Gene Summary

Gene:INHA; inhibin subunit alpha
Summary:This gene encodes a member of the TGF-beta (transforming growth factor-beta) superfamily of proteins. The encoded preproprotein is proteolytically processed to generate multiple peptide products, including the alpha subunit of the inhibin A and B protein complexes. These complexes negatively regulate follicle stimulating hormone secretion from the pituitary gland. Inhibins have also been implicated in regulating numerous cellular processes including cell proliferation, apoptosis, immune response and hormone secretion. Mutations in this gene may be associated with male infertility and premature ovarian failure in female human patients. [provided by RefSeq, Aug 2016]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:inhibin alpha chain
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (34)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: INHA (cancer-related)

Kim HS, Kim KM, Lee SB, et al.
Clinicopathological and biomolecular characteristics of stage IIB/IIC and stage IIIA colon cancer: Insight into the survival paradox.
J Surg Oncol. 2019; 120(3):423-430 [PubMed] Related Publications
BACKGROUND: A survival paradox of stage IIB/IIC and IIIA colon cancer has been consistently observed throughout revisions of the TNM system. This study aimed to understand this paradox with clinicopathological and molecular differences.
METHODS: Clinicopathological characteristics of patients with pathologically confirmed stage IIB/IIC or IIIA colon cancer were retrospectively reviewed from a database. Publicly available molecular data were retrieved, and intrinsic subtypes were identified and subjected to gene sets enrichment analysis (GSEA).
RESULTS: Among the 159 patients included in the clinicopathological analysis, those at stage IIB/IIC had worse 3-year disease-free and overall survival than those at stage IIIA (59.3% vs 91.7%, P < 0.001 and 82.7% vs 98.5%, P < 0.001, respectively), even after adjusting for confounding factors. Data of 95 patients were retrieved from public databases, demonstrating a higher frequency of the microsatellite instable subtype in stage IIB/IIC. The consensus molecular subtype distribution pattern differed between the groups. The GSEA further suggested the protumor inflammatory reaction might be more prominent in stage IIB/IIC.
CONCLUSIONS: The survival paradox in colon cancer was confirmed and appears to be a multifactorial phenomenon not attributed to a single clinicopathologic factor. However, the greater molecular heterogeneity in stage IIB/IIC could contribute to the poor prognosis.

Lee JS
Cellular senescence, aging, and age-related disease: Special issue of BMB Reports in 2019.
BMB Rep. 2019; 52(1):1-2 [PubMed] Free Access to Full Article Related Publications
Cellular senescence is a state of permanent cell cycle arrest which exhibits large and flattened morphological characteristics. Cellular senescence might evolve to a beneficial process to suppress the accumulation of severely damaged cells. However, senescent cells are considered as the cause of age-related pathologies and diseases. In contrast to replicative senescence, premature senescence could be rapidly induced through intrinsic and extrinsic insults. Cancer cell senescence has been accepted as an alternative and attractive tumor suppressive mechanism. In addition to the non-proliferative aspect, senescence associated with diverse functionality affects tissue homeostasis through the communication with their neighboring cells. Aging is a time-dependent process of deterioration, accompanied by progressive metabolic alteration and accumulation of senescent cells. Thus, aging is the main risk factor for many chronic diseases. Chronic inflammation which is principally induced by senescence associated secretory phenotype (SASP) might be the major underlying cause of many age-related disease. Recently, senotherapeutics, medicines targeting to kill or modulate senescent cells selectively, have been implicated to be novel strategy for aging intervention which is applicable to promote healthy aging and to prevent or treat age-related diseases. This special issue invites one perspective and ten mini-reviews covering various senescence features, gene expression characteristics with aging, therapeutic strategies related with cancer and age-related diseases. [BMB Reports 2019; 52(1): 1-2].

Park JM, Lee JE, Park CM, Kim JH
USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization.
Mol Cells. 2019; 42(1):17-27 [PubMed] Free Access to Full Article Related Publications
Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.

Lee E, Luo J, Schumacher FR, et al.
Growth factor genes and change in mammographic density after stopping combined hormone therapy in the California Teachers Study.
BMC Cancer. 2018; 18(1):1072 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The contribution of genetic polymorphisms to the large inter-individual variation in mammographic density (MD) changes following starting and stopping use of estrogen and progestin combined therapy (EPT) has not been well-studied. Previous studies have shown that circulating levels of insulin-like growth factors are associated with MD and cross-talk between estrogen signaling and growth factors is necessary for cell proliferation in the breast. We evaluated single nucleotide polymorphisms (SNPs) in growth factor genes in association with MD changes after women stop EPT use.
METHODS: We genotyped 191 SNPs in 13 growth factor pathway genes in 284 non-Hispanic white California Teachers Study participants who previously used EPT and collected their mammograms before and after quitting EPT. Percent MD was assessed using a computer-assisted method. Change in percent MD was calculated by subtracting percent MD of an 'off-EPT' mammogram from percent MD of an 'on-EPT' (i.e. baseline) mammogram. We used multivariable linear regression analysis to investigate the association between SNPs and change in percent MD. We calculated P-values corrected for multiple testing within a gene (P
RESULTS: Rs1983210 in INHA and rs35539615 in IGFBP1/3 showed the strongest associations. Per minor allele of rs1983210, the absolute change in percent MD after stopping EPT use decreased by 1.80% (a difference in absolute change in percent MD) (P
CONCLUSIONS: Genetic variation in growth factor pathway genes INHA and IGFBP1/3 may predict longitudinal MD change after women quit EPT. The observed differences in EPT-associated changes in percent MD in association with these genetic polymorphisms are modest but may be clinically significant considering that the magnitude of absolute increase in percent MD reported from large clinical trials of EPT ranged from 3% to 7%.

Kim DH, Yoon HJ, Cha YN, Surh YJ
Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target.
Free Radic Res. 2018; 52(11-12):1336-1347 [PubMed] Related Publications
Cancer stem cells (CSCs) constitute a subpopulation of transformed cells that possess intrinsic ability to undergo selfrenewal and differentiation, which drive tumour resistance and cancer recurrence. It has been reported that CSCs possess enhanced protection against oxidative stress induced by reactive oxygen species compared with nonstem-like cancer cells. In the present work, we investigated the role of heme oxygenase-1 (HO-1), a representative antioxidant enzyme, on the stemness and selfrenewal of human breast CSCs. We found that pharmacologic or genetic inhibition of HO-1 attenuated the sphere formation, whereas HO-1 inducers enhanced the number and the size of tumourspheres in breast CSCs. Carbon monoxide (CO) is endogenously generated as a consequence of degradation of heme by HO-1. The proportion of populations of CD44

Kim MK, Moon YA, Song CK, et al.
Tumor-suppressing miR-141 gene complex-loaded tissue-adhesive glue for the locoregional treatment of hepatocellular carcinoma.
Theranostics. 2018; 8(14):3891-3901 [PubMed] Free Access to Full Article Related Publications
microRNAs (miRNAs) regulate gene expression post-transcriptionally and have been extensively tested as therapeutic molecules against several human diseases.

Kim YJ, Lee YJ, Kim HJ, et al.
A molecular mechanism of nickel (II): reduction of nucleotide excision repair activity by structural and functional disruption of p53.
Carcinogenesis. 2018; 39(9):1157-1164 [PubMed] Related Publications
Nickel is a major carcinogen that is implicated in tumor development through occupational and environmental exposure. Although the exact molecular mechanisms of carcinogenesis by low-level nickel remain unclear, inhibition of DNA repair is frequently considered to be a critical mechanism of carcinogenesis. Here, we investigated whether low concentrations of nickel would affect p53-mediated DNA repair, especially nucleotide excision repair. Our results showed that nickel inhibited the promoter binding activity of p53 on the downstream gene GADD45A, as a result of the disturbance of p53 oligomerization by nickel. In addition, we demonstrated that nickel exposure trigger the reduction of GADD45A-mediated DNA repair by impairing the physical interactions between GADD45A and proliferating cell nuclear antigen or xeroderma pigmentosum G. Notably, in the GADD45A-knockdown system, the levels of unrepaired DNA photoproducts were higher than wild-type cells, elucidating the importance of GADD45A in the nickel-associated inhibition of DNA repair. These results imply that inhibition of p53-mediated DNA repair can be considered a potential carcinogenic mechanism of nickel at low concentrations.

Sp N, Kang DY, Kim DH, et al.
Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis.
Nutrients. 2018; 10(6) [PubMed] Free Access to Full Article Related Publications
Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFβ1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.

Kim SB, Zhang L, Yoon J, et al.
Truncated Adenomatous Polyposis Coli Mutation Induces Asef-Activated Golgi Fragmentation.
Mol Cell Biol. 2018; 38(17) [PubMed] Free Access to Full Article Related Publications
Adenomatous polyposis coli (APC) is a key molecule to maintain cellular homeostasis in colonic epithelium by regulating cell-cell adhesion, cell polarity, and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (Asef). The APC-activated Asef stimulates the small GTPase, which leads to decreased cell-cell adherence and cell polarity, and enhanced cell migration. In colorectal cancers, while truncated APC constitutively activates Asef and promotes cancer initiation and progression, regulation of Asef by full-length APC is still unclear. Here, we report the autoinhibition mechanism of full-length APC. We found that the armadillo repeats in full-length APC interact with the APC residues 1362 to 1540 (APC-2,3 repeats), and this interaction competes off and inhibits Asef. Deletion of APC-2,3 repeats permits Asef interactions leading to downstream signaling events, including the induction of Golgi fragmentation through the activation of the Asef-ROCK-MLC2. Truncated APC also disrupts protein trafficking and cholesterol homeostasis by inhibition of SREBP2 activity in a Golgi fragmentation-dependent manner. Our study thus uncovers the autoinhibition mechanism of full-length APC and a novel gain of function of truncated APC in regulating Golgi structure, as well as cholesterol homeostasis, which provides a potential target for pharmaceutical intervention against colon cancers.

Oh SC, Sohn BH, Cheong JH, et al.
Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype.
Nat Commun. 2018; 9(1):1777 [PubMed] Free Access to Full Article Related Publications
Gastric cancer is a heterogeneous cancer, making treatment responses difficult to predict. Here we show that we identify two distinct molecular subtypes, mesenchymal phenotype (MP) and epithelial phenotype (EP), by analyzing genomic and proteomic data. Molecularly, MP subtype tumors show high genomic integrity characterized by low mutation rates and microsatellite stability, whereas EP subtype tumors show low genomic integrity. Clinically, the MP subtype is associated with markedly poor survival and resistance to standard chemotherapy, whereas the EP subtype is associated with better survival rates and sensitivity to chemotherapy. Integrative analysis shows that signaling pathways driving epithelial-to-mesenchymal transition and insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1R) pathway are highly activated in MP subtype tumors. Importantly, MP subtype cancer cells are more sensitive to inhibition of IGF1/IGF1R pathway than EP subtype. Detailed characterization of these two subtypes could identify novel therapeutic targets and useful biomarkers for prognosis and therapy response.

Fang Z, Han B, Jung KH, et al.
A novel tropomyosin-related kinase A inhibitor, KK5101 to treat pancreatic cancer.
Cancer Lett. 2018; 426:25-36 [PubMed] Related Publications
Tropomyosin-related kinase A (TrkA) plays important roles in tumor cell growth and survival signaling and contributes to chemo-resistance in pancreatic cancer. Therefore, we developed KK5101, a novel TrkA target inhibitor and assessed its anti-cancer effects and investigated underlying mechanism of action in pancreatic cancer. KK5101 was characterized to inhibit TrkA selectively and potently by protein binding assay. It effectively inhibited the growth and proliferation of pancreatic cancer cells. Also, KK5101 increased apoptosis with loss of mitochondrial membrane potential, as evidenced by increases of cytochrome c releases. It increased numbers of TUNEL-positive apoptotic cells, and cell death including early and late apoptosis by Annexin V assay. In addition, activation of the TrkA signaling cascades including p-AKT, p-MEK, and p-STAT3 were inhibited by KK5101 treatment in vitro, as well as ex vivo tumor spheroid models, resulting in potent induction of apoptosis. Importantly, KK5101 also significantly attenuated tumor growth of in vivo pancreatic cancer models. These findings indicate that KK5101 may exert antitumor effects by directly affecting cancer cell growth or survival via inhibition of TrkA signaling pathway. We therefore suggest that KK5101 is a novel therapeutic candidate for treating pancreatic cancer.

Byun JW, An HY, Yeom SD, et al.
NDRG1 and FOXO1 regulate endothelial cell proliferation in infantile haemangioma.
Exp Dermatol. 2018; 27(6):690-693 [PubMed] Related Publications
The etiopathogenesis of infantile haemangioma has not been well understood, and it is accepted that angiogenic mediator dysregulation is the main contributor to the abnormal haemangioma capillary formation. The role of NDRG1, a hypoxia-inducible protein; FOXOs, which are tumor suppressor proteins; and the mTOR complex 2 pathway in infantile haemangioma have not been studied yet. The purpose of this study was to investigate NDRG1 and FOXO1 expression in the infantile haemangioma and the correlation of these proteins with proliferation and involution. Primary endothelial cells were obtained, with parental agreement, from 12 infantile haemangioma patients during surgery; 6 patients had proliferating infantile haemangiomas and 6 had involuting IHs. We compared the infantile haemangioma tissues and primary endothelial cells with human vein endothelial cells using microarrays, real-time PCR, Western blotting and immunohistochemical staining. Our data indicated that FOXO1 expression was downregulated in proliferating infantile haemangioma tissue. We found that the expression of NDRG1, a molecule upstream of the FOXO1 pathway, increased during haemangioma proliferation. NDRG1 knockdown decreased haemangioma endothelial cell proliferation and downregulated c-MYC oncoprotein levels. Our findings suggest that NDRG1 positively regulates haemangioma proliferation. FOXO1 dysregulation plays an important role in infantile haemangiomas pathogenesis.

Park CK, Oh IJ, Choi YD, et al.
A Prospective Observational Study Evaluating the Correlation of c-MET Expression and EGFR Gene Mutation with Response to Erlotinib as Second-Line Treatment for Patients with Advanced/Metastatic Non-Small-Cell Lung Cancer.
Oncology. 2018; 94(6):373-382 [PubMed] Related Publications
OBJECTIVES: We aimed to evaluate the prevalence and predictive role of c-MET expression and EGFR mutation in the efficacy of erlotinib in non-small-cell lung cancer (NSCLC).
METHODS: We prospectively recruited 196 patients with stage IV or recurrent NSCLC treated with erlotinib after failure of first-line chemotherapy. Immunohistochemistry was used to evaluate c-MET overexpression, silver in situ hybridization (SISH) to assess gene copy number, and real-time polymerase chain reaction to detect EGFR mutations, respectively, in tumor tissue.
RESULTS: The major histologic type was adenocarcinoma (66.8%). c-MET was overexpressed in 55.8% (87/156) and dominant in females as well as non-squamous histology. Although c-MET gene amplification and high polysomy were observed in 2.0% (3/152) and 11.2% (17/152), they did not correlate with any characteristics. EGFR mutation was detected in 13.1% (20/153). The objective response rate of erlotinib was higher (61.1 vs. 3.7%, p < 0.001) and the median progression-free survival (PFS) was longer (10.2 vs. 1.9 months, p < 0.001) in EGFR-sensitizing mutations. However, c-MET positivity did not show a significant correlation with response to erlotinib or PFS.
CONCLUSION: We reconfirmed EGFR mutation as a strong predictive marker of NSCLC. However, c-MET positivity was not associated with response or PFS, although c-MET overexpression correlated with some clinical characteristics.

AlJohani N, Choi SJ, Day AG, et al.
Abundant expression of BMI1 in follicular lymphoma is associated with reduced overall survival.
Leuk Lymphoma. 2018; 59(9):2211-2219 [PubMed] Related Publications
Although generally indolent, follicular lymphoma (FL) sometimes pursues a more aggressive course leading to early death. B-cell-specific Mo-MLV insertion site-1 (BMI1) is a member of the polycomb group (PcG) proteins that confer stem cell properties through gene silencing. We used multi-channel immunofluorescence and automated image analysis to quantify BMI1 selectively in the nuclei of FL-derived B-cells in routine biopsy specimens. Applying this assay to 109 pretreatment FL biopsy samples demonstrates a significant association between abundant BMI1 and reduced overall survival (p = .001); the statistically significant association with mortality persists in a Cox proportional hazards model that includes Follicular Lymphoma International Prognostic Index (FLIPI) score, histological grade, and the presence of a component of diffuse large B-cell lymphoma in the biopsy sample. Ascertaining BMI1 over-expression may be useful in identifying patients who might benefit from novel therapies directed at reversing the chromatin-modifying functions of BMI1.

Kim CW, Oh ET, Kim JM, et al.
Hypoxia-induced microRNA-590-5p promotes colorectal cancer progression by modulating matrix metalloproteinase activity.
Cancer Lett. 2018; 416:31-41 [PubMed] Related Publications
Hypoxia leads to cancer progression and promotes the metastatic potential of cancer cells. MicroRNAs (miRNAs) are small non-coding RNA that have emerged as key players involved in cancer development and progression. Hypoxia alters a set of hypoxia-mediated miRNAs expression during tumor development and it may function as oncogenes or tumor-suppressors. However, the roles and molecular mechanisms of hypoxia-regulatory miRNAs in colorectal cancer (CRC) progression remain poorly understood. Here we firstly identified miR-590-5p as hypoxia-sensitive miRNAs which was upregulated in colon cancer cells under hypoxia. Hypoxia-induced miR-590-5p suppressed the expression of RECK, in turn, promoting cell invasiveness and migratory abilities via activation of matrix metalloproteinases (MMPs) and filopodia protrusion in vitro. Inhibition of miR-590-5p suppressed tumor growth and metastasis in mouse xenograft and CRC liver metastasis models via inhibition of MMPs activity. Clinical analysis revealed higher miR-590-5p expression in CRC, compared to normal specimens. Furthermore, miR-590-5p expression was significantly increased in liver metastasis as compared to their matched primary CRC. Taken together, our findings provide the first evidence that miR-590-5p may have potential as a therapeutic target for CRC patients with metastasis.

Choi BJ, Park SA, Lee SY, et al.
Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of Snail: A potential role of Sox9.
Sci Rep. 2017; 7(1):15918 [PubMed] Free Access to Full Article Related Publications
During the metastatic phase, cancer cells require the dissolution of cadherin-mediated cell-cell adhesion and a dramatic re-organization of the cytoskeleton through epithelial-mesenchymal transition (EMT), thereby acquiring migratory and invasive capabilities. In most tumors, EMT is accompanied by hypoxia. However, the intracellular signaling molecule that mediates hypoxia-induced EMT remained overlooked. By utilizing the microarray database system of the Cancer Genome Atlas, we identified ubiquitin-specific protease 47 (USP47), a deubiquitinating enzyme, as a potential mediator of hypoxia-induced EMT. Immunofluorescence staining of human colorectal tissue microarrays revealed that USP47 is overexpressed in colorectal adenocarcinoma tissues compared with normal adjacent tissues. The expression of USP47 was found to be elevated in three different human colorectal cancer cell lines. The enhancement of USP47 in colorectal cancer cells under hypoxic conditions induced the disassembly of E-cadherin and promoted EMT through deubiquitination of Snail. Silencing of USP47 accelerated the proteasomal degradation of Snail and inhibited EMT. Notably, hypoxia-induced USP47 upregulation was mediated by Sox9. These results demonstrate, for the first time, the role for USP47, as a novel target of Sox9, in the regulation of EMT and metastasis of colorectal cancer cells.

Koh JM, Ahn SH, Kim H, et al.
Validation of pathological grading systems for predicting metastatic potential in pheochromocytoma and paraganglioma.
PLoS One. 2017; 12(11):e0187398 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The Grading system for Adrenal Pheochromocytoma and Paraganglioma (GAPP) was proposed for predicting the metastatic potential of pheochromocytoma and paraganglioma to overcome the limitations of the Pheochromocytoma of the Adrenal Scaled Score (PASS). However, to date, no study validating the GAPP has been conducted, and previous studies did not include mutations in the succinate dehydrogenase type B (SDHB) gene in the score calculation. In this retrospective cohort study, we validated the prediction ability of GAPP and assessed whether it would be improved by inclusion of the loss of SDHB immunohistochemical staining.
METHODS: We divided the tumors into non-metastatic and metastatic groups based on the presence of synchronous or metachronous metastases. The GAPP score and PASS at the initial operation were measured. Moreover, we combined some GAPP parameters with the immunohistochemical staining of SDHB to obtain a modified GAPP (M-GAPP) score.
RESULTS: Metastasis occurred in 15/72 (20.8%) patients, with a mean follow-up of 43.5 months. Loss of SDHB staining was more frequent (P = 0.044) in the metastatic group. The GAPP score (P = 0.006), PASS (P = 0.003), and M-GAPP score (P<0.001) were all higher in the metastatic group. Twelve of 40 (30.0%) moderately or poorly differentiated tumors, as defined by the GAPP score, and 12/34 (35.3%) tumors with a PASS ≥4 were metastatic. Conversely, 10/19 (52.6%) tumors with an M-GAPP score ≥3 were metastatic. The area under the curve of the M-GAPP score (0.822) was significantly higher than that of the GAPP (0.728) (P = 0.012), but similar to that of the PASS (0.753) (P = 0.411). The GAPP (P = 0.032) and M-GAPP scores (P = 0.040), but not PASS (P = 0.200), negatively correlated with metastasis-free survival.
CONCLUSION: The GAPP was validated, and M-GAPP, a combination of some GAPP parameters and loss of SDHB staining, might be useful for the prediction of the metastatic potential of pheochromocytoma and paraganglioma.

Jeon D, Park HJ, Kim HS
Protein S-glutathionylation induced by hypoxia increases hypoxia-inducible factor-1α in human colon cancer cells.
Biochem Biophys Res Commun. 2018; 495(1):212-216 [PubMed] Related Publications
Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial-mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs.

Choi Y, Park J, Ko YS, et al.
FOXO1 reduces tumorsphere formation capacity and has crosstalk with LGR5 signaling in gastric cancer cells.
Biochem Biophys Res Commun. 2017; 493(3):1349-1355 [PubMed] Related Publications
Gastric cancer (GC) is a major of cause of cancer-related death and is characterized by its heterogeneity and molecular complexity. FOXO1 is a transcription factor that plays a key role in GC growth and metastasis. However, the implication of FOXO1 in GC cell stemness has been elusive. This study, for the first time, demonstrates that FOXO1 regulates GC cell stemness in association with LGR5. FOXO1 expression was significantly lower in GC tumorsphere cells than in adherent GC cells. FOXO1 silencing and overexpression promoted and inhibited the tumorsphere formation capacity of GC cells, respectively. Additionally, there was an inverse correlation between FOXO1 and GC stem cell marker LGR5 in human GC specimens. Further in vitro and in vivo experiments showed that negative crosstalk between these two molecules exists and that LGR5 silencing reversed the FOXO1 shRNA-induced tumorsphere formation even without FOXO1 restoration. Taken together, our results suggest that FOXO1 inhibits the self-renewal capacity of GC cells through interaction with LGR5. Thus, FOXO1/LGR5 signaling pathway may provide a novel targeted therapy for GC.

Oh ET, Kim CW, Kim HG, et al.
Brusatol-Mediated Inhibition of c-Myc Increases HIF-1α Degradation and Causes Cell Death in Colorectal Cancer under Hypoxia.
Theranostics. 2017; 7(14):3415-3431 [PubMed] Free Access to Full Article Related Publications
HIF-1 (hypoxia-inducible factor-1) regulates the expression of ~100 genes involved in angiogenesis, metastasis, tumor growth, chemoresistance and radioresistance, underscoring the growing interest in targeting HIF-1 for cancer control. In the present study, we investigated the molecular mechanisms underlying brusatol-induced HIF-1α degradation and cell death in colorectal cancer under hypoxia (0.5% O

Ooki A, Maleki Z, Tsay JJ, et al.
A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non-Small Cell Lung Cancer and Serum DNA.
Clin Cancer Res. 2017; 23(22):7141-7152 [PubMed] Related Publications

Kim JS, Ryu JS, Jeon SH, et al.
Dramatic response of acute disseminated intravascular coagulation to erlotinib in a patient with lung adenocarcinoma with activating EGFR mutation.
J Int Med Res. 2018; 46(1):533-537 [PubMed] Free Access to Full Article Related Publications
Disseminated intravascular coagulation (DIC) is a commonly encountered clinical situation characterized by thrombotic occlusion or bleeding in patients with lung cancer. DIC in patients with cancer is usually asymptomatic, taking a chronic form as a compensatory mechanism. Although acute DIC in patients with lung cancer is rarely reported, it can be fatal. We herein describe a patient with lung adenocarcinoma with an activating mutation of the epidermal growth factor receptor (EGFR) gene who developed acute DIC after minor surgical excision. The patient's condition dramatically improved immediately after administration of erlotinib. This report alerts physicians to the occurrence of acute DIC and serves as a reference in treating EGFR mutation-positive lung cancer in patients with DIC.

Yu JH, Kim JM, Kim JK, et al.
Platelet-derived growth factor receptor α in hepatocellular carcinoma is a prognostic marker independent of underlying liver cirrhosis.
Oncotarget. 2017; 8(24):39534-39546 [PubMed] Free Access to Full Article Related Publications
BACKGROUND AND AIMS: Platelet-derived growth factor receptor alpha (PDGFRα) is suggested as a prognosis marker for hepatocellular carcinoma (HCC). Since PDGFRα is also known as a marker for activated hepatic stellate cells (HSCs), this study aimed to investigate whether PDGFRα expression in HCC was dependent on the background liver fibrous condition.
RESULTS: Strong PDGFRα expression in the tumor lesions was associated with decreased survival after curative HCC resection. Expression of PDGFRα in the tumor correlated with increased collagen α1(I), lecithin retinol acyltransferase, and smooth muscle α-actin suggesting increased HSCs in tumor sites. The expression of PDGFRα in the tumor sites was associated neither with underlying liver fibrosis/cirrhosis nor with the expression of PDGFRα in adjacent non-tumor sites of the liver.
MATERIALS AND METHODS: Patients with HCC who underwent liver resection as curative treatment were included in this study. Using liver samples of 95 patients, tissue microarray was constructed and immunohistochemical study of PDGFRα was conducted in both tumor and non-tumor sites. PDGFRα expression in tumor and matching non-tumor sites was compared. Freshly frozen liver tissue specimens of 16 HCC patients were used for gene expression analysis of PDGFRα and fibrosis related genes.
CONCLUSIONS: Our results suggest that PDGFRα overexpression in HCC is a prognostic marker independent of adjacent non-tumor site liver fibrosis status.

Yun UJ, Sung JY, Park SY, et al.
Oncogenic role of rab escort protein 1 through EGFR and STAT3 pathway.
Cell Death Dis. 2017; 8(2):e2621 [PubMed] Free Access to Full Article Related Publications
Rab escort protein-1 (REP1) is linked to choroideremia (CHM), an X-linked degenerative disorder caused by mutations of the gene encoding REP1 (CHM). REP1 mutant zebrafish showed excessive cell death throughout the body, including the eyes, indicating that REP1 is critical for cell survival, a hallmark of cancer. In the present study, we found that REP1 is overexpressed in human tumor tissues from cervical, lung, and colorectal cancer patients, whereas it is expressed at relatively low levels in the normal tissue counterparts. REP1 expression was also elevated in A549 lung cancer cells and HT-29 colon cancer cells compared with BEAS-2B normal lung and CCD-18Co normal colon epithelial cells, respectively. Interestingly, short interfering RNA (siRNA)-mediated REP1 knockdown-induced growth inhibition of cancer cell lines via downregulation of EGFR and inactivation of STAT3, but had a negligible effect on normal cell lines. Moreover, overexpression of REP1 in BEAS-2B cells enhanced cell growth and anchorage-independent colony formation with little increase in EGFR level and STAT3 activation. Furthermore, REP1 knockdown effectively reduced tumor growth in a mouse xenograft model via EGFR downregulation and STAT3 inactivation in vivo. These data suggest that REP1 plays an oncogenic role, driving tumorigenicity via EGFR and STAT3 signaling, and is a potential therapeutic target to control cancers.

Jun SY, Lee EJ, Kim MJ, et al.
Lynch syndrome-related small intestinal adenocarcinomas.
Oncotarget. 2017; 8(13):21483-21500 [PubMed] Free Access to Full Article Related Publications
Lynch syndrome is an autosomal-dominant disorder caused by defective DNA mismatch repair (MMR) genes and is associated with increased risk of malignancies in multiple organs. Small-intestinal adenocarcinomas are common initial manifestations of Lynch syndrome. To define the incidence and characteristics of Lynch syndrome-related small-intestinal adenocarcinomas, meticulous familial and clinical histories were obtained from 195 patients with small-intestinal adenocarcinoma, and MMR protein immunohistochemistry, microsatellite instability, MLH1 methylation, and germline mutational analyses were performed. Lynch syndrome was confirmed in eight patients (4%), all of whom had synchronous/metachronous malignancies without noticeable familial histories. Small-intestinal adenocarcinomas were the first clinical manifestation in 37% (3/8) of Lynch syndrome patients, and second malignancies developed within 5 years in 63% (5/8). The patients with accompanying Lynch syndrome were younger (≤50 years; P=0.04) and more likely to have mucinous adenocarcinomas (P=0.003), and tended to survive longer (P=0.11) than those with sporadic cases. A meticulous patient history taking, MMR protein immunolabeling, and germline MMR gene mutational analysis are important for the diagnosis of Lynch syndrome-related small-intestinal adenocarcinomas. Identifying Lynch syndrome in patients with small-intestinal adenocarcinoma can be beneficial for the early detection and treatment of additional Lynch syndrome-related cancers, especially in patients who are young or have mucinous adenocarcinomas.

Shin HS, An HY, Choi JS, et al.
Organotypic Spheroid Culture to Mimic Radiation-Induced Salivary Hypofunction.
J Dent Res. 2017; 96(4):396-405 [PubMed] Related Publications
Radiation treatment often leads to irreversible damage to normal salivary glands (SGs) because of their proximity to head and neck cancers. Optimization of the in vitro model of irradiation (IR)-induced SG damage is warranted to investigate pathophysiology and monitor treatment outcome. Here, we present an organotypic spheroid culture model to investigate the impact of IR on SGs and the mechanisms underlying IR-induced structural and functional changes. Human parotid epithelial cells were obtained from human parotid glands and plated on either plastic plates or Matrigel. A number of 3-dimensional (3D) spheroids were assembled on Matrigel. After IR at 10 and 20 Gy, morphologic changes in cells in 2D monolayers and 3D spheroids were observed. As the structural integrity of the 3D spheroids was destroyed by IR, the expression levels of salivary epithelial and structural proteins and genes decreased proportionally with radiation dosage. Furthermore, the spheroid culture allowed better measurement of functional alterations following IR relative to the monolayer culture, in which IR-inflicted spheroids exhibited a loss of acinar-specific cellular functions that enable Ca

Oh ET, Kim JW, Kim JM, et al.
NQO1 inhibits proteasome-mediated degradation of HIF-1α.
Nat Commun. 2016; 7:13593 [PubMed] Free Access to Full Article Related Publications
Overexpression of NQO1 is associated with poor prognosis in human cancers including breast, colon, cervix, lung and pancreas. Yet, the molecular mechanisms underlying the pro-tumorigenic capacities of NQO1 have not been fully elucidated. Here we show a previously undescribed function for NQO1 in stabilizing HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate that NQO1 directly binds to the oxygen-dependent domain of HIF-1α and inhibits the proteasome-mediated degradation of HIF-1α by preventing PHDs from interacting with HIF-1α. NQO1 knockdown in human colorectal and breast cancer cell lines suppresses HIF-1 signalling and tumour growth. Consistent with this pro-tumorigenic function for NQO1, high NQO1 expression levels correlate with increased HIF-1α expression and poor colorectal cancer patient survival. These results collectively reveal a function of NQO1 in the oxygen-sensing mechanism that regulates HIF-1α stability in cancers.

Zhang L, Theodoropoulos PC, Eskiocak U, et al.
Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.
Sci Transl Med. 2016; 8(361):361ra140 [PubMed] Related Publications
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC.

Pak JH, Son WC, Seo SB, et al.
Peroxiredoxin 6 expression is inversely correlated with nuclear factor-κB activation during Clonorchis sinensis infestation.
Free Radic Biol Med. 2016; 99:273-285 [PubMed] Related Publications
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis.

Lee KW, Lee SS, Hwang JE, et al.
Development and Validation of a Six-Gene Recurrence Risk Score Assay for Gastric Cancer.
Clin Cancer Res. 2016; 22(24):6228-6235 [PubMed] Free Access to Full Article Related Publications
PURPOSE: This study was aimed at developing and validating a quantitative multigene assay for predicting tumor recurrence after gastric cancer surgery.
EXPERIMENTAL DESIGN: Gene expression data were generated from tumor tissues of patients who underwent surgery for gastric cancer (n = 267, training cohort). Genes whose expression was significantly associated with activation of YAP1 (a frequently activated oncogene in gastrointestinal cancer), 5-year recurrence-free survival, and 5-year overall survival were first identified as candidates for prognostic genes (156 genes, P < 0.001). We developed the recurrence risk score (RRS) by using quantitative RT-PCR to identify genes whose expression levels were significantly associated with YAP1 activation and patient survival in the training cohort.
RESULTS: We based the RRS assay on 6 genes, IGFBP4, SFRP4, SPOCK1, SULF1, THBS, and GADD45B, whose expression levels were significantly associated with YAP1 activation and prognosis in the training cohort. The RRS assay was further validated in an independent cohort of 317 patients. In multivariate analysis, the RRS was an independent predictor of recurrence [HR, 1.6; 95% confidence interval (CI), 1.02-2.4; P = 0.03]. In patients with stage II disease, the RRS had an HR of 2.9 (95% CI, 1.1-7.9; P = 0.03) and was the only significant independent predictor of recurrence.
CONCLUSIONS: The RRS assay was a valid predictor of recurrence in the two cohorts of patients with gastric cancer. Independent prospective studies to assess the clinical utility of this assay are warranted. Clin Cancer Res; 22(24); 6228-35. ©2016 AACR.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. INHA, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999