING, respectively, and networks were visualized. Known CRC-related genes were down-loaded from Comparative Toxicogenomics Database and mapped to PPI network.
RESULTS: Totally, 851, 760, 729, and 878 DEGs were found between control and CRC stage I, II, III, and IV, respectively. Taken together, 1235 DEGs were found, as well as 128 up-regulated intersection DEGs, 365 down-regulated intersection DEGs, and 0 contra-regulated DEG. A functional interaction network of all DEGs and a PPI network of intersection DEGs were constructed, in which CDC20, PTTG1, and MAD2L1 interacted with BUB1B; UGT2B17 interacted with ADH1B; MCM7 interacted with MCM2. BUB1B, ADH1B, and MCM2 were known CRC-related genes. Gradually upregulated expressions of CDC20, PTTG1, MAD2L1, UGT2B17, and MCM7 in stage I, II, III, and IV CRC were confirmed by using quantitative PCR. Besides, up-regulated intersection DEGs enriched in pathways about Cell cycle, DNA replication, and p53 signaling.
CONCLUSION: CDC20, PTTG1, MAD2L1, UGT2B17, and MCM7 might be CRC stage-related genes.

Peng C, Yang Q, Wei B, et al.
Investigation of crucial genes and microRNAs in conventional osteosarcoma using gene expression profiling analysis.
Mol Med Rep. 2017; 16(5):7617-7624 [PubMed] Related Publications
The present study aimed to screen potential genes associated with conventional osteosarcoma (OS) and obtain further information on the pathogenesis of this disease. The microarray dataset GSE14359 was downloaded from the Gene Expression Omnibus. A total of 10 conventional OS samples and two non‑neoplastic primary osteoblast samples in the dataset were selected to identify the differentially expressed genes (DEGs) using the Linear Models for Microarray Data package. The potential functions of the DEGs were predicted using Gene Ontology (GO) and pathway enrichment analyses. Protein‑protein interaction (PPI) data were also obtained using the Search Tool for the Retrieval of Interacting Genes database, and the PPI network was visualized using Cytoscape. Module analysis was then performed using the Molecular Complex Detection module. Additionally, the potential microRNAs (miRNAs) for the upregulated DEGs in the most significant pathway were predicted using the miRDB database, and the regulatory network for the miRNAs‑DEGs was visualized in Cytoscape. In total, 317 upregulated and 670 downregulated DEGs were screened. Certain DEGs, including cyclin‑dependent kinase 1 (CDK1), mitotic arrest deficient 2 like 1 (MAD2L1) and BUB1 mitotic checkpoint serine/threonine‑protein kinase (BUB1), were significantly enriched in the cell cycle phase and oocyte meiosis pathway. DEGs, including replication factor C subunit 2 (RFC2), RFC3, RFC4 and RFC5, were significantly enriched in DNA replication and interacted with each other. RFC4 also interacted with other DEGs, including CDK1, MAD2L1, NDC80 kinetochore complex and BUB1. In addition, RFC4, RFC3 and RFC5 were targeted by miRNA (miR)‑802, miR‑224‑3p and miR‑522‑3p. The DEGs encoding RFC may be important for the development of conventional OS, and their expression may be regulated by a number of miRNAs, including miR‑802, miR‑224‑3p and miR‑522‑3p.

Sun M, Tong P, Kong W, et al.
HNF1B Loss Exacerbates the Development of Chromophobe Renal Cell Carcinomas.
Cancer Res. 2017; 77(19):5313-5326 [PubMed] Free Access to Full Article Related Publications
Chromophobe renal cell carcinoma (ChRCC) is characterized by major changes in chromosomal copy number (CN). No model is available to precisely elucidate the molecular drivers of this tumor type. HNF1B is a master regulator of gene expression. Here, we report that the transcription factor HNF1B is downregulated in the majority of ChRCC and that the magnitude of

Sisinni L, Maddalena F, Condelli V, et al.
TRAP1 controls cell cycle G2-M transition through the regulation of CDK1 and MAD2 expression/ubiquitination.
J Pathol. 2017; 243(1):123-134 [PubMed] Related Publications
Regulation of tumour cell proliferation by molecular chaperones is still a complex issue. Here, the role of the HSP90 molecular chaperone TRAP1 in cell cycle regulation was investigated in a wide range of human breast, colorectal, and lung carcinoma cell lines, and tumour specimens. TRAP1 modulates the expression and/or the ubiquitination of key cell cycle regulators through a dual mechanism: (i) transcriptional regulation of CDK1, CYCLIN B1, and MAD2, as suggested by gene expression profiling of TRAP1-silenced breast carcinoma cells; and (ii) post-transcriptional quality control of CDK1 and MAD2, being the ubiquitination of these two proteins enhanced upon TRAP1 down-regulation. Mechanistically, TRAP1 quality control on CDK1 is crucial for its regulation of mitotic entry, since TRAP1 interacts with CDK1 and prevents CDK1 ubiquitination in cooperation with the proteasome regulatory particle TBP7, this representing the limiting factor in TRAP1 regulation of the G2-M transition. Indeed, TRAP1 silencing results in enhanced CDK1 ubiquitination, lack of nuclear translocation of CDK1/cyclin B1 complex, and increased MAD2 degradation, whereas CDK1 forced up-regulation partially rescues low cyclin B1 and MAD2 levels and G2-M transit in a TRAP1-poor background. Consistently, the CDK1 inhibitor RO-3306 is less active in a TRAP1-high background. Finally, a significant correlation was observed between TRAP1 and Ki67, CDK1 and/or MAD2 expression in breast, colorectal, and lung human tumour specimens. This study represents the first evidence that TRAP1 is relevant in the control of the complex machinery that governs cell cycle progression and mitotic entry and provides a strong rationale to regard TRAP1 as a biomarker to select tumours with deregulated cell cycle progression and thus likely poorly responsive to novel cell cycle inhibitors. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Li Y, Bai W, Zhang J
MiR-200c-5p suppresses proliferation and metastasis of human hepatocellular carcinoma (HCC) via suppressing MAD2L1.
Biomed Pharmacother. 2017; 92:1038-1044 [PubMed] Related Publications
OBJECTIVE: To explore the biological functions of miR-200c-5p/MAD2L1 axis on the proliferation and metastasis of human hepatocellular carcinoma (HCC) cells.
METHODS: The expression levels of miR-200c-5p and MAD2L1 in HCC tissues, adjacent tissues as well as HCC cell lines were detected by RT-qPCR or Western blot. The interaction between miR-200c-5p and MAD2L1 was verified by dual luciferase reporter gene system. Transfection was performed to manipulate the expression of miR-200c-5p and MAD2L1 in HCCLM3 cells. Colony formation, MTT, wound healing and Transwell assays were applied to measure the cell proliferation, migration and invasion of HCC, besides, flow cytometry analysis was also conducted to evaluate HCC cell cycle and apoptosis.
RESULTS: Low expression of miR-200c-5p and remarkable overexpression of MAD2L1 was uncovered in HCC tissues and cells compared with the normal. The aberrant expression of miR-200c-5p and MAD2L1 was correlated with tumor stage, adjacent organ invasion and prognosis. Direct target relationship between miR-200c-5p and MAD2L1 was confirmed by dual luciferase reporting assay. Up-regulation of miR-200c-5p downregulated MAD2L1 and suppressed the proliferation, migration, invasion and induced apoptosis and cell cycle arrest of HCC cells. Moreover, MAD2L1 promoted HCC cell viabilities and co-transfection of MAD2L1 restored the anti-tumor effects of miR-200c-5p overexpression.
CONCLUSION: Replenishing of miR-200c-5p inhibited the proliferation, migration and invasion of HCC cells by suppressing MAD2L1. MiR-200c-5p can serve as a prognostic indicator and a promising therapeutic target for HCC patients.

Marks DH, Thomas R, Chin Y, et al.
Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit.
Cell Rep. 2017; 19(9):1832-1845 [PubMed] Free Access to Full Article Related Publications
The mitotic checkpoint ensures proper segregation of chromosomes by delaying anaphase until all kinetochores are bound to microtubules. This inhibitory signal is composed of a complex containing Mad2, which inhibits anaphase progression. The complex can be disassembled by p31

Bhat A, Qin Z, Wang G, et al.
Rev7, the regulatory subunit of Polζ, undergoes UV-induced and Cul4-dependent degradation.
FEBS J. 2017; 284(12):1790-1803 [PubMed] Related Publications
In eukaryotic cells, Rev7 interacts with Rev3 and functions as a regulatory subunit of Polζ, a translesion DNA synthesis (TLS) polymerase. In addition to its role in TLS, mammalian Rev7, also known as Mad2B/Mad2L2, participates in multiple cellular activities including cell cycle progression and double-strand break repair through its interaction with several proteins. Here we show that in mammalian cells, Rev7 undergoes ubiquitin/proteasome-mediated degradation upon UV irradiation in a time-dependent manner. We identified the Rev7 N-terminal destruction box as the degron and Cul4A/B as putative E3 ligases in this process. We also show that the nucleotide excision repair (NER) pathway protein HR23B physically interacts and colocalizes with Rev7 in the nuclear foci after UV irradiation and protects Rev7 from accelerated degradation. Furthermore, a similar Rev7 degradation profile was observed in cells treated with the UV-mimetic agent 4-nitroquinoline 1-oxide but not with cisplatin or camptothecin, suggesting a role of the NER pathway protein(s) in UV-induced Rev7 degradation. These data and the observation that cells deficient in Rev7 are sensitized to UV irradiation while excessive Rev7 protects cells from UV-induced DNA damage provide a new insight into the potential interplay between TLS and NER.

Yan H, Li Z, Shen Q, et al.
Aberrant expression of cell cycle and material metabolism related genes contributes to hepatocellular carcinoma occurrence.
Pathol Res Pract. 2017; 213(4):316-321 [PubMed] Related Publications
This study aims to deepen our understanding of the molecular mechanism underlying the occurrence of hepatocellular carcinoma (HCC). We first downloaded a gene expression profile dataset GSE29721 (10 HCC and 10 control samples) from Gene Expression Omnibus database ( Differentially expressed genes (DEGs) were identified by the paired t-test using limma package. Pathway and functional enrichment analyses were performed with DAVID tools. Transcription factors were annotated with TRANSFAC database and tumor associated genes (TAGs) were annotated with TAG and TSGene databases. Protein-protein interaction (PPI) network was conducted using STRING online tool and function module was further identified with BioNet package. Totally, 527 up-regulated DEGs and 587 down-regulated DEGs were identified. GO functional and KEGG pathway enrichment analyses showed that the up-regulated DEGs were mainly related to cell division and cell cycle, while the down-regulated DEGs were largely related to material metabolism, especially secondary metabolism. Proteins encoded by DEGs CDK1, BUB1, CDC20, NCAPG, NDC80, CDCA8, MAD2L1, CCNB1, CCNA2 and BIRC5 were hub genes with high degrees in the PPI network; further module analysis detected a subnetwork consisting of 55 proteins, such as CYP2B6, ACAA1, BHMT and ALDH2. Taken together, aberrant expression of cell cycle related genes (e.g., CDK1, CCNA2, CCNB1, BUB1, MAD2L1 and CDC20) and material metabolism related genes (e.g., CYP2B6, ACAA1, BHMT and ALDH2) may contribute to HCC occurrence.

Maddalena F, Simeon V, Vita G, et al.
TRAP1 protein signature predicts outcome in human metastatic colorectal carcinoma.
Oncotarget. 2017; 8(13):21229-21240 [PubMed] Free Access to Full Article Related Publications
TRAP1 is a HSP90 molecular chaperone upregulated in colorectal carcinomas and involved in control of intracellular signaling, cell cycle, apoptosis and drug resistance, stemness and bioenergetics through co-traslational regulation of a network of client proteins. Thus, the clinical significance of TRAP1 protein network was analyzed in human colorectal cancers. TRAP1 and/or its client proteins were quantified, by immunoblot analysis, in 60 surgical specimens of colorectal carcinomas at different stages and, by immunohistochemistry, in 9 colorectal adenomatous polyps, 11 in situ carcinomas and 55 metastatic colorectal tumors. TRAP1 is upregulated at the transition between low- and high-grade adenomas, in in situ carcinomas and in about 60% of human colorectal carcinomas, being downregulated only in a small cohort of tumors. The analysis of TCGA database showed that a subgroup of colorectal tumors is characterized by gain/loss of TRAP1 copy number, this correlating with its mRNA and protein expression. Interestingly, TRAP1 is co-expressed with the majority of its client proteins and hierarchical cluster analysis showed that the upregulation of TRAP1 and associated 6-protein signature (i.e., IF2α, eF1A, TBP7, MAD2, CDK1 and βCatenin) identifies a cohort of metastatic colorectal carcinomas with a significantly shorter overall survival (HR 5.4; 95% C.I. 1.1-26.6; p=0.037). Consistently, the prognostic relevance of TRAP1 was confirmed in a cohort of 55 metastatic colorectal tumors. Finally, TRAP1 positive expression and its prognostic value are more evident in left colon cancers. These data suggest that TRAP1 protein network may provide a prognostic signature in human metastatic colorectal carcinomas.

Tao Y, Yang G, Yang H, et al.
TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma.
Oncotarget. 2017; 8(16):26718-26731 [PubMed] Free Access to Full Article Related Publications
AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies.

Shi YX, Zhu T, Zou T, et al.
Prognostic and predictive values of CDK1 and MAD2L1 in lung adenocarcinoma.
Oncotarget. 2016; 7(51):85235-85243 [PubMed] Free Access to Full Article Related Publications
Lung cancer remains as the leading cause of cancer-related death worldwide, and lung adenocarcinoma (LUAD) is the most common histological subtype. This study aims to investigate biomarkers associated with cancer progression and prognosis of LUAD. We integrated expression profiles of 668 lung cancer patients in five datasets from the Gene Expression Omnibus (GEO) and identified a panel of differentially expressed genes (DEGs). Function enrichment analysis highlighted that these genes were closely associated with the carcinogenesis of LUAD, such as cell cycle, ECM-receptor interaction and p53 signaling pathway. Cyclin-dependent kinase 1 (CDK1) and MAD2 mitotic arrest deficient-like 1 (MAD2L1), two critical mitotic checkpoint genes, were selected for further study. Elevated expression of CDK1 and MAD2L1 was validated in an independent LUAD cohort. Kaplan-Meier analysis revealed that CDK1 and MAD2L1 expression was negatively correlated with both overall survival (OS) and relapse-free survival (RFS). In conclusion, CDK1 and MAD2L1 were adverse prognostic biomarkers for LUAD whose increased expression could render patients with LUAD a high risk of cancer recurrence and poor survival, suggesting that they might be applied as potential targets for LUAD treatment.

Nascimento AV, Singh A, Bousbaa H, et al.
Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles.
Acta Biomater. 2017; 47:71-80 [PubMed] Free Access to Full Article Related Publications
Efficiency of chemotherapy is often limited by low therapeutic index of the drug as well as emergence of inherent and acquired drug resistance in cancer cells. As a common strategy to overcome drug resistance, higher doses of chemo-agents are administered. However, adverse side effects are usually increased as a consequence. A potentially effective approach is to combine chemotherapy with other therapeutic strategies such as small interfering RNAs (siRNAs) that allow the use of lower yet efficient doses of the anticancer drugs. We previously developed epidermal growth factor receptor (EGFR)-targeted chitosan (CS) nanoparticles as a versatile delivery system for silencing the essential mitotic checkpoint gene Mad2, and induce cell death. Here, we tested this system as a single therapy and in combination with cisplatin in cisplatin sensitive and resistant lung cancer models, and characterized its in vivo efficacy and safety. Combination treatment resulted in significant improvement in tumor inhibition that was strikingly more effective in cisplatin-resistant tumors. Importantly, effective cisplatin dosage was dramatically reduced in the co-therapy regimen resulting in negligible toxic effects from the drug as confirmed by parameters such as body weight gain, biochemical markers of hepatic and renal function, and histopathology of liver/kidney/spleen tissues. Overall, we demonstrate that the combination of Mad2 siRNA-loaded CS nanoparticles strategy with chemotherapeutic agents such as cisplatin constitutes an efficient and safe approach for the treatment of drug resistant tumors.
STATEMENT OF SIGNIFICANCE: Lung cancer remains one of the leading killers in the United States and around the world. Platinum agents, including cisplatin, are the first line treatment in lung cancer, including non-small cell lung cancer (NSCLC), which is the predominant form of lung cancer. In this study, we have evaluated Mad2 cell-cycle checkpoint gene silencing using small interfering RNA (siRNA) delivered systemically using epidermal growth factor receptor-targeted chitosan nanoparticles in drug sensitive and resistant models of NSCLC. Our results show that Mad2 gene silencing using targeted chitosan nanoparticles has tremendous potential in overcoming platinum resistance in NSCLC.

Feng L, Wei W, Heng Z, et al.
Knockdown of REV7 Inhibits Breast Cancer Cell Migration and Invasion.
Oncol Res. 2016; 24(5):315-325 [PubMed] Related Publications
REV7 (also known as MAD2L2) is a multifunctional protein involved in DNA damage tolerance, cell cycle regulation, gene expression, and carcinogenesis. Although its expression is reportedly associated with poor prognosis in several kinds of human cancers, the significance of REV7 expression in breast malignancies is unclear. In this study, REV7 was found to be increased in breast cancer. We found that knockdown of REV7 inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of breast cancer cells. Meanwhile, overexpression of REV7 promoted the migration, invasion, and EMT of breast cancer cells. As shown by Western blot, knockdown of REV7 can promote TGF-β1 expression. Western blot analysis indicated that TGF-β1 may play a role as a downstream factor of REV7. Moreover, interference of TGF-β1 can also inhibit the cell's ability for migration, invasion, and EMT, as well as in a cell line whose REV7 is overexpressed. Taken together, these results contributed to a recognition of the oncogene functions of REV7 in breast cancer cells and provided a novel direction to treat breast cancer.

Jin X, Liu X, Li X, Guan Y
Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma.
Biomed Res Int. 2016; 2016:4369431 [PubMed] Free Access to Full Article Related Publications
Introduction. Lung adenocarcinoma (LAC) is the most frequent type of lung cancer and has a high metastatic rate at an early stage. This study is aimed at identifying LAC-associated genes. Materials and Methods. GSE62950 downloaded from Gene Expression Omnibus included a DNA methylation dataset and an mRNA expression profiles dataset, both of which included 28 LAC tissue samples and 28 adjacent normal tissue samples. The differentially expressed genes (DEGs) were screened by Limma package in R, and their functions were predicted by enrichment analysis using TargetMine online tool. Then, protein-protein interaction (PPI) network was constructed using STRING and Cytoscape. Finally, LAC-associated methylation sites were identified by CpGassoc package in R and mapped to the DEGs to obtain LAC-associated DEGs. Results. Total 913 DEGs were identified in LAC tissues. In the PPI networks, MAD2L1, AURKB, CCNB2, CDC20, and WNT3A had higher degrees, and the first four genes might be involved in LAC through interaction. Total 8856 LAC-associated methylation sites were identified and mapped to the DEGs. And there were 29 LAC-associated methylation sites located in 27 DEGs (e.g., SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3). Conclusions. These key genes might play a role in pathogenesis of LAC.

Aichem A, Groettrup M
The ubiquitin-like modifier FAT10 in cancer development.
Int J Biochem Cell Biol. 2016; 79:451-461 [PubMed] Related Publications
During the last years it has emerged that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 expression is highly up-regulated by pro-inflammatory cytokines IFN-γ and TNF-α in all cell types and tissues and it was also found to be up-regulated in many cancer types such as glioma, colorectal, liver or gastric cancer. While pro-inflammatory cytokines within the tumor microenvironment probably contribute to FAT10 overexpression, an increasing body of evidence argues that pro-malignant capacities of FAT10 itself largely underlie its broad and intense overexpression in tumor tissues. FAT10 thereby regulates pathways involved in cancer development such as the NF-κB- or Wnt-signaling. Moreover, FAT10 directly interacts with and influences downstream targets such as MAD2, p53 or β-catenin, leading to enhanced survival, proliferation, invasion and metastasis formation of cancer cells but also of non-malignant cells. In this review we will provide an overview of the regulation of FAT10 expression as well as its function in carcinogenesis.

Rowald K, Mantovan M, Passos J, et al.
Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth.
Cell Rep. 2016; 15(12):2679-91 [PubMed] Free Access to Full Article Related Publications
Chromosome instability (CIN) is associated with poor survival and therapeutic outcome in a number of malignancies. Despite this correlation, CIN can also lead to growth disadvantages. Here, we show that simultaneous overexpression of the mitotic checkpoint protein Mad2 with Kras(G12D) or Her2 in mammary glands of adult mice results in mitotic checkpoint overactivation and a delay in tumor onset. Time-lapse imaging of organotypic cultures and pathologic analysis prior to tumor establishment reveals error-prone mitosis, mitotic arrest, and cell death. Nonetheless, Mad2 expression persists and increases karyotype complexity in Kras tumors. Faced with the selective pressure of oncogene withdrawal, Mad2-positive tumors have a higher frequency of developing persistent subclones that avoid remission and continue to grow.

Chen F, Liu S, Zhou Y, et al.
Mad2 overexpression is associated with high cell proliferation and reduced disease-free survival in primary gastrointestinal diffuse large B-cell lymphoma.
Hematology. 2016; 21(7):399-403 [PubMed] Related Publications
OBJECTIVES: Primary gastrointestinal diffuse large B-cell lymphoma (PGI-DLBCL) is a rare hematological malignancy with limited results on carcinogenesis and clinical characteristics. The aims of the current study were to examine mitotic arrest deficiency protein 2 (Mad2) expressions in PGI-DLBCL, and assess its association with Ki-67 expression, Helicobacter pylori (H. pylori) infection, BCL-6 gene rearrangement, and clinicopathological variables.
METHODS: Cancer tissues from 38 PGI-DLBCL patients were examined for Mad2, Ki-67, and H. pylori expression by immunohistochemistry, using normal gastrointestinal tissues and nodal DLBCL as controls. BCL-6 gene translocation was analyzed by fluorescence in situ hybridization (FISH), and Mad2 expression status was evaluated along with clinicopathological characteristics.
RESULTS: Mad2 expression was increased in PGI-DLBCL patients when compared with controls. The expression of Mad2 was 51.55 ± 22.88% in PGI-DLBCL, which was higher than reactive lymph node (28.77 ± 10.89%) and lymphoid nodule in normal gastrointestinal tissue (26.41 ± 11.30%) (P = 0.002), while it was comparable to nodal DLBCL (57.23 ± 20.79%) (P = 0.358). Mad2 overexpression had a positive correlation with Ki-67 proliferation index (r = 0.55, P = 0.01) in PGI-DLBCL, and patients with BCL-6 gene rearrangement had lower Mad2 expression (P = 0.032) than patients with intact BCL-6, while no relation was found between Mad2 expression and H. pylori infection. PGI-DLBCL patients with higher Mad2 expression had lower estimated disease-free survival (DFS) (17.10% vs. 53.00%) (P = 0.049). However, no correlation was found between Mad2 expression levels and overall survival (OS) (P = 0.443).
CONCLUSIONS: Aberrant Mad2 expression was associated with cell proliferation and genetic instability, which may contribute to the carcinogenesis of PGI-DLBCL. Mad2 overexpression indicated a poor DFS and may be a potential biomarker for estimating prognosis for PGI-DLBCL patients.

Wang XG, Peng Y, Song XL, Lan JP
Identification potential biomarkers and therapeutic agents in multiple myeloma based on bioinformatics analysis.
Eur Rev Med Pharmacol Sci. 2016; 20(5):810-7 [PubMed] Related Publications
OBJECTIVE: The study aimed to identify potential therapeutic biomarkers and agents in multiple myeloma (MM) based on bioinformatics analysis.
MATERIALS AND METHODS: The microarray data of GSE36474 were downloaded from Gene Expression Omnibus database. A total of 4 MM and 3 normal bone marrow mesenchymal stromal cells (BM-MSCs) samples were used to identify the differentially expressed genes (DEGs). The hierarchical clustering analysis and functional enrichment analysis of DEGs were performed. Furthermore, co-expression network was constructed by Cytoscape software. The potential small molecular agents were identified with Connectivity Map (cMap) database.
RESULTS: A total of 573 DEGs were identified in MM samples comparing with normal samples, including 322 down- and 251 up-regulated genes. The DEGs were separated into two clusters. Down-regulated genes were mainly enriched in cell cycle function, while up-regulated genes were related to immune response. Down-regulated genes such as checkpoint kinase 1 (CHEK1), MAD2 mitotic arrest deficient-like 1 (MAD2L1) and DBF4 zinc finger (DBF4) were identified in cell cycle-related co-expression network. Up-regulated gene of guanylate binding protein 1, interferon-inducible (GBP1) was a hub node in immune response-related co-expression network. Additionally, the small molecular agent vinblastine was identified in this study.
CONCLUSIONS: The genes such as CHEK1, MAD2L1, DBF4 and GBP1 may be potential therapeutic biomarkers in MM. Vinblastine may be a potential therapeutic agent in MM.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAD2L1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999