Cancer Overview
Research Indicators
Graph generated 31 August 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (4)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
BMI1
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
BMI1
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
BMI1
Cancer Genome Anatomy Project, NCI
Gene Summary
BMI1
COSMIC, Sanger Institute
Somatic mutation information and related details
BMI1
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: BMI1 (cancer-related)
Ye J, Luo D, Yu J, Zhu S
Transcriptome analysis identifies key regulators and networks in Acute myeloid leukemia.Hematology. 2019; 24(1):487-491 [
PubMed]
Related Publications
OBJECTIVES: Acute myeloid leukemia (AML) is a heterogeneous and highly recurrent hematological malignancy. Studies have shown an association between microRNAs and drive genes in AMLs. However, the regulatory roles of miRNAs in AML and how they act on downstream targets and the signaling pathway has been little studied.
METHODS: As to understand the mechanism of mRNA-miRNA interaction in the blood malignancy from a large scale of transcriptomic sequencing studies, we applied a comprehensive miRNA-mRNA association, co-expression gene network and ingenuity pathway analysis using TCGA AML datasets.
RESULTS: Our results showed that his-mir-335 was a critical regulatory of homeobox A gene family. PBX3, KAT6A, MEIS1, and COMMD3-BMI1 were predicted as top transcription regulators in the regulatory network of the HOXA family. The most significantly enriched functions were cell growth, proliferation, and survival in the mRNA-miRNA network.
CONCLUSION: Our work revealed that regulation of the HOXA gene family and its regulation played an important role in the development of AML.
BACKGROUND: Oxaliplatin resistance is a major challenge for treatment of advanced colorectal cancer (CRC). Both acquisition of epithelial-mesenchymal transition (EMT) and suppressed drug accumulation in cancer cells contributes to development of oxaliplatin resistance. Aberrant expression of small noncoding RNA, miR-128-3p, has been shown to be a key regulator in tumorigenesis and cancer development. However, its roles in the progression of CRC and oxaliplatin-resistance are largely unknown.
METHODS: Oxaliplatin-resistant CRC and normal intestinal FHC cells were transfected with a miR-128-3p expression lentivirus. After transfection, FHC-derived exosomes were isolated and co-cultured with CRC cells. miR-128-3p expression in resistant CRC cells, FHC cells, and exosomes was quantified by quantitative real-time PCR (RT-qPCR). The mRNA and protein levels of miR-128-3p target genes in resistant CRC cells were quantified by RT-qPCR and western blot, respectively. The effects of miR-128-3p on CRC cell viability, apoptosis, EMT, motility and drug efflux were evaluated by CCK8, flow cytometry, Transwell and wound healing assays, immunofluorescence, and atomic absorption spectrophotometry. Xenograft models were used to determine whether miR-128-3p loaded exosomes can re-sensitize CRC cells to oxaliplatin in vivo.
RESULTS: In our established stable oxaliplatin-resistant CRC cell lines, in vitro and vivo studies revealed miR-128-3p suppressed EMT and increased intracellular oxaliplatin accumulation. Importantly, our results indicated that lower miR-128-3p expression was associated with poor oxaliplatin response in advanced human CRC patients. Moreover, data showed that miR-128-3p-transfected FHC cells effectively packaged miR-128-3p into secreted exosomes and mediated miR-128-3p delivery to oxaliplatin-resistant cells, improving oxaliplatin response in CRC cells both in vitro and in vivo. In addition, miR-128-3p overexpression up-regulated E-cadherin levels and inhibited oxaliplatin-induced EMT by suppressing Bmi1 expression in resistant cells. Meanwhile, it also decreased oxaliplatin efflux through suppressed expression of the drug transporter MRP5.
CONCLUSION: Our results demonstrate that miR-128-3p delivery via exosomes represents a novel strategy enhancing chemosensitivity in CRC through negative regulation of Bmi1 and MRP5. Moreover, miR-128-3p may be a promising diagnostic and prognostic marker for oxaliplatin-based chemotherapy.
BACKGROUND: Telomerase reverse transcriptase (TERT) has a well-known role in carcinogenesis due to its functions in inducing cell immortality and preventing senescence. In this study, the relationships between TERT and a panel of known stem cell markers was examined in order to direct future enquiries into the role of 'stem-ness' in human breast cancer.
MATERIALS AND METHODS: Breast cancer tissues (n=124) and adjacent normal tissues (n=30) underwent reverse transcription and quantitative polymerase chain reaction. Transcript levels were analyzed for the correlation with that of TERT.
RESULTS: A significant direct correlation was found in cancerous tissue between TERT and BMI1 proto-oncogene polycomb ring finger 4 (BMI1; n=88, p<0.001), nestin (NES; n=88, p<0.001), POU domain, class 5, transcription factor 1 (POU5F1; n=88, p<0.001), aldehyde dehydrogenase 1 family member A2 (ALDH1A2; n=87, p=0.0298), cyclin-dependent kinase inhibitor 1A (CDKN1A; n=88, p<0.001), integrin subunit beta 1 (ITGNB1; n=88, p<0.001), integrin subunit alpha 6 (ITGA6; n=88, p<0.001), cluster of differentiation antigen 24 (CD24; n=88, p=0.0114), MET proto-oncogene (MET; n=78, p<0.001) and noggin (NOG; n=88, p<0.001).
CONCLUSION: The evidence presented in this article of possible interactions between TERT and a discrete subset of known stem cell markers would significantly contribute to further enquiries regarding clonal dynamics in the context of human breast cancer.
BACKGROUND: FUN14 domain-containing 1 (FUNDC1), as a novel member of mitochondria-associated endoplasmic reticulum (ER) membranes associates with mitochondrial division and mitophagy. However, the expression profile and functional roles of FUNDC1 remain largely unclear in human cancer biology, including breast cancer (BC).
METHODS: Immunohistochemistry and western blot analysis were used to determine the expression of FUNDC1 and BMI1 polycomb ring finger oncogene (BMI1). CCK8, cell counting and transwell assays were used to analyze cell proliferation, migration and invasion, respectively. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to detect the transcriptional regulation of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). The prognostic merit of NFATC1 expression was assessed by Kaplan-Meier assay.
FINDINGS: Immunohistochemistry revealed strong immunostaining for FUNDC1 in cytoplasmic and nuclear membrane distribution in BC tissues as compared with normal breast epithelium. Kaplan-Meier survival analysis showed worse outcome for BC patients with high FUNDC1 expression. In vitro assay of gain- and loss-of-function of FUNDC1 suggested that FUNDC1 could stimulate BC cell proliferation, migration and invasion. Furthermore, elevated FUNDC1 level promoted Ca
INTERPRETATION: FUNDC1 might promote BC progression by activating the Ca
MicroRNA deregulation is a consistent feature of glioblastoma, yet the biological effect of each single gene is generally modest, and therapeutically negligible. Here we describe a module of microRNAs, constituted by miR-124, miR-128 and miR-137, which are co-expressed during neuronal differentiation and simultaneously lost in gliomagenesis. Each one of these miRs targets several transcriptional regulators, including the oncogenic chromatin repressors EZH2, BMI1 and LSD1, which are functionally interdependent and involved in glioblastoma recurrence after therapeutic chemoradiation. Synchronizing the expression of these three microRNAs in a gene therapy approach displays significant anticancer synergism, abrogates this epigenetic-mediated, multi-protein tumor survival mechanism and results in a 5-fold increase in survival when combined with chemotherapy in murine glioblastoma models. These transgenic microRNA clusters display intercellular propagation in vivo, via extracellular vesicles, extending their biological effect throughout the whole tumor. Our results support the rationale and feasibility of combinatorial microRNA strategies for anticancer therapies.
BACKGROUND: Glioblastomas (GBM) comprise different subsets that exhibit marked heterogeneity and plasticity, leading to a lack of success of genomic profiling in guiding the development of precision medicine approaches against these tumors. Accordingly, there is an urgent need to investigate the regulatory mechanisms for different GBM subsets and identify novel biomarkers and therapeutic targets relevant in the context of GBM-specific niches. The DHHC family of proteins is associated tightly with the malignant development and progression of gliomas. However, the role of these proteins in the plasticity of GBM subsets remains unclear.
METHODS: This study utilized human glioma proneural or mesenchymal stem cells as indicated. The effects of DHHC proteins on different GBM subsets were investigated through in vitro and in vivo assays (i.e., colony formation assay, flow cytometry assay, double immunofluorescence, western blot, and xenograft model). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to detect the protein complexes of ZDHHC18 and ZDHHC23 in various GBM subtypes, and explore the mechanism of DHHC proteins in targeting different subsets of GSCs in specific niches.
RESULTS: ZDHHC18 and ZDHHC23 could target the glioma stem cells of different GBM subsets in the context of their specific niches and regulate the cellular plasticity of these subtypes. Moreover, mechanistic investigations revealed that ZDHHC18 and ZDHHC23 competitively interact with a BMI1 E3 ligase, RNF144A, to regulate the polyubiquitination and accumulation of BMI1. These events contributed to the transition of glioma stem cells in GBM and cell survival under the stressful tumor microenvironment.
CONCLUSIONS: Our work highlights the role of DHHC proteins in the plasticity of GBM subsets and reveals that BMI1 represents a potential therapeutic target for human gliomas.
Breast cancers enduring treatment with chemotherapy may be enriched for cancer stem cells or tumor-initiating cells, which have an enhanced capacity for self-renewal, tumor initiation, and/or metastasis. Breast cancer cells that express the type I tyrosine kinaselike orphan receptor ROR1 also may have such features. Here we find that the expression of ROR1 increased in breast cancer cells following treatment with chemotherapy, which also enhanced expression of genes induced by the activation of Rho-GTPases, Hippo-YAP/TAZ, or B lymphoma Mo-MLV insertion region 1 homolog (BMI1). Expression of ROR1 also enhanced the capacity of breast cancer cells to invade Matrigel, form spheroids, engraft in Rag2
Tumor suppressor genes (TSGs), including Ten-eleven translocation 1 (TET1), are hypermethylated in hepatocellular carcinoma (HCC). TET1 catalytic domain (TET1-CD) induces genome-wide DNA demethylation to activate TSGs, but so far, anticancer effects of TET1-CD are unclear. Here we showed that after HCC cells were transiently transfected with TET1-CD, the methylation levels of TSGs, namely APC, p16, RASSF1A, SOCS1 and TET1, were distinctly reduced, and their mRNA levels were significantly increased and HCC cells proliferation, migration and invasion were suppressed, but the methylation and mRNA levels of oncogenes, namely C-myc, Bmi1, EMS1, Kpna2 and c-fos, were not significantly change. Strikingly, HCC subcutaneous xenografts in nude mice remained to be significantly repressed even 54 days after transient transfection of TET1-CD. So, transient transfection of TET1-CD may be a great advance in HCC treatment due to its activation of multiple TSGs and persistent anticancer effects.
Li J, Wang Y, Ge J, et al.
Doublecortin-Like Kinase 1 (DCLK1) Regulates B Cell-Specific Moloney Murine Leukemia Virus Insertion Site 1 (Bmi-1) and is Associated with Metastasis and Prognosis in Pancreatic Cancer.Cell Physiol Biochem. 2018; 51(1):262-277 [
PubMed]
Related Publications
BACKGROUND/AIMS: Cancer stem cells (CSCs) are largely responsible for tumor relapse and metastatic behavior. Doublecortin-like kinase 1 (DCLK1) was recently reported to be a biomarker for gastrointestinal CSCs and involved in the epithelial-mesenchymal transition (EMT) and tumor progression. B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1) is a crucial regulator of CSC self-renewal, malignant transformation and EMT, and a previous study from our group showed that Bmi-1 is upregulated in pancreatic cancer progression and participates in EMT. However, it remains unclear whether DCLK1 is involved in pancreatic cancer or whether DCLK1 is associated with the altered level of Bmi-1 expression.
METHODS: The correlation of DCLK1 expression and clinical features of pancreatic cancer was analyzed in 210 paraffin-embedded archived pancreatic cancer specimens by immunohistochemical analysis. The biological effects of DCLK1 siRNA on cells were investigated by examining cell proliferation using a cell counting kit and cell colony assays, cell migration by wound healing assay and cell invasion by Transwell invasion assay. We further investigated the effect of therapeutic siRNA targeting DCLK1 on pancreatic cancer cell growth in vivo. Moreover, the molecular mechanism by which DCLK1 upregulates Bmi-1 expression was explored using real-time PCR, western blotting and Co-immunoprecipitation assay.
RESULTS: DCLK1 is overexpressed in pancreatic cancer and is related to metastasis and prognosis. Knockdown of DCLK1 markedly suppressed cell growth in vitro and in vivo and also inhibited the migration and invasion of pancreatic cancer cells. Furthermore, we found that DCLK1 silencing could inhibit EMT in cancer cells via downregulation of Bmi-1 and the mesenchymal markers Snail and Vimentin and upregulation of the epithelial marker E-cadherin. Moreover, high DCLK1 expression in human pancreatic cancer samples was associated with a mesenchymal phenotype and increased cell proliferation. Further co-immunoprecipitation indicated that DCLK1 did not interact with Bmi-1 directly.
CONCLUSION: Our data suggest that upregulation of DCLK1 may contribute to pancreatic cancer metastasis and poor prognosis by increasing Bmi-1 expression indirectly. The findings indicate that inhibiting DCLK1 expression might be a novel strategy for pancreatic cancer therapy.
Wu Y, Tian S, Chen Y, et al.
miR-218 inhibits gastric tumorigenesis through regulating Bmi-1/Akt signaling pathway.Pathol Res Pract. 2019; 215(2):243-250 [
PubMed]
Related Publications
BACKGROUND: Previous studies indicated that miR-218 was deregulated in gastric cancer patients and correlated with tumor invasion and prognosis. The aim of this study was to clarify the effect of miR-218 on the malignant behavior of gastric cancer and its role in regulating Bmi-1/Akt signaling pathway.
MATERIALS AND METHODS: We used miR-218 mimic to transfect gastric cancer cell lines AGS and SGC-7901, and the overexpression efficiency was validated using qRT-PCR assay. MTT assay and Transwell chamber system were performed to detect the effect of miR-218 on cell proliferation, invasion and migration on gastric cancer. Western blot and qRT-PCR assay was used to test the role of miR-218 in regulating Bmi-1/Akt signaling pathway.
RESULTS: As shown in our research, ectopic expression of miR-218 in gastric cancer cells inhibits the proliferation, invasion and migration of gastric cancer cells. In addition, miR-218 re-expression inhibits the expression of Bmi-1 and its downstream target p-Akt
CONCLUSIONS: miR-218 inhibits the proliferation, invasion and migration of gastric cancer cells through modulating EMT process and the expression of MMPs via Bmi-1/Akt signaling pathway.
Salimi M, Eskandari E
Association of Elevated Peripheral Blood Micronucleus Frequency and Bmi-1 mRNA Expression with Metastasis in
Iranian Breast Cancer PatientsAsian Pac J Cancer Prev. 2018; 19(10):2723-2730 [
PubMed]
Free Access to Full Article Related Publications
Background: In order to find cytogenetic and molecular metastasis biomarkers detectable in peripheral blood the
spontaneous genomic instability expressed as micronuclei and Bmi-1 expression in peripheral blood of breast cancer
(BC) patients were studied in different stages of the disease compared with unaffected first-degree relatives (FDRs)
and normal control. Methods: The Cytokinesis Block Micronuclei Cytome (CBMN cyt) and nested real-time Reverse
Transcription-Polymerase Chain Reaction (RT-PCR) assays, were respectively used to measure genomic instability and
Bmi-1 gene expression in 160 Iranian individuals comprised of BC patients in different stages of the disease, unaffected
FDRs and normal control groups. Result: The frequency of micronuclei and Bmi-1 expression were dramatically higher
in distant metastasis compared with non-metastatic BC. In spite of micronucleus frequency with no association with
lymph node (LN) involvement and hormone receptor status, the Bmi-1 expression level was higher in LN positive and
triple negative patients. Conclusion: Our results indicate that increased genomic instability expressed as micronuclei and
higher Bmi-1 expression in peripheral blood are associated with metastasis in breast cancer. Therefore implementation
of micronucleus assay and Bmi-1 expression analysis in blood as possible cytogenetic and molecular biomarkers in
clinical level may potentially enhance the quality of management of patients with breast cancer.
Bakhshinyan D, Venugopal C, Adile AA, et al.
BMI1 is a therapeutic target in recurrent medulloblastoma.Oncogene. 2019; 38(10):1702-1716 [
PubMed]
Related Publications
Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20% of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80%, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials.
Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.
Xiong Y, Liu L, Qiu Y, Liu L
MicroRNA-29a Inhibits Growth, Migration and Invasion of Melanoma A375 Cells in Vitro by Directly Targeting BMI1.Cell Physiol Biochem. 2018; 50(1):385-397 [
PubMed]
Related Publications
BACKGROUND/AIMS: Melanoma is one of the most aggressive malignant tumors, with increasing incidence, poor prognosis, and lack of any effective targeted therapies. Abnormal expression of miR-29a has been found in several types of cancers, including melanoma. In this study, experiments were performed to investigate the role of miR-29a in melanoma, and the molecular mechanism by which miR-29a represses melanoma.
METHODS: miR-29 and Bmi1 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability, apoptosis, migration and invasion were respectively determined by Cell Counting Kit-8 assay, Propidium iodide (PI) fluorescein isothiocynate (FITC)-Annexin V staining assay, wound healing assay and transwell assay. Luciferase reporter assay was performed to determine a target gene of miR-29a. Western blot was used to analyze protein expression of apoptosis-related proteins, Bmi1, Wnt/β-catenin and Nuclear factor-κB (NF-κB) pathway target genes.
RESULTS: miR-29a was down-regulated in all tested melanoma cell lines. Up-regulation of miR-29a effectively inhibited cell viability, migration, and invasion, but promoted apoptosis in A375 cells. Bmi1 was a direct target gene of miR-29a. Transfection with miR-29a mimic decreased cell migration and invasion and Bmi1 expression in Malme-3M cells, SK-MEL-2, SK-MEL-5, and M14 cell lines. Moreover, miR-29a might suppress growth, migration and invasion of A375 cells by negatively regulating Bmi1. In addition, our results demonstrated that transfection with miR-29a mimic effectively blocked Wnt/β-catenin and NF-κB pathways via down-regulating Bmi1.
CONCLUSION: miR-29a could be functioned as a potential tumor suppressor through direct regulation of Bmi1 in melanoma cells.
Oral squamous cell carcinoma (OSCC) is an extremely aggressive disease associated with a poor prognosis. Previous studies have established that cancer stem cells (CSCs) actively participate in OSCC development, progression and resistance to conventional treatments. Furthermore, CSCs frequently exhibit a deregulated expression of normal stem cell signalling pathways, thereby acquiring their distinctive abilities, of which self-renewal is an example. In this study, we examined the effects of GLI3 knockdown in OSCC, as well as the differentially expressed genes in CSC-like cells (CSCLCs) expressing high (CD44high) or low (CD44low) levels of CD44. The prognostic value of GLI3 in OSCC was also evaluated. The OSCC cell lines were sorted based on CD44 expression; gene expression was evaluated using a PCR array. Following this, we examined the effects of GLI3 knockdown on CD44 and ESA expression, colony and sphere formation capability, stem-related gene expression, proliferation and invasion. The overexpression of genes related to the Notch, transforming growth factor (TGF)β, FGF, Hedgehog, Wnt and pluripotency maintenance pathways was observed in the CD44high cells. GLI3 knockdown was associated with a significant decrease in different CSCLC fractions, spheres and colonies in addition to the downregulation of the CD44, Octamer-binding transcription factor 4 (OCT4; also known as POU5F1) and BMI1 genes. This downregulation was accompanied by an increase in the expression of the Involucrin (IVL) and S100A9 genes. Cellular proliferation and invasion were inhibited following GLI3 knockdown. In OSCC samples, a high GLI3 expression was associated with tumour size but not with prognosis. On the whole, the findings of this study demonstrate for the first time, at least to the best of our knowledge, that GLI3 contributes to OSCC stemness and malignant behaviour. These findings suggest the potential for the development of novel therapies, either in isolation or in combination with other drugs, based on CSCs in OSCC.
Kim M, Lee S, Park WH, et al.
Silencing Bmi1 expression suppresses cancer stemness and enhances chemosensitivity in endometrial cancer cells.Biomed Pharmacother. 2018; 108:584-589 [
PubMed]
Related Publications
BACKGROUND: Bmi1, a polycomb group gene, is essential for self-renewal of stem cells and is frequently upregulated in various cancer cells. We aimed to investigate the effect of Bmi1 silencing on cancer stemness and chemosensitivity in endometrial cancer using targeted siRNA approach in HEC1A and Ishikawa cells.
METHODS: Cell viability after treatment with Bmi1 siRNA was assessed using the MTT assay, and cell apoptosis was visualized using the TdT-mediated dUTP nick-end labeling (TUNEL) method. Western blotting, migration assays and invasion assays were performed to detect changes in the stem-like properties of cancer cells. To evaluate the anticancer effect of Bmi1 silencing, HEC1A and Ishikawa cells were treated with 100 nM Bmi1 siRNA and/or 40 μM cisplatin.
RESULTS: In the MTT assay, compared to control, viability of HEC1A and Ishikawa cells significantly decreased after Bmi1 siRNA treatment in a dose-dependent manner. Bmi1 silencing using siRNA increased the expression of cleaved caspase-3 and cleaved poly adenosine diphosphate-ribose polymerase polymerase (PARP) as observed in the western blot analysis. Apoptosis significantly increased in the HEC1A and Ishikawa cells treated with 100 nM Bmi1 siRNA for 48 h than in the control cells in TUNEL assay. SOX2 and Oct4 expression decreased in the HEC1A and Ishikawa cells treated with Bmi1 siRNA, while E-cadherin expression increased. Further, migratory and invasive properties were significantly inhibited by Bmi1 siRNA treatment in both cell lines. Notably, viability of HEC1A and Ishikawa cells decreased more when they were concurrently treated with Bmi1 siRNA and cisplatin compared to when they were treated with Bmi1 siRNA or cisplatin alone.
CONCLUSION: Bmi1 silencing suppresses cancer stemness in HEC1A and Ishikawa cells. Concurrent treatment with Bmi1 siRNA and cisplatin resulted in additive anticancer effect with a cell line-specific pattern, which was higher than that shown by cisplatin treatment alone.
Yu J, Hu M, Chen W, Wen Z
Expression of B Cell-Specific Moloney Murine Leukemia Virus Integration Site 1 (BMI-1) and WW Domain-Containing Oxidoreductase (WWOX) in Liver Cancer Tissue and Normal Liver Tissue.Med Sci Monit. 2018; 24:6673-6679 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND The aim of this study was to compare the expression levels of mRNA of the B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) and the WW domain-containing oxidoreductase (WWOX) genes and their protein products in tissues from patients with liver cancer with normal liver tissues from patients without liver cancer. MATERIAL AND METHODS The liver cancer group (N=56) included patients with available tissue samples of histologically confirmed liver cancer. The control group (N=24) included histologically confirmed normal liver tissue samples. Immunofluorescence staining and Western blot were used to detect and compare protein expression of Bmi-1 and WWOX in liver tissues in the liver cancer group and the control group. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect and compare mRNA expression of BMI-1 and WWOX in liver tissues in the liver cancer group and the control group. Expression levels of the protein and mRNA levels and the clinicopathological features including patient prognosis in liver cancer were evaluated statistically using analysis of variance (ANOVA). RESULTS There were significant differences in the expression levels of protein and mRNA of BMI-1 and WWOX between the liver cancer group and the control group. BMI-1 mRNA and protein expression were significantly increased, and WWOX mRNA and protein expression were significantly reduced in liver cancer tissue, compared with normal liver tissue (p<0.05). CONCLUSIONS In liver cancer tissue compared with normal liver, the expression of BMI-1 and WWOX mRNA and their protein products were upregulated and down-regulated, respectively.
Zhu K, Li K, Yuan DW, et al.
Clinicopathological and Prognostic Significance of Expression of B-Cell-Specific Moloney Murine Leukemia Virus Insertion Site 1 (BMI-1) Gene and Protein in Gastrointestinal Stromal Tumors.Med Sci Monit. 2018; 24:6414-6421 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND Gastrointestinal stromal tumor (GIST) is an uncommon visceral sarcoma that arises predominantly in the gastrointestinal tract. Since GISTs are encountered infrequently and inflexible to traditional therapy, the aim of the present study was to explore the correlation of B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI-1) mRNA and BMI-1 protein levels with the clinicopathological characteristics and prognosis significance of GISTs. MATERIAL AND METHODS GIST tissues and normal tissues were collected from 156 patients who had undergone surgical treatment. RT-qPCR and immunohistochemistry were used to measure the BMI-1 mRNA and protein levels in GIST tissues and normal tissues. Univariate survival analysis was used for determination of the factors that affect prognosis of GIST patients. Cox proportional hazards model was plotted to determine the independent risk factors for prognosis of GIST patients. RESULTS The BMI-1 mRNA and protein levels in GIST tissues were higher than those in normal tissues. BMI-1 mRNA and positive protein levels were correlated with the National Institutes of Health (NIH) risk grade, tumor diameter and infiltration, and metastasis. There was a short survival period for the patients with a positive protein level and a high mRNA level of BMI-1. The site of primary tumor, tumor diameter, NIH risk grade, infiltration, and metastasis, as well as BMI-1 mRNA and protein levels were independent risk factors for prognosis of GIST patients. CONCLUSIONS Taken together, these findings suggest there might be a relationship between BMI-1 mRNA and protein levels, and clinicopathological characteristics, including NIH risk grade, tumor size as well as infiltration and metastasis, of GIST patients. In addition, BMI-1 mRNA and protein levels were identified as independent risk factors for prognosis of GIST patients.
BACKGROUND: It has been shown that the expression of potassium channel tetramerization domain containing 12 (KCTD12) as a regulator of GABAB receptor signaling is reversely associated with gastrointestinal stromal tumors. In present study we examined the probable role of KCTD12 in regulation of several signaling pathways and chromatin remodelers in esophageal squamous cell carcinoma (ESCC).
METHODS: KCTD12 ectopic expression was done in KYSE30 cell line. Comparative quantitative real time PCR was used to assess the expression of stem cell factors and several factors belonging to the WNT/NOTCH and chromatin remodeling in transfected cells in comparison with non-transfected cells.
RESULTS: We observed that the KCTD12 significantly down regulated expression of NANOG, SOX2, SALL4, KLF4, MAML1, PYGO2, BMI1, BRG1, MSI1, MEIS1, EGFR, DIDO1, ABCC4, ABCG2, and CRIPTO1 in transfected cells in comparison with non-transfected cells. Migration assay showed a significant decrease in cell movement in ectopic expressed cells in comparison with non-transfected cells (p = 0.02). Moreover, KCTD12 significantly decreased the 5FU resistance in transfected cells (p = 0.01).
CONCLUSIONS: KCTD12 may exert its inhibitory role in ESCC through the suppression of WNT /NOTCH, stem cell factors, and chromatin remodelers and can be introduced as an efficient therapeutic marker.
Liu P, Zhang M, Niu Q, et al.
Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1.Braz J Med Biol Res. 2018; 51(10):e6839 [
PubMed]
Free Access to Full Article Related Publications
Long non-coding RNA antisense non-coding RNA in the INK4 locus (ANRIL) has been reported to promote tumorigenesis via regulating microRNA (miR)-99a in gastric cancer cells. However, the role of each component involved in it is still not well understood. This study aimed to verify the role of ANRIL in gastric cancer as well as the underlying mechanisms. ANRIL levels in clinical gastric cancer tissues and cell lines were tested by qPCR. Effects of ANRIL silence on cell viability, migration and invasion, apoptosis, and miR-99a expression in MKN-45 and SGC-7901 cells were measured using CCK-8, Transwell assay, flow cytometry, and qPCR assays, respectively. Then, effects of miR-99a inhibition on ANRIL-silenced cells were evaluated. B-lymphoma Mo-MLV insertion region 1 (BMI1) expression, after abnormal expression of ANRIL and miR-99a, was determined. Finally, expression of key proteins in the apoptotic, Notch, and mTOR pathways was assessed. ANRIL level was elevated in gastric cancer tissues and cell lines. Knockdown of ANRIL suppressed cell viability, migration, and invasion, and increased apoptosis through up-regulating miR-99a. Furthermore, ANRIL silence down-regulated BMI1 via up-regulating miR-99a. BMI1 silence down-regulated Bcl-2 and key kinases in the Notch and mTOR pathways and up-regulated p16 and cleaved caspases. We verified the tumor suppressive effects of ANRIL knockdown in gastric cancer cells via crosstalk with miR-99a. Together, we provided a novel regulatory mechanism for ANRIL in gastric cancer, in which ANRIL silence down-regulated BMI1 via miR-99a, along with activation of the apoptotic pathway and inhibition of the Notch and mTOR pathways.
Fu Z, Cao X, Yang Y, et al.
Upregulation of FoxM1 by MnSOD Overexpression Contributes to Cancer Stem-Like Cell Characteristics in the Lung Cancer H460 Cell Line.Technol Cancer Res Treat. 2018; 17:1533033818789635 [
PubMed]
Free Access to Full Article Related Publications
Manganese superoxide dismutase promotes migration and invasion in lung cancer cells via upregulation of the transcription factor forkhead box M1. Here, we assessed whether upregulation of forkhead box M1 by manganese superoxide dismutase overexpression mediates the acquisition of cancer stem-like cell characteristics in non-small cell lung cancer H460 cells. The second-generation spheroids from H460 cells were used as lung cancer stem-like cells. The levels of manganese superoxide dismutase, forkhead box M1, stemness markers (CD133, CD44, and ALDH1), and transcription factors (Bmi1, Nanog, and Sox2) were analyzed by Western blot. Sphere formation in vitro and carcinogenicity of lung cancer stem-like cells were evaluated by spheroid formation assay and limited dilution xenograft assays. Knockdown or overexpression of manganese superoxide dismutase or/and forkhead box M1 by transduction with short hairpin RNA(shRNA) or complementary DNA were performed for mechanistic studies. We showed that manganese superoxide dismutase and forkhead box M1 amounts as well as the expression levels of stemness markers and transcription factors sphere formation in vitro, and carcinogenicity of lung cancer stem-like cells were higher than in monolayer cells. Lung cancer stem-like cells transduced with manganese superoxide dismutase shRNA or FoxM1 shRNA exhibited decreased sphere formation and lower amounts of stemness markers and transcription factors. Overexpression of manganese superoxide dismutase or FoxM1 in H460 cells resulted in elevated sphere formation rates and protein levels of stemness markers and transcription factors. Meanwhile, manganese superoxide dismutase knockdown or overexpression accordingly altered forkhead box M1 levels. However, forkhead box M1 knockdown or overexpression had no effect on manganese superoxide dismutase levels but inhibited or promoted lung cancer stem-like cell functions. Interestingly, forkhead box M1 overexpression alleviated the inhibitory effects of manganese superoxide dismutase knockdown in lung cancer stem-like cells. In a panel of non-small cell lung cancer cells, including H441, H1299, and H358 cells, compared to the respective monolayer counterparts, the expression levels of manganese superoxide dismutase and forkhead box M1 were elevated in the corresponding spheroids. These findings revealed the role of forkhead box M1 upregulation by manganese superoxide dismutase overexpression in maintaining lung cancer stem-like cell properties. Therefore, inhibition of forkhead box M1 upregulation by manganese superoxide dismutase overexpression may represent an effective therapeutic strategy for non-small cell lung cancer.
M JR, S V
BMI1 and PTEN are key determinants of breast cancer therapy: A plausible therapeutic target in breast cancer.Gene. 2018; 678:302-311 [
PubMed]
Related Publications
BMI-1 (B-lymphoma Mo-MLV insertion region 1) is a key protein partner in polycomb repressive complex 1 (PRC1) that helps in maintaining the integrity of the complex. It is also a key player in ubiquitination of histone H2A which affects gene expression pattern involved in various cellular processes such as cell proliferation, growth, DNA repair, apoptosis and senescence. In many cancers, Overexpression of BMI1correlates with advanced stages of disease, aggressive clinicopathological behavior, poor prognosis resistance to radiation and chemotherapy. BMI1 is emerging as a key player in EMT, chemo-resistance and cancer stemness. Overexpression is observed in various cancer types such as breast, primary hepatocellular carcinoma (HCC), gastric, ovarian, head and neck, pancreatic and lung cancer. Studies have shown that experimental reduction of BMI protein level in tumor cells results in inhibition of cell proliferation, induction of apoptosis and/or senescence, and increases susceptibility to cytotoxic agents and radiation therapy. Thus, inhibition of BMI1 expression particularly in breast cancer stem cells can be used as a potential strategy for the complete elimination of tumor and to prevent disease relapse. On other hand PTEN is known to be an important tumor suppressor next to p53. In many cancers particularly in breast cancer, p53 and PTEN undergo mutations. Studies have indicated the functional and mechanistic link between the BMI-1oncoprotein and tumor suppressor PTEN in the development and progression of cancer. The current review focuses on recent findings of how oncogenicity and chemo-resistance are caused by BMI1. It also highlights the transcriptional regulation between BMI1 and PTEN that dictates the therapeutic outcome in cancers where the functional p53 is absent. Herein, we have clearly demonstrated the regulation of transcription at genomic loci of BMI1 and PTEN in cancerous tissue or cells and the possible epigenetic regulation by histone deacetylase inhibitors (HDACi) at BMI1 and PTEN loci that may provide some clue for the possible therapy against TNBC in near future.
Milosevic M, Lazarevic M, Toljic B, et al.
Characterization of stem-like cancer cells in basal cell carcinoma and its surgical margins.Exp Dermatol. 2018; 27(10):1160-1165 [
PubMed]
Related Publications
BACKGROUND: Understanding the pathogenesis of basal cell carcinoma (BCC) and identifying the cells responsible for propagation and recurrence are crucial for the development of new treatment strategies. The aim of this study was to characterize the cells isolated from BCC and its margin.
METHODS: Primary cultures were established from 10 BCCs, their respective close resection margins (3 mm) and 10 control tissues. Stem cell markers analysis was carried out by real-time PCR and/or flow cytometry. Spheroid formation and MTT assays were also performed.
RESULTS: Real-time PCR showed a higher expression of embryonic (Oct4, Sox2 and Nanog) and mesenchymal (CD44 and CD73) stem cell markers in tumors compared to margins and controls (P < 0.05). Bmi-1 and GPR49 were also upregulated in tumors in comparison with margins. Both tumor and margin cells, but not normal, had the capacity to form spheroids. During passages, the number of spheres increased, while the diameter decreased. Tumor cells showed higher chemo-resistance compared to margin and control cells.
CONCLUSIONS: Basal cell carcinomas expressed stem cell markers, pointing to the existence of a cancer cell side population with stemness characteristics. Margin also appeared to harbour a small number of cancer-initiating cells.
Background: Recent findings indicate that dentin sialophosphoprotein (DSPP) and matrix metalloproteinase (MMP) 20 interact in oral squamous cell carcinoma (OSCC). The objective of this study was to determine the effects of DSPP/MMP20 gene silencing on oral cancer stem cell (OCSC) markers.
Methods: The expression of well-established OCSC markers: ABCG2; ALDH1; CD133; CD44; BMI1; LGR4, and Podoplanin in DSPP/MMP20-silenced OSCC cell line, OSC2, and controls were assayed by western blot (WB), and flow cytometry techniques. The sensitivity of OSC2 cells to cisplatin following DSPP/MMP20 silencing was also determined.
Results: DSPP/MMP20 silencing resulted in downregulation of OCSC markers, more profoundly ABCG2 (84%) and CD44 (81%), following double silencing. Furthermore, while treatment of parent (pre-silenced) OSC2 cells with cisplatin resulted in upregulation of OCSC markers, DSPP/MMP20-silenced OSC2 cells similarly treated resulted in profound downregulation of OCSC markers (72 to 94% at 50 μM of cisplatin), and a marked reduction in the proportion of ABCG2 and ALDH1 positive cells (~ 1%).
Conclusions: We conclude that the downregulation of OCSC markers may signal a reduction in OCSC population following MMP20/DSPP silencing in OSCC cells, while also increasing their sensitivity to cisplatin. Thus, our findings suggest a potential role for DSPP and MMP20 in sustaining OCSC population in OSCCs, possibly, through mechanism(s) that alter OCSC sensitivity to treatment with chemotherapeutic agents such as cisplatin.
Li N, Jiang K, Fang LP, et al.
Knockdown of long noncoding RNA CCAT1 inhibits cell growth, invasion and peritoneal metastasis via downregulation of Bmi-1 in gastric cancer.Neoplasma. 2018; 65(5):736-744 [
PubMed]
Related Publications
Long noncoding RNA colon cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in gastric cancer (GC) tissues compared with normal counterparts and CCAT1 upregulation can promote proliferation and migration of GC cells in vitro. B-cell specific moloney leukemia virus insertion site 1 (Bmi-1) expression is positively correlated with tumor progression. The present study aimed to investigate the biological functions of CCAT1 and the relationships between CCAT1 and Bmi-1 in GC progression. In the present study, CCAT1 was knocked down by specific shRNA transfection in two human GC cell lines (MGC-803 and SGC-7901). The effects of CCAT1 knockdown on GC cell proliferation, cell cycle, migration and invasion were investigated in vitro. The effect of CCAT1 knockdown on peritoneal metastasis was assessed in nude mice. Bmi-1 expression levels were examined both in vitro and in vivo. The results showed that CCAT1 knockdown markedly inhibited cell proliferation, migration and invasion, arrested the cell cycle at G0/G1 phase in vitro, and inhibited peritoneal metastasis in nude mice, along with the downregulation of Bmi-1. Taken together, CCAT1 is functionally involved in growth and metastasis of GC cells and it may be a potential target for GC therapy.
de Smith AJ, Walsh KM, Francis SS, et al.
BMI1 enhancer polymorphism underlies chromosome 10p12.31 association with childhood acute lymphoblastic leukemia.Int J Cancer. 2018; 143(11):2647-2658 [
PubMed] Article available free on
PMC after 01/12/2019
Related Publications
Genome-wide association studies of childhood acute lymphoblastic leukemia (ALL) have identified regions of association at PIP4K2A and upstream of BMI1 at chromosome 10p12.31-12.2. The contribution of both loci to ALL risk and underlying functional variants remain to be elucidated. We carried out single nucleotide polymorphism (SNP) imputation across chromosome 10p12.31-12.2 in Latino and non-Latino white ALL cases and controls from two independent California childhood leukemia studies, and additional Genetic Epidemiology Research on Aging study controls. Ethnicity-stratified association analyses were performed using logistic regression, with meta-analysis including 3,133 cases (1,949 Latino, 1,184 non-Latino white) and 12,135 controls (8,584 Latino, 3,551 non-Latino white). SNP associations were identified at both BMI1 and PIP4K2A. After adjusting for the lead PIP4K2A SNP, genome-wide significant associations remained at BMI1, and vice-versa (p
Shao Y, Zhang D, Li X, et al.
MicroRNA-203 Increases Cell Radiosensitivity via Directly Targeting Bmi-1 in Hepatocellular Carcinoma.Mol Pharm. 2018; 15(8):3205-3215 [
PubMed]
Related Publications
BACKGROUND: B-cell-specific moloney leukemia virus insertion site 1 (Bmi-1) plays important roles in various cancers, but its regulation through microRNAs (miRNAs) and its functions in hepatocellular carcinoma (HCC) remains unclear.
METHODS: We evaluated the expression and prognostic significance of Bmi-1 in HCC by using tissue samples and The Cancer Genome Atlas (TCGA) data sets. The relationship between miRNAs and Bmi-1 was verified by bioinformatics prediction and immunofluorescence. Colony formation and apoptosis assays were used to reveal the effect of miR-203 on radiosensitivity.
RESULTS: The Bmi-1 mRNA and protein were upregulated in HCC tissues. Cox regression multivariate analyses showed that Bmi-1 overexpression was an independent prognostic parameter for HCC patients. The expression level of Bmi-1 was negatively associated with miR-203 levels in HCC tissues. Dual-luciferase reporter assays showed that miR-203 could target the 3' untranslated region (3'-UTR) of Bmi-1 directly. Overexpression of miR-203 in HepG2 and Smmc-7721 cells increases their sensitivity to ionizing radiation in vitro and in vivo. Moreover, the improved cell radiosensitivity induced by miR-203 could be rescued by restoration of Bmi-1 expression.
CONCLUSIONS: Bmi-1 could improve the predictive accuracy for HCC patients' survival. Moreover, miR-203 enhance cell radiosensitivity in vitro and in vivo by targeting Bmi-1 in HCC.
Kim JS, Choi DW, Kim CS, et al.
MicroRNA-203 Induces Apoptosis by Targeting Anticancer Res. 2018; 38(6):3477-3485 [
PubMed]
Related Publications
BACKGROUND/AIM: MicroRNAs (miRNAs) are closely associated with a number of cellular processes, including cell development, differentiation, proliferation, carcinogenesis, and apoptosis. The aim of the present study was to elucidate the molecular mechanisms underlying the tumor suppressor activity of miRNA-203 (miR-203) in YD-38 human oral cancer cells.
MATERIALS AND METHODS: Polymerase chain reaction analysis, MTT assay, DNA fragmentation assay, fluorescence-activated cell-sorting analysis, gene array, immunoblotting, and luciferase assay were carried out in YD-38 cells.
RESULTS: miR-203 expression was significantly down-regulated in YD-38 cells compared to expression levels in normal human oral keratinocytes. miR-203 decreased the viability of YD-38 cells in a time- and dose-dependent manner. In addition, over-expression of miR-203 significantly increased not only DNA segmentation, but also the apoptotic population of YD-38 cells. These results indicate that miR-203 overexpression induces apoptosis in YD-38 cells. Target gene array analysis revealed that the expression of the polycomb complex protein gene Bmi-1, a representative oncogene, was significantly down-regulated by miR-203 in YD-38 cells. Moreover, both mRNA and protein levels of Bmi-1 were significantly reduced in YD-38 cells transfected with miR-203. These results indicate that Bmi-1 is a target gene of miR-203. A luciferase reporter assay confirmed that miR-203 suppressed Bmi-1 expression by directly targeting the 3'-untranslated region.
CONCLUSION: miR-203 induces apoptosis in YD-38 cells by directly targeting Bmi-1, which suggests its possible application as an anti-cancer therapeutic.
Ma DQ, Zhang YH, Ding DP, et al.
Effect of Bmi-1-mediated NF-κB signaling pathway on the stem-like properties of CD133+ human liver cancer cells.Cancer Biomark. 2018; 22(3):575-585 [
PubMed]
Related Publications
OBJECTIVE: To investigate the impact of Bmi-1-mediated NF-κB pathway on the biological characteristics of CD133+ liver cancer stem cells (LCSCs).
METHODS: Flow cytometry was used to isolate CD133+ LCSC cells from Huh7, Hep3B, SK-hep1, and PLC/PRF-5 cells. CD133+ Huh7 cells were divided into Control, Blank, Bmi-1 siRNA, JSH-23 (NF-κB pathway inhibitor), and Bmi-1 + JSH-23 groups. The properties of CD133+ Huh7 cells were detected by the colony-formation and sphere-forming assays. Besides, Transwell assay was applied for the measurement of cell invasion and migration, immunofluorescence staining for the detection of NF-κB p65 nuclear translocation, and qRT-PCR and Western blotting for the determination of SOX2, NANOG, OCT4, Bmi-1, and NF-κB p65 expression.
RESULTS: CD133+ Huh-7 cells were chosen as the experiment subjects after flow cytometry. Compared with CD133- Huh-7 cells, the expression of CD133, OCT4, SOX2, NANOG, Bmi-1, and NF-κB p65, the nuclear translocation of NF-κB p65, the number of cell colonies and Sphere formation, as well as the abilities of invasion and migration were observed to be increased in CD133+ Huh-7 cells, which was inhibited after treated with Bmi-1 siRNA or JSH-23, meanwhile, the cell cycle was arrested at the G0/G1 and S phases with apparently enhanced cell apoptosis. Importantly, no significant differences in the biological characteristics of CD133 + Huh-7 cells were found between the Blank group and Bmi-1 + JSH-23 group.
CONCLUSION: Down-regulating Bmi-1 may inhibit the biological properties of CD133+ LCSC by blocking NF-κB signaling pathway, which lays a scientific foundation for the clinical treatment of liver cancer.
Motalebzadeh J, Shabani S, Rezayati S, et al.
Prognostic Value of FBXO39 and ETS-1 but not BMI-1 in Iranian Colorectal Cancer PatientsAsian Pac J Cancer Prev. 2018; 19(5):1357-1362 [
PubMed] Article available free on
PMC after 01/12/2019
Related Publications
Background: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite recent progress in
diagnosis and treatment, it remains a major health problem and further studies are needed. We here investigated expression
profiles of the FBXO39, ETS-1 and BMI-1 genes in CRCs to validate any possible diagnostic/prognostic significance.
Material and Methods: Thirty six patients with locally advanced CRC admitted to Hazrate-Rasoul Hospital-Tehran
were enrolled. Initially the expression pattern of FBXO39, ETS-1 and BMI-1 genes were determined using RT-PCR
in CRC tumor and adjacent normal tissues then real-time RT-PCR was employed to quantify BMI-1 gene expression.
Results: FBXO39 expression was restricted to tumor tissues. Interestingly, expression of this gene was detected in all
stage-0 tumor samples. There was a significant relation between FBXO39 gene expression and lymph node involvement.
The ETS-1 gene was expressed in 66% of all tumor tissues with p-value=0.03 for increase as compared to the adjacent
normal samples. In addition, there was a significant relation between ETS-1 gene expression and tumor size and lymph
node involvement. RT-PCR demonstrated BMI-1 gene expression in both tumor and normal tissues and quantification
by real-time RT-PCR showed no association between BMI-1 levels and CRC clinicopathological features. Conclusion:
Expression of FBXO39 and ETS-1 with lymph node involvement may be considered as an alarm for the occurrence
of CRC metastasis, and therfore have prognostic value while BMI-1 appears without importance.