Cancer Overview
Research Indicators
Graph generated 29 August 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (7)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
LGALS1
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
LGALS1
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
LGALS1
Cancer Genome Anatomy Project, NCI
Gene Summary
LGALS1
COSMIC, Sanger Institute
Somatic mutation information and related details
LGALS1
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: LGALS1 (cancer-related)
AIM: To determine whether it is possible to identify different immune phenotypic subpopulations of cancer-associated fibroblasts (CAFs) in pancreatic cancer (PC).
METHODS: We defined four different stromal compartments in surgical specimens with PC: The juxtatumoural, peripheral, lobular and septal stroma. Tissue microarrays were produced containing all pre-defined PC compartments, and the expression of 37 fibroblast (FB) and 8 extracellular matrix (ECM) markers was evaluated by immunohistochemistry, immunofluorescence (IF), double-IF, and/or
RESULTS: CD10, CD271, cytoglobin, DOG1, miR-21, nestin, and tenascin C exhibited significant differences in expression profiles between the juxtatumoural and peripheral compartments. The expression of CD10, cytoglobin, DOG1, nestin, and miR-21 was moderate/strong in juxtatumoural CAFs (j-CAFs) and barely perceptible/weak in peripheral CAFs (p-CAFs). The upregulation of
CONCLUSION: Different immune phenotypic CAF subpopulations can be identified in PC, using markers such as cytoglobin, CD271, and miR-21. Future studies should determine whether CAF subpopulations have different functional properties.
Among various heterogeneous types of bladder tumors, urothelial carcinoma is the most prevalent lesion. Some of the urinary bladder urothelial carcinomas (UBUCs) develop local recurrence and may cause distal invasion. Galectin-1 de-regulation significantly affects cell transformation, cell proliferation, angiogenesis, and cell invasiveness. In continuation of our previous investigation on the role of galectin-1 in UBUC tumorigenesis, in this study, proteomics strategies were implemented in order to find more galectin-1-associated signaling pathways. The results of this study showed that galectin-1 knockdown could induce 15 down-regulated proteins and two up-regulated proteins in T24 cells. These de-regulated proteins might participate in lipid/amino acid/energy metabolism, cytoskeleton, cell proliferation, cell-cell interaction, cell apoptosis, metastasis, and protein degradation. The aforementioned dys-regulated proteins were confirmed by western immunoblotting. Proteomics results were further translated to prognostic markers by analyses of biopsy samples. Results of cohort studies demonstrated that over-expressions of glutamine synthetase, alcohol dehydrogenase (NADP⁺), fatty acid binding protein 4, and toll interacting protein in clinical specimens were all significantly associated with galectin-1 up-regulation. Univariate analyses showed that de-regulations of glutamine synthetase and fatty acid binding protein 4 in clinical samples were respectively linked to disease-specific survival and metastasis-free survival.
Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a
BACKGROUND: Drug resistance of B-cell precursor acute lymphoblastic leukemia (BP-ALL) cells is conferred by both intrinsic and extrinsic factors, which could be targeted to promote chemo-sensitization. Our previous studies showed that Galectin-3, a lectin that clusters galactose-modified glycoproteins and that has both an intracellular and extracellular location, protects different subtypes of BP-ALL cells against chemotherapy. Galectin-1 is related to Galectin-3 and its expression was previously reported to be restricted to the MLL subtype of BP-ALL.
METHODS AND RESULTS: Here, we report that Galectin-1 is expressed at different levels in and on different subclasses of BP-ALLs. Bone marrow plasma also contains high levels of Galectin-1. PTX008 is an allosteric inhibitor which inhibits Galectin-1 but not Galectin-3-mediated agglutination. The compound reduces migration of BP-ALL cells to CXCL12 and OP9 stromal cells and inhibits fibronectin-mediated adhesion. It also affects cell cycle progression of BCP-ALL cells. PTX008 is cytostatic for BP-ALL cells even when these are co-cultured with protective stroma, and can sensitize ALL cells to vincristine chemotherapy in vitro and in mice.
CONCLUSIONS: PTX008 inhibits multiple functions that contribute to BP-ALL survival. The effects of Galectin-1 inhibition on both BP-ALL cell proliferation and migration suggest both the leukemia cells as well as the microenvironment that protects these cells may be targeted.
Galectin-1 (Gal-1) has been described to promote tumour growth by inducing angiogenesis and to contribute to the tumour immune escape. We had previously identified up-regulation of Gal-1 in preclinical models of aggressive neuroblastoma (NB), the most common extracranial tumour of childhood. While Gal-1 did not confer a survival advantage in the absence of exogenous stressors, Gal-1 contributed to enhanced cell migratory and invasive properties. Here, we review these findings and extend them by analyzing Gal-1 mediated effects on immune cell regulation and radiation resistance. In line with previous results, cell autonomous effects as well as paracrine functions contribute to Gal-1 mediated pro-tumourigenic functions. Interfering with Gal-1 functions in vivo will add to a better understanding of the role of the Gal-1 axis in the complex tumour-host interaction during immune-, chemo- and radiotherapy of neuroblastoma.
Zivicova V, Gal P, Mifkova A, et al.
Detection of Distinct Changes in Gene-expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-positive/-negative Head and Neck Squamous Cell Carcinoma.Anticancer Res. 2018; 38(3):1279-1290 [
PubMed]
Related Publications
BACKGROUND/AIM: Having previously initiated genome-wide expression profiling in head and neck squamous cell carcinoma (HNSCC) for regions of the tumor, the margin of surgical resecate (MSR) and normal mucosa (NM), we here proceed with respective analysis of cases after stratification according to the expression status of tenascin (Ten).
MATERIALS AND METHODS: Tissue specimens of each anatomical site were analyzed by immunofluorescent detection of Ten, fibronectin (Fn) and galectin-1 (Gal-1) as well as by microarrays.
RESULTS: Histopathological examination demonstrated that Ten
CONCLUSION: The presented data reveal marked and specific changes in tumors and MSR specimens of HNSCC without a separation based on prognosis.
Galectins are glycan-binding proteins that contain one or two carbohydrate domains and mediate multiple biological functions. By analyzing clinical tumor samples, the abnormal expression of galectins is known to be linked to the development, progression and metastasis of cancers. Galectins also have diverse functions on different immune cells that either promote inflammation or dampen T cell-mediated immune responses, depending on cognate receptors on target cells. Thus, tumor-derived galectins can have bifunctional effects on tumor and immune cells. This review focuses on the biological effects of galectin-1, galectin-3 and galectin-9 in various cancers and discusses anticancer therapies that target these molecules.
BACKGROUND: Galectin-1, a radioresistance marker, was found in our previous study to be a prognostic factor for cervical cancer. The aim of current study is to determine the prognostic significance of the galectin-1 expression level in patients with glioblastoma multiforme (GBM) undergoing adjuvant radiotherapy (RT).
METHODS: We included 45 patients with GBM who were treated with maximal safe surgical resection or biopsy alone followed by adjuvant RT of EQD2 (equivalent dose in 2-Gy fractions) > or = 60 Gy for homogeneous treatment. Paraffin-embedded tissues acquired from the Department of Pathology were analyzed using immunohistochemical staining for galectin-1 expression. The primary endpoint was overall survival (OS).
RESULTS: Patients with weak expression had a better median survival (27.9 months) than did those with strong expression (10.7 months; p = 0.009). We compared characteristics between weak and strong galectin-1 expression, and only the expression level of galectin-3 showed a correlation. The group with weak galectin-1 expression displayed a 3-year OS of 27.3% and a 3-year cancer-specific survival (CSS) of 27.3%; these values were only 5.9% and 7.6%, respectively, in the group with strong galectin-1 expression (p = 0.009 and 0.020, respectively). Cox regression was used to confirm that the expression level of galectin-1 (weak vs. strong) is a significant factor of OS (p = 0.020) and CSS (p = 0.022). Other parameters, such as the expression level of galectin-3, Eastern Cooperative Oncology Group (ECOG) performance, gender, surgical method, age ≥ 50 years, tumor size, or radiation field were not significant factors.
CONCLUSION: The expression level of galectin-1 affects survival in patients with GBM treated with adjuvant RT. Future studies are required to analyze the effect of other factors, such as O(6)-methylguanine-DNA methyltransferase (MGMT)-promoter methylation status, in patients with weak and strong galectin-1 expression.
Lai J, Lu D, Zhang C, et al.
Noninvasive small-animal imaging of galectin-1 upregulation for predicting tumor resistance to radiotherapy.Biomaterials. 2018; 158:1-9 [
PubMed]
Related Publications
Increasing evidence indicates that the overexpression of galectin-1, a member of the galectin family, is related to tumor progression and invasion, as well as tumor resistance to therapies (e.g., radiotherapy). Herein, we investigated whether near-infrared fluorescence (NIRF) imaging and positron-emission tomography (PET) were sensitive approaches for detecting and quantitating galectin-1 upregulation in vivo. An anti-galectin-1 antibody was labeled with either an NIRF dye or
Galectins are a family of lectins that bind β-galactose-containing glycoconjugates and are characterized by carbohydrate-recognition domains (CRDs). Galectins exploit several biological functions, including angiogenesis, regulation of immune cell activities and cell adhesion, in both physiological and pathological processes, as tumor progression. Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by the tight adhesion between tumoral PCs and bone marrow (BM) microenvironment, leading to the increase of PC survival and drug resistance, MM-induced neo-angiogenesis, immunosuppression and osteolytic bone lesions. In this review, we explore the expression profiles and the roles of galectin-1, galectin-3, galectin-8 and galectin-9 in the pathophysiology of MM. We focus on the role of these lectins in the interplay between MM and BM microenvironment cells showing their involvement in MM progression mainly through the regulation of PC survival and MM-induced angiogenesis and osteoclastogenesis. The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of
Immunotherapies, particularly checkpoint inhibitors, have set off a revolution in cancer therapy by releasing the power of the immune system. However, only little is known about the antigens that are essentially presented on cancer cells, capable of exposing them to immune cells. Large-scale HLA ligandome analysis has enabled us to exhaustively characterize the immunopeptidomic landscape of epithelial ovarian cancers (EOCs). Additional comparative profiling with the immunopeptidome of a variety of benign sources has unveiled a multitude of ovarian cancer antigens (MUC16, MSLN, LGALS1, IDO1, KLK10) to be presented by HLA class I and class II molecules exclusively on ovarian cancer cells. Most strikingly, ligands derived from mucin 16 and mesothelin, a molecular axis of prognostic importance in EOC, are prominent in a majority of patients. Differential gene-expression analysis has allowed us to confirm the relevance of these targets for EOC and further provided important insights into the relationship between gene transcript levels and HLA ligand presentation.
Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.
Szydłowski M, Prochorec-Sobieszek M, Szumera-Ciećkiewicz A, et al.
Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma.Blood. 2017; 130(12):1418-1429 [
PubMed]
Related Publications
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (
Substantial evidence has shown that epithelial-mesenchymal transition (EMT) plays critical roles in colorectal cancer (CRC) development and prognosis. To uncover the pivotal regulators that function in the cooperative interactions between cancer cells and their microenvironment and consequently affect the EMT process, we carried out a systematic analysis and evaluated prognosis in CRC specimens. Tumor buds and their surrounding stroma were captured using laser microdissection. We used gene expression profiling, bioinformatics analysis and regulatory network construction for molecular selection. The clinical significance of potential biomarkers was investigated. We identified potential EMT biomarkers, including BGN, MMP1, LGALS1, SERPINB5, and TM4SF4, all of which participated in the integrated pathway of TGFβ/Snail with TNFα/NFκB. We also found that BGN, MMP1, LGALS1, SERPINB5 and TM4SF4 were related to CRC patient prognosis. Patients with higher expression of these individual potential biomarkers had poorer prognosis. Among the identified biomarkers, BGN and TM4SF4 are reported, for the first time, to probably be involved in the EMT process and to predict CRC prognosis. Our results strongly suggest that the integrated pathway of TGFβ/Snail with TNFα/NFκB may be the principal axis that links cancer cells to their microenvironment during the EMT process and results in poor prognosis in CRC patients.
Fine-needle aspiration (FNA) is the most commonly used pre-operative technique for diagnosis of malignant thyroid tumor. However, many benign lesions, with indeterminate diagnosis following FNA, are referred to surgery. Based on multifunctionality of the endogenous galectin-1, we aimed to assess its status for early diagnosis of thyroid cancer. Immunohistochemistry for galectin-1 and -3 was performed on a clinical series of 69 cases of thyroid lesions. Galectin-1 expression was further examined in two additional tissue microarrays (TMA) composed of 66 follicular adenomas and 66 papillary carcinomas in comparison to galectin-3 and cytokeratin-19 (CK19). In addition, a knockdown of galectin-1 in papillary (TPC-1) and anaplastic (8505C) thyroid cancer cell lines was achieved by lentiviral transduction for in vitro experiments. A murine orthotopic thyroid cancer model was used to investigate tumor growth and metastatic ability. Immunohistochemical analyses of galectin-1 and -3 in the series of 69 cases of thyroid lesions revealed that galectin-1 was completely absent in the epithelial compartment of all benign thyroid lesions. Levels of both galectins significantly increased in the cytoplasmic compartment of malignant thyroid cells. Galectin-1 expression in the TMA yielded an excellent specificity (97%), while galectin-3 and CK19 presented a higher sensitivity (>97%) in discriminating benign from malignant thyroid lesions. In vitro experiments revealed that migration was negatively affected in TPC-1 galectin-1 knockdown (KD) cells, and that proliferation and invasion capacity of 8505C cells decreased after galectin-1 KD. Moreover, an orthotopic mouse model displayed a lower rate of tumor development with galectin-1 KD thyroid anaplastic cancer cells than in the control. Our findings support the introduction of galectin-1 as a reliable diagnostic marker for thyroid carcinomas. Its involvement in cell proliferation, migration, invasion and tumor growth also intimate functional involvement of galectin-1 in the progression of thyroid carcinoma, suggesting its potential as a therapeutic target.
There is a tremendous need for developing new useful prognostic factors in ovarian cancer. Galectins are a family of carbohydrate binding proteins which have been suggested to serve as prognostic factors for various cancer types. In this study, the presence of Galectin-1, -3, and -7 was investigated in 156 ovarian cancer specimens by immunochemical staining. Staining was evaluated in the cytoplasm and nucleus of cancer cells as well as the peritumoral stroma using a semi quantitative score (Remmele (IR) score). Patients' overall survival was compared between different groups of Galectin expression. Galectin (Gal)-1 and -3 staining was observed in the peritumoral stroma as well as the nucleus and cytoplasm of tumor cells, while Gal-7 was only present in the cytoplasm of tumor cells. Patients with Gal-1 expression in the cytoplasm or high Gal-1 expression in the peritumoral stroma showed reduced overall survival. Nuclear Gal-3 staining correlated with a better outcome. We observed a significantly reduced overall survival for cases with high Gal-7 expression and a better survival for Gal-7 negative cases, when compared to cases with low expression of Gal-7. We were able to show that both tumor and stroma staining of Gal-1 could serve as negative prognostic factors for ovarian cancer. We were able to confirm cytoplasmic Gal-7 as a negative prognostic factor. Gal-3 staining in the nucleus could be a new positive prognosticator for ovarian cancer.
Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.
We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow-derived mesenchymal stem cells (MSCs) migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT)-related genes such as fibronectin (FN), SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.
Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T. Ablation of galectin-1 expression decreased cell proliferation, migration, invasion, and doxorubicin resistance. We found that these effects were caused by decreased galectin-1-integrin β1 interactions and suppression of the downstream focal adhesion kinase (FAK)/c-Src pathway. We also found that silencing of galectin-1 inhibited extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) signaling, thereby down-regulating survivin expression. This finding implicates STAT3 as a transcription factor for survivin. Finally, rescue of endogenous galectin-1 knock-down and recombinant galectin-1 treatment both recovered signaling through the FAK/c-Src/ERK/STAT3/survivin pathway. Taken together, these results suggest that extracellular galectin-1 contributes to cancer progression and doxorubicin resistance in TNBC cells. These effects appear to be mediated by galectin-1-induced up-regulation of the integrin β1/FAK/c-Src/ERK/STAT3/survivin pathway. Our results imply that extracellular galectin-1 has potential as a therapeutic target for triple-negative breast cancer.
Shimizu D, Inokawa Y, Sonohara F, et al.
Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review).Oncol Rep. 2017; 37(5):2527-2542 [
PubMed]
Related Publications
Hepatocarcinogenesis is a complex and multistep process that involves the accumulation of genetic and epigenetic alterations in regulatory genes. To understand the development of hepatocellular carcinoma (HCC), current research has utilized improved array technologies. The identification of cancer-related molecules could lead to the development of novel molecular targets for treatment and biomarkers for predicting prognosis. However, prognostic prediction is insufficient when considering only tumor factors, since hepatocarcinogenesis is also greatly influenced by the status of the background liver. Clinical background liver factors, such as the presence of chronic active hepatitis or cirrhosis, are well known as risk factors for developing HCC. In contrast, genetic or epigenetic background liver factors remain unknown, albeit those are important to understand the developing process of HCC. Investigating background liver factors could contribute to the development of carcinogenic markers of HCC and to the prevention of the development of HCC. In the present study, we review the currently identified tumor factors and background liver factors from a molecular biological viewpoint and also introduce our combination array analysis.
Park GB, Chung YH, Kim D
Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells.Oncol Rep. 2017; 37(5):3137-3145 [
PubMed]
Related Publications
The expression of different toll-like receptors (TLRs) on tumor cells has been associated with disease aggressiveness, treatment resistance, and poor prognosis. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is considered critical for cancer cell survival and proliferation. Thus, we investigated the effect of TLR-stimulated PI3K activation on the epithelial-to-mesenchymal transition (EMT) of primary (Caov-3) and metastatic (SK‑OV‑3) epithelial ovarian cancer cell lines in this study. TLR engagement with various ligands promoted the expression of class IA PI3K (p110α, p110β, and p110δ) and increased the expression of mesenchymal markers (N-cadherin, Slug, Vimentin, Snail, α-SMA, and TCF) in SK‑OV‑3 cells. The migratory activity and secretion of EMT-related cytokines of SK‑OV‑3 were significantly higher compared to those of Caov-3 after activation with TLR agonist. Although the invasive capacity and production of EMT-related cytokines of LPS-stimulated SK‑OV‑3 cells were significantly suppressed by all pharmacological inhibitors of the p110 isoform, the Syk/Src-dependent p110β isoform prominently attenuated migration activity. In contrast, the production of IL-10 and galectin-1 was mainly affected by the p110δ isoform. Gene silencing of TLR4 and galectin-1 with siRNA decreased the expression of matrix metalloproteinase-2 (MMP2) and MMP9 and reduced mesenchymal markers in LPS-treated SK‑OV‑3 cells. This study demonstrated that TLR-mediated PI3K activation modulated the invasion and metastasis of ovarian cancer through the production of galectin-1, suggesting that inhibition of the p110 isoform is a promising therapeutic approach against metastatic ovarian cancer.
Glavey SV, Naba A, Manier S, et al.
Proteomic characterization of human multiple myeloma bone marrow extracellular matrix.Leukemia. 2017; 31(11):2426-2434 [
PubMed]
Related Publications
The extracellular matrix (ECM) is a major component of the tumor microenvironment, contributing to the regulation of cell survival, proliferation, differentiation and metastasis. In multiple myeloma (MM), interactions between MM cells and the bone marrow (BM) microenvironment, including the BM ECM, are critical to the pathogenesis of the disease and the development of drug resistance. Nevertheless, composition of the ECM in MM and its role in supporting MM pathogenesis has not been reported. We have applied a novel proteomic-based strategy and defined the BM ECM composition in patients with monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed and relapsed MM compared with healthy donor-derived BM ECM. In this study, we show that the tumor ECM is remodeled at the mRNA and protein levels in MGUS and MM to allow development of a permissive microenvironment. We further demonstrate that two ECM-affiliated proteins, ANXA2 and LGALS1, are more abundant in MM and high expression is associated with a decreased overall survival. This study points to the importance of ECM remodeling in MM and provides a novel proteomic pipeline for interrogating the role of the ECM in cancers with BM tropism.
Qian D, Lu Z, Xu Q, et al.
Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis.Cancer Lett. 2017; 397:43-51 [
PubMed]
Related Publications
Galectin-1, mainly expressed in activated pancreatic stellate cells (PSCs), is involved in many important cancer-related processes. However, very little is known how Galectin-1 modulates PSCs and subsequently impacts pancreatic cancer cells (PCCs). Our chemokine antibody array and in vitro studies demonstrates that Galectin-1 induces secretion of stromal cell-derived factor-1(SDF-1) in PSCs by activating NF-κB signaling. The secreted SDF-1 increases migration and invasion of PCCs. Knockdown of Galectin-1 and inhibitor-mediated blockade of SDF-1 as well as its ligand CXCR4 and NF-κB verifies the findings. In vivo experiment by knockdown of Galectin-1 in PSCs further demonstrates the conclusion. Collectively, the present studies demonstrate that Galectin-1-driven production of SDF-1 in PSCs through activation of NF-κB promotes metastasis in PDAC, offering a potential target in the treatment of pancreatic cancer.
Peraldo Neia C, Cavalloni G, Chiorino G, et al.
Gene and microRNA modulation upon trabectedin treatment in a human intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line.Oncotarget. 2016; 7(52):86766-86780 [
PubMed]
Free Access to Full Article Related Publications
Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy with limited therapeutic options. Trabectedin has a high antitumor activity in preclinical models of biliary tract carcinoma (BTC), being a promising alternative treatment. Here, we studied the effect of trabectedin at transcriptomic level on an ICC patient derived xenograft (PDX) and on the derived cell line, MT-CHC01. Further, putative targets of trabectedin were explored in the in vitro model. In vitro, trabectedin inhibited genes involved in protein modification, neurogenesis, migration, and motility; it induced the expression of genes involved in keratinization, tissues development, and apoptotic processes. In the PDX model, trabectedin affected ECM-receptor interaction, focal adhesion, complement and coagulation cascades, Hedgehog, MAPK, EGFR signaling via PIP3 pathway, and apoptosis. Among down-regulated genes, we selected SYK and LGALS1; their silencing caused a significantly reduction of migration, but did not affect proliferation in in vitro models. In MT-CHC01 cells, 24 microRNAs were deregulated upon drug treatment, while only 5 microRNAs were perturbed by trabectedin in PDX. The target prediction analysis showed that SYK and LGALS1 are putative targets of up-regulated microRNAs. In conclusion, we described that trabectedin affected genes and microRNAs involved in tumor progression and metastatic processes, reflecting data previously obtained at macroscopically level; in particular, we identified SYK and LGALS1 as new putative targets of trabectedin.
Park GB, Kim D
TLR4-mediated galectin-1 production triggers epithelial-mesenchymal transition in colon cancer cells through ADAM10- and ADAM17-associated lactate production.Mol Cell Biochem. 2017; 425(1-2):191-202 [
PubMed]
Related Publications
Toll-like receptor 4 (TLR4) activation is a key contributor to the carcinogenesis of colon cancer. Overexpression of galectin-1 (Gal-1) also correlates with increased invasive activity of colorectal cancer. Lactate production is a critical predictive factor of risk of metastasis, but the functional relationship between intracellular lactate and Gal-1 expression in TLR4-activated colon cancer remains unknown. In this study, we investigated the underlying mechanism and role of Gal-1 in metastasis and invasion of colorectal cancer (CRC) cells after TLR4 stimulation. Exposure to the TLR4 ligand lipopolysaccharide (LPS) increased expression of Gal-1, induced EMT-related cytokines, triggered the activation of glycolysis-related enzymes, and promoted lactate production. Gene silencing of TLR4 and Gal-1 in CRC cells inhibited lactate-mediated epithelial-mesenchymal transition (EMT) after TLR4 stimulation. Gal-1-mediated activation of a disintegrin and metalloproteinase 10 (ADAM10) and ADAM 17 increased the invasion activity and expression of mesenchymal characteristics in LPS-activated CRC cells. Conversely, inhibition of ADAM10 or ADAM17 effectively blocked the generation of lactate and the migration capacity of LPS-treated CRC cells. Thus, the TLR4/Gal-1 signaling pathway regulates lactate-mediated EMT processes through the activation of ADAM10 and ADAM17 in CRC cells.
Chong Y, Tang D, Xiong Q, et al.
Galectin-1 from cancer-associated fibroblasts induces epithelial-mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer.J Exp Clin Cancer Res. 2016; 35(1):175 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer (GC) is characterized by the excessive deposition of extracellular matrix, which is thought to contribute to this tumor's malignant behavior. Epithelial-mesenchymal transition (EMT) is regarded as a crucial contributing factor to cancer progression. Galectin-1 (Gal-1), a β-galactoside-binding protein abundantly expressed in activated cancer-associated fibroblasts (CAFs), has been reported to be involved in GC progression and metastasis by binding to β1 integrin, which, in turn, can bind to matrix proteins and activate intracellular cascades that mediate EMT. Increasing evidence suggests that abnormal activation of the hedgehog (Hh) signaling pathway enhances GC cell migration and invasion. The purpose of our study is to explore the role of Gal-1 in the GC progression and metastasis as well as the regulatory mechanism.
METHODS: We hypothesized that Gal-1 binding to β1 integrin would lead to paracrine signaling between CAFs and GC cells, mediating EMT by upregulating Gli1. Invasion and metastasis effects of the Gal-1 and Gli1 were evaluated using wound healing and invasion assay following transfection with mimics. Additionally, to facilitate the delineation of the role of the Hh signaling in GC, we monitored the expression level of associated proteins. We also evaluated the effects of β1 integrin on these processes. Furthermore, Gal-1 and Gli1 expression in GC patient samples were examined by immunohistochemistry and western blot to determine the correlation between their expression and clinicopathologic characteristics. The Kaplan-Meier method and Cox proportional hazards model were used to analyze the relationship of expression with clinical outcomes.
RESULTS: Gal-1 was found to induce EMT, GC cell migration and invasion. Further data showed that Gal-1 up-regulated Gli1 expression. β1 integrin was responsible for Gal-1-induced Gli1 expression and EMT. In clinical GC tissue, it confirmed a positive relationship between Gal-1 and Gli1 expression. Importantly, their high expression is correlated to poor prognosis.
CONCLUSION: Gal-1 from CAFs binds to a carbohydrate structure in β1 integrin and plays an important role in the development of GC by inducing GC metastasis and EMT through targeting Gli1. This study highlights the potential therapeutic value of Gal-1 for suppression of GC metastasis.
BACKGROUND: Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen.
METHODS: For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment.
RESULTS: Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected.
CONCLUSIONS: Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce apoptosis in breast tumor cell lines with high expression levels of the Thomsen-Friedenreich (TF) antigen in monolayer and spheroid cell culture models.
Human galectin-1 is a member of the galectin family, proteins with conserved carbohydrate-recognition domains that bind galactoside. Galectin-1 is highly expressed in various tumors and participates in various oncogenic processes. However, detailed descriptions of the function of galectin-1 in urinary bladder urothelial carcinoma have not been reported. Our previous cohort investigation showed that galectin-1 is associated with tumor invasiveness and is a possible independent prognostic marker of urinary bladder urothelial carcinoma. The present study aimed to clarify the relevance of galectin-1 expression level to tumor progression and invasion. In order to decipher a mechanism for the contribution of galectin-1 to the malignant behavior of urinary bladder urothelial carcinoma, two bladder cancer cell lines (T24 and J82) were established with knockdown of galectin-1 expression by shRNA. Bladder cancer cells with LGALS1 gene silencing showed reduced cell proliferation, lower invasive capability, and lower clonogenicity. Extensive signaling pathway studies indicated that galectin-1 participated in bladder cancer cell invasion by mediating the activity of MMP9 through the Ras-Rac1-MEKK4-JNK-AP1 signaling pathway. Our functional analyses of galectin-1 in urinary bladder urothelial carcinoma provided novel insights into the critical role of galectin-1 in tumor progression and invasion. These results revealed that silencing the galectin-1-mediated MAPK signaling pathway presented a novel strategy for bladder cancer therapy.
Zhang L, Liu X, Tang Z, et al.
Reversal of galectin-1 gene silencing on resistance to cisplatin in human lung adenocarcinoma A549 cells.Biomed Pharmacother. 2016; 83:265-270 [
PubMed]
Related Publications
This study aims to investigate reversal of Galectin-1 gene silencing on resistance to cisplatin in human lung adenocarcinoma A549 (or A549/DDP) in vivo and in vitro. The stably transfected lentivirus vector was used to silence Galectin-1 in human lung adenocarcinoma cell line A549 and A549/DDP cells and the cell lines were cultured and passaged. RT-PCR and western blot assay were used to test A549, A549/DDP cells, silenced Galectin-1A549 (A549/I) cells, Galectin-1 mRNA and protein expression levels, respectively, in A549/DDP (A549/DDP/I) cells. CCK8 assay was used to measure median inhibitory concentration (IC50) in each group and resistant index of A549/DDP cells and A549/DDP/I cells. Tumor model in nude mice was established by armpit injection of A549, A549/DDP, A549/I, A549/DDP/I cells. Cisplatin was injected intraperitoneally in tumor models and growth of tumor was observed in vivo model. Four weeks later, nude mice were killed and tumor weight and diameter was measured. mRNA and protein expression of Galectin-1 in A549/DDP cells was higher than that in A549 cells. mRNA and protein expression of Galectin-1 in A549/DDP/I cells was lower than that in A549/DDP cells. Moreover, IC50 values and resistance index in A549/DDP cells was higher than that in A549 cells group and IC50 values and resistance index A549/DDP/I cell group were lower than that in A549/DDP cells. Additionally, tumor weight and volume in A549/DDP/I cell group were lower than that in A549/DDP. In conclusion, Galectin-1 gene silencing would improve the sensitivity of A549/DDP cells to cisplatin in vivo and in vitro.