Gene Summary

Gene:IFNA17; interferon, alpha 17
Aliases: IFNA, INFA, LEIF2C1, IFN-alphaI
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:interferon alpha-17
Source:NCBIAccessed: 07 August, 2015


What does this gene/protein do?
Show (11)
Pathways:What pathways are this gene/protein implicaed in?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 07 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 07 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IFNA17 (cancer-related)

Kaowinn S, Cho IR, Moon J, et al.
Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.
Biochem Biophys Res Commun. 2015; 459(2):313-8 [PubMed] Related Publications
Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.

Lee CH, Kim HW, Kim T, Lee SW
Recombinant adenovirus infection suppresses hTERT expression through virus-associated RNA-mediated induction of type 1 interferon.
Biochem Biophys Res Commun. 2015; 458(4):830-5 [PubMed] Related Publications
Adenovirus vector is one of the most widely used vectors in gene therapy applications for the treatment of diverse human diseases including cancer. In this study, we showed that infection with E1E3-deleted recombinant human adenovirus serotype 5 reduced human telomerase reverse transcriptase (hTERT) mRNA levels in hepatoma cell lines. We defined the mechanisms by which the recombinant adenovirus vector reduces hTERT mRNA levels as follows: Using the virus-associated RNA I/II (VAI/II) expression construct, we demonstrated that the expression of VAI and VAII RNAs led to an increase in IFN-α2 level, and IFN-α2 induction was responsible for the decrease in hTERT mRNA levels. We showed that the effects of VA RNAs were specific for the replication-incompetent E1E3-deleted adenovirus vector, because wild-type adenovirus affected neither IFN-α2 nor hTERT mRNA levels. Moreover, we demonstrated that adenovirus vector-mediated delivery of the hTERT-targeting anti-cancer reagent could additively reduce the levels of hTERT mRNA that were specifically overexpressed in most of the cancer cells. This study showed that E1E3-deleted adenovirus vector system reduced hTERT mRNA levels through VA RNA-mediated induction of type 1 interferon; hence the recombinant adenovirus itself could have anti-cancer activity. These results indicate that recombinant adenovirus vector could be an effective means to deliver anti-cancer reagents for combating cancerous cells more effectively.

Litvin O, Schwartz S, Wan Z, et al.
Interferon α/β Enhances the Cytotoxic Response of MEK Inhibition in Melanoma.
Mol Cell. 2015; 57(5):784-96 [PubMed] Article available free on PMC after 05/03/2016 Related Publications
Drugs that inhibit the MAPK pathway have therapeutic benefit in melanoma, but responses vary between patients, for reasons that are still largely unknown. Here we aim at explaining this variability using pre- and post-MEK inhibition transcriptional profiles in a panel of melanoma cell lines. We found that most targets are context specific, under the influence of the pathway in only a subset of cell lines. We developed a computational method to identify context-specific targets, and found differences in the activity levels of the interferon pathway, driven by a deletion of the interferon locus. We also discovered that IFNα/β treatment strongly enhances the cytotoxic effect of MEK inhibition, but only in cell lines with low activity of interferon pathway. Taken together, our results suggest that the interferon pathway plays an important role in, and predicts, the response to MAPK inhibition in melanoma. Our analysis demonstrates the value of system-wide perturbation data in predicting drug response.

Randall JM, Millard F, Kurzrock R
Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art.
Cancer Metastasis Rev. 2014; 33(4):1109-24 [PubMed] Related Publications
Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2-3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.

Sistigu A, Yamazaki T, Vacchelli E, et al.
Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy.
Nat Med. 2014; 20(11):1301-9 [PubMed] Related Publications
Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell-mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.

Bian L, Wang Y, Liu Q, et al.
Prediction of signaling pathways involved in enterovirus 71 infection by algorithm analysis based on miRNA profiles and their target genes.
Arch Virol. 2015; 160(1):173-82 [PubMed] Related Publications
Enterovirus 71 (EV71) causes major outbreaks of hand, foot, and mouth disease. Host factors and signaling pathways exhibit important functions in the EV71 life cycle. We conducted algorithm analysis based on miRNA profiles and their target genes to identify the miRNAs and downstream signaling pathways involved in EV71 infection. The miRNA profiles of human rhabdomyosarcoma cells treated with interferon (IFN-)-α or IFN-γ were compared with those of cells infected with EV71. Genes targeted by differentially expressed miRNAs were identified and assigned to different signaling pathways according to public databases. The results showed that host miRNAs specifically responded to the viral infection and IFN treatment. Some miRNAs, including miR-124 and miR-491-3p, were regulated in opposite manners by the IFNs and EV71. Some signaling pathways regulated by both EV71 infection and IFN treatment were also predicted. These pathways included axon guidance, Wingless/Int1 (Wnt) signaling cascade, platelet-derived growth factor receptor (PDGFR)/PDGF, phosphatidylinositol 3-kinase (PI3K), Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK), transforming growth factor-beta receptor (TGF-βR)/TGF-β, SMAD2/3, insulin/insulin-like growth factor (IGF), bone morphogenetic protein (BMP), CDC42, ERB1, hepatocyte growth factor receptor (c-Met), eukaryotic translation initiation factor 4E (eIF4E), protein kinase A (PKA), and IFN-γ pathways. The identified miRNA and downstream signaling pathways would help to elucidate the interaction between the virus and the host. The genomics method using algorithm analysis also provided a new way to investigate the host factors and signaling pathways critical for viral replication.

Guo Z, Tilburgs T, Wong B, Strominger JL
Dysfunction of dendritic cells in aged C57BL/6 mice leads to failure of natural killer cell activation and of tumor eradication.
Proc Natl Acad Sci U S A. 2014; 111(39):14199-204 [PubMed] Article available free on PMC after 05/03/2016 Related Publications
The reciprocal activation of dendritic cells (DCs) and natural killer cells (NKs) plays a key role in both innate and adaptive immunity. The effect of aging on this cross-talk, a critical step in virus disease control and tumor immunology, has not been reported. Splenic DCs and NKs were purified from both young and old C57BL/6 mice and cocultured in the presence of polyinosinic:polycytidylic acid (poly I:C). The resulting activation of NKs was measured as expression of CD69 and secretion of IFN-γ. However, DCs from old mice could not activate NKs from either young or old mice in vitro or in vivo. In contrast, DCs from young mice efficiently activated NKs from both young and old mice. DCs from old mice were deficient in poly I:C-stimulated secretion of IL-15, IL-18, and IFN-α. Gene expression analysis revealed many other differences between DCs of old and young mice. Young mice strongly eradicated MHC class I-negative NK-sensitive RMA-S lymphoma mutant tumor cells, but old mice did not, in concert with the previous report that mousepox kills aged, but not young, C57BL/6 mice. Furthermore, a similar dysfunction of DC and its key role in NK activation was found in 27 out of 55 healthy human donors.

Kim HY, Jung HU, Yoo SH, et al.
Sorafenib overcomes the chemoresistance in HBx-expressing hepatocellular carcinoma cells through down-regulation of HBx protein stability and suppresses HBV gene expression.
Cancer Lett. 2014; 355(1):61-9 [PubMed] Related Publications
Previous studies have revealed that HBx expression has anti-apoptotic effects, resulting in increased drug resistance in HCC cells. Thus, we examined if sorafenib efficiently induces apoptosis in HBx-overexpressing HCC cells. Noticeably, sorafenib efficiently induced apoptosis, even in HBx-expressing HepG2 cells, indicating that the HBx protein does not attenuate sorafenib-induced apoptosis. We next investigated if sorafenib modulates autophagy, allowing HCC cells to overcome the chemoresistance conferred by the HBx protein. Although autophagy plays a cytoprotective role against sorafenib-induced lethality, sorafenib was effective irrespective of HBx protein overexpression. We next examined if sorafenib exerts its cytotoxic effect via direct effects on the HBx protein. Importantly, sorafenib decreased HBx protein stability through a proteasome-dependent degradation pathway. Moreover, sorafenib decreased HBV gene expression and viral promoter activity. Taken together, sorafenib efficiently induces apoptotic cell death in HBx-expressing HCC cells via the downregulation of the HBx protein, a key factor in the anti-cancer drug resistance observed in HBV-induced HCC.

Charrier E, Cordeiro P, Brito RM, et al.
Impaired interferon-alpha production by plasmacytoid dendritic cells after cord blood transplantation in children: implication for post-transplantation toll-like receptor ligand-based immunotherapy.
Biol Blood Marrow Transplant. 2014; 20(10):1501-7 [PubMed] Related Publications
Plasmacytoid dendritic cells (pDCs) initiate both innate and adaptive immune responses, making them attractive targets for post-transplantation immunotherapy, particularly after cord blood transplantation (CBT). Toll-like receptor (TLR) agonists are currently studied for pDC stimulation in various clinical settings. Their efficacy depends on pDC number and functionality, which are unknown after CBT. We performed a longitudinal study of pDC reconstitution in children who underwent bone marrow transplantation (BMT) and single-unit CBT. Both CBT and unrelated BMT patients received antithymocyte globulin as part of their graft-versus-host disease prophylaxis regimen. pDC blood counts were higher in CBT patients than in healthy volunteers from 2 to 9 months after transplantation, whereas they remained lower in BMT patients. We showed that cord blood progenitors gave rise in vitro to a 500-fold increase in functional pDCs over bone marrow counterparts. Upon stimulation with a TLR agonist, pDCs from both CBT and BMT recipients upregulated T cell costimulatory molecules, whereas interferon-alpha (IFN-α) production was impaired for 9 months after CBT. TLR agonist treatment is thus not expected to induce IFN-α production by pDCs after CBT, limiting its immunotherapeutic potential. Fortunately, in vitro production of large amounts of functional pDCs from cord blood progenitors paves the way for the post-transplantation adoptive transfer of pDCs.

Montes L, Andrade CM, Michelin MA, Murta EF
The importance of alpha/beta (alpha/13) interferon receptors and signaling pathways for the treatment of cervical intraepithelial neoplasias.
Eur J Gynaecol Oncol. 2014; 35(4):368-72 [PubMed] Related Publications
INTRODUCTION: Immunotherapies have been effective in treating various forms of cancer, including cervical intraepithelial neoplasias (CINs) predominantly caused by human papilloma virus (HPV).
DEVELOPMENT: To establish persistent infections in stratified epithelia, HPV induces proliferative lesions. Viral gene products are able to change gene expression and cellular proteins. Interferons (IFNs) are inducible glycoproteins that have immunomodulatory, antiviral, antiproliferative, and antiangiogenic effects. In particular, interferon-alpha (IFN-alpha) has been shown to inhibit the development and progression of cervical cancer. In this review, actions of interferons alpha/beta (alpha/beta), including their receptors and signaling pathways, are described, as well as their clinical importance in the immune response against cervical lesions.
CONCLUSION: The interaction of IFN-alpha/beta with its receptor results in a series of phosphorylation events. These mechanisms can be ineffective in IFN response, then it can also compromise the therapeutic effects of immunotherapy.

Li S, Xie Y, Zhang W, et al.
Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness.
J Surg Res. 2015; 193(1):255-64 [PubMed] Related Publications
BACKGROUND: Interferon alpha-inducible protein 27 (IFI27) is an interferon alpha-inducible protein, which was found to be upregulated in some cancers, such as breast cancer, squamous cell carcinoma, hepatocellular carcinoma, and serous ovarian carcinoma. However, the role of IFI27 in ovarian cancer remains to be elucidated. This study was designed to investigate the role of IFI27 in ovarian cancer tumorigenicity.
MATERIALS AND METHODS: The expression of IFI27 was examined in ovarian cancer tissues and cell lines by real time quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The cell migration and invasion was investigated by wound healing and transwell invasion assay. The epithelial-mesenchymal transition markers were detected by Western blotting and the stemness was evaluated by sphere formation. The tumor growth was examined in the athymic mice model.
RESULTS: We found that IFI27 is overexpressed in ovarian cancer and associated with patients' survival. Interestingly, we further observed that the expression of IFI27 was associated with the expression of mesenchymal marker vimentin in ovarian cancer. Overexpression of IFI27 induces epithelial-mesenchymal transition and promotes epithelial ovarian cancer cells migration and invasion, tumorigenicity, stemness, and drug resistance. Moreover, overexpression of IFI27 is associated with loss of miR-502 in ovarian cancer. Reexpression of miR-502 inhibits IFI27-induced tumorigenicity, migration, and drug resistance.
CONCLUSIONS: These data suggested that IFI27 may be a potential target for developing novel diagnosis strategies and therapeutic interventions.

Cornet E, Delmer A, Feugier P, et al.
Recommendations of the SFH (French Society of Haematology) for the diagnosis, treatment and follow-up of hairy cell leukaemia.
Ann Hematol. 2014; 93(12):1977-83 [PubMed] Article available free on PMC after 05/03/2016 Related Publications
Hairy cell leukaemia (HCL) is a rare haematological malignancy, with approximately 175 new incident cases in France. Diagnosis is based on a careful examination of the blood smear and immunophenotyping of the tumour cells, with a panel of four markers being used specifically to screen for hairy cells (CD11c, CD25, CD103 and CD123). In 2011, the V600E mutation of the BRAF gene in exon 15 was identified in HCL; being present in HCL, it is absent in the variant form of HCL (HCL-v) and in splenic red pulp lymphoma (SRPL), two entities related to HCL. The management of patients with HCL has changed in recent years. A poorer response to purine nucleoside analogues (PNAs) is observed in patients with more marked leukocytosis, bulky splenomegaly, an unmutated immunoglobulin variable heavy chain (IgVH) gene profile, use of VH4-34 or with TP53 mutations. We present the recommendations of a group of 11 experts belonging to a number of French hospitals. This group met in November 2013 to examine the criteria for managing patients with HCL. The ideas and proposals of the group are based on a critical analysis of the recommendations already published in the literature and on an analysis of the practices of clinical haematology departments with experience in managing these patients. The first-line treatment uses purine analogues: cladribine or pentostatin. The role of BRAF inhibitors, whether or not combined with MEK inhibitors, is discussed. The panel of French experts proposed recommendations to manage patients with HCL, which can be used in a daily practice.

Hu Y, Song W, Cirstea D, et al.
CSNK1α1 mediates malignant plasma cell survival.
Leukemia. 2015; 29(2):474-82 [PubMed] Article available free on PMC after 05/03/2016 Related Publications
Here we report that targeting casein kinase 1-α1 (CSNK1α1) is a potential novel treatment strategy in multiple myeloma (MM) therapy distinct from proteasome inhibition. CSNK1α1 is expressed in all the tested MM cell lines and patient MM cells, and is not altered during bortezomib-triggered cytotoxicity. Inhibition of CSNK1α1 kinase activity in MM cells with targeted therapy D4476 or small hairpin RNAs triggers cell G0/G1-phase arrest, prolonged G2/M phase and apoptosis. D4476 also induced cytotoxicity in bortezomib-resistant MM cells and enhanced bortezomib-triggered cytotoxicity. CSNK1α1 signaling pathways include CDKN1B, P53 and FADD; gene signatures involved included interferon-α, tumor necrosis factor-α and LIN9. In addition, reduction of Csnk1α1 prevents cMYC/KRAS12V transformation of BaF3 cells independent of interleukin-3. Impartially, reducing Csnk1α1 prevented development of cMYC/KRAS12V-induced plasmacytomas in mice, suggesting that CSNK1α1 may be involved in MM initiation and progression. Our data suggest that targeting CSNK1α1, alone or combined with bortezomib, is a potential novel therapeutic strategy in MM. Moreover, inhibition of CSNK1α1 may prevent the progression of monoclonal gammopathy of undetermined significance to MM.

Huang J, Wang L, Jiang M, et al.
AGR2-mediated lung adenocarcinoma metastasis novel mechanism network through repression with interferon coupling cytoskeleton to steroid metabolism-dependent humoral immune response.
Cell Immunol. 2014; 290(1):102-6 [PubMed] Related Publications
7 anterior gradient homolog 2 (AGR2)-inhibited different molecular mutual positive correlation network was constructed in lung adenocarcinoma compared with human normal adjacent tissues by 17 overlapping molecules of 358 GRNInfer and 19 Pearson (AGR2 CC⩽-0.25). Based on GO, KEGG, GenMAPP, BioCarta and disease databases, we determined AGR2-mediated lung adenocarcinoma metastasis through repression with cytoskeleton of MAST1; steroid metabolism of SOAT2; humoral immune response of POU2AF1; interferon alpha-inducible of IFI6; immunoglobulin of IGKC_3, CTA_246H3.1. Thus we proposed AGR2-mediated lung adenocarcinoma metastasis novel mechanism network through repression with interferon coupling cytoskeleton to steroid metabolism-dependent humoral immune response.

Ceballos MP, Parody JP, Quiroga AD, et al.
FoxO3a nuclear localization and its association with β-catenin and Smads in IFN-α-treated hepatocellular carcinoma cell lines.
J Interferon Cytokine Res. 2014; 34(11):858-69 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Interferon-α2b (IFN-α2b) reduces proliferation and increases apoptosis in hepatocellular carcinoma cells by decreasing β-catenin/TCF4/Smads interaction. Forkhead box O-class 3a (FoxO3a) participates in proliferation and apoptosis and interacts with β-catenin and Smads. FoxO3a is inhibited by Akt, IκB kinase β (IKKβ), and extracellular-signal-regulated kinase (Erk), which promote FoxO3a sequestration in the cytosol, and accumulates in the nucleus upon phosphorylation by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated kinase (p38 MAPK). We analyzed FoxO3a subcellular localization, the participating kinases, FoxO3a/β-catenin/Smads association, and FoxO3a target gene expression in IFN-α2b-stimulated HepG2/C3A and Huh7 cells. Total FoxO3a and Akt-phosphorylated FoxO3a levels decreased in the cytosol, whereas total FoxO3a levels increased in the nucleus upon IFN-α2b stimulus. IFN-α2b reduced Akt, IKKβ, and Erk activation, and increased JNK and p38 MAPK activation. p38 MAPK inhibition blocked IFN-α2b-induced FoxO3a nuclear localization. IFN-α2b enhanced FoxO3a association with β-catenin and Smad2/3/7. Two-step coimmunoprecipitation experiments suggest that these proteins coexist in the same complex. The expression of several FoxO3a target genes increased with IFN-α2b. FoxO3a knockdown prevented the induction of these genes, suggesting that FoxO3a acts as mediator of IFN-α2b action. Results suggest a β-catenin/Smads switch from TCF4 to FoxO3a. Such events would contribute to the IFN-α2b-mediated effects on cellular proliferation and apoptosis. These results demonstrate new mechanisms for IFN-α action, showing the importance of its application in antitumorigenic therapies.

Nihal M, Wu J, Wood GS
Methotrexate inhibits the viability of human melanoma cell lines and enhances Fas/Fas-ligand expression, apoptosis and response to interferon-alpha: rationale for its use in combination therapy.
Arch Biochem Biophys. 2014; 563:101-7 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Melanoma, a highly aggressive form of cancer, is notoriously resistant to available therapies. Methotrexate (MTX), an antifolate, competitively inhibits DNA synthesis and is effective for several types of cancer. In cutaneous T-cell lymphoma (CTCL), MTX increases Fas death receptor by decreasing Fas promoter methylation by blocking the synthesis of SAM, the principal methyl donor for DNMTs, resulting in enhanced Fas-mediated apoptosis. The objective of this study was to explore the effects of MTX in human melanoma. MTX variably inhibited the survival of melanoma cells and induced apoptosis as evident by annexin V positivity and senescence associated β-galactosidase activity induction. Furthermore, MTX caused increased transcript and protein levels of extrinsic apoptotic pathway factors Fas and Fas-ligand, albeit at different levels in different cell lines. Our pyrosequencing studies showed that this increased expression of Fas was associated with Fas promoter demethylation. Overall, the ability of MTX to up-regulate Fas/FasL and enhance melanoma apoptosis through extrinsic as well as intrinsic pathways might make it a useful component of novel combination therapies designed to affect multiple melanoma targets simultaneously. In support of this concept, combination therapy with MTX and interferon-alpha (IFNα) induced significantly greater apoptosis in the aggressive A375 cell line than either agent alone.

Ren Z, Aerts JL, Pen JJ, et al.
Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer.
Oncogene. 2015; 34(13):1650-7 [PubMed] Related Publications
The signal transducer and activator of transcription 3 (STAT3) can be activated by the tyrosine kinase domain of the chimeric protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK), and has a pivotal role in mediating NPM/ALK-related malignant cell transformation. Although the role of STAT3 and wild-type NPM in oncogenesis has been extensively investigated, the relationship between both molecules in cancer remains poorly understood. In the present study, we first demonstrate that STAT3 phosphorylation at tyrosine 705 is accompanied by a concomitant increase in the expression level of NPM. Nuclear co-translocation of phosphorylated STAT3 with NPM can be triggered by interferon-alpha (IFN-α) stimulation of Jurkat cells and phosphorylated STAT3 co-localizes with NPM in cancer cells showing constitutive STAT3 activation. We further demonstrate that STAT3 phosphorylation can transcriptionally mediate NPM upregulation in IFN-α-stimulated Jurkat cells and is responsible for maintaining its expression in cancer cells showing constitutive STAT3 activation. Inhibition of STAT3 phosphorylation or knockdown of NPM expression abrogates their simultaneous transnuclear movements. Finally, we found evidence for a physical interaction between NPM and STAT3 in conditions of STAT3 activation. In conclusion, NPM is a downstream effector of the STAT3 signaling, and can facilitate the nuclear entry of phosphorylated STAT3. These observations might open novel opportunities for targeting the STAT3 pathway in cancer.

Foletto MC, Haas SE
Cutaneous melanoma: new advances in treatment.
An Bras Dermatol. 2014 Mar-Apr; 89(2):301-10 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Cutaneous melanoma is a challenge to treat. Over the last 30 years, no drug or combination of drugs demonstrated significant impact to improve patient survival. From 1995 to 2000, the use of cytokines such as interferon and interleukin become treatment options. In 2011, new drugs were approved by the U.S. Food and Drug Administration, including peginterferon alfa-2b for patients with stage III disease, vemurafenib for patients with metastatic melanoma with the BRAF V600E mutation, and ipilimumab, a monoclonal antibody directed to the CTLA-4 T lymphocyte receptor, to combat metastatic melanoma in patients who do not have the BRAF V600E mutation. Both ipilimumab and vemurafenib showed results in terms of overall survival. Other trials with inhibitors of other genes, such as the KIT gene and MEK, are underway in the search for new discoveries. The discovery of new treatments for advanced or metastatic disease aims to relieve symptoms and improve patient quality of life.

Tian S, Hui X, Fan Z, et al.
Suppression of hepatocellular carcinoma proliferation and hepatitis B surface antigen secretion with interferon-λ1 or PEG-interferon-λ1.
FASEB J. 2014; 28(8):3528-39 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a common cancer associated with chronic hepatitis B virus (HBV) infection. Conventional interferon-α (IFN-α) and pegylated IFNs (PEG-IFNs) approved for chronic HBV infection treatment can reduce the risk of HCC but are not suitable for the majority of patients and cause significant side effects. IFN-λ1 is a type III IFN with antiviral, antiproliferative, and immunomodulatory functions similar to type I IFNs but with fewer side effects. However, the tolerability and antitumor activity of PEG-IFN-λ1 in HCC xenograft mice are unknown. In vitro IFN-λ1 treatment of Hep3B and Huh7 human hepatoma cell lines increased MHC class I expression, activated JAK-STAT signaling pathways, induced IFN-stimulated gene expression, and inhibited hepatitis B surface antigen (HBsAg) expression. IFN-λ1 treatment also caused 23.2 and 19.9% growth inhibition of Hep3B and Huh7 cells, respectively, and promoted cellular apoptosis. PEG-IFN-λ1, but not IFN-λ1 treatment, significantly suppressed tumor growth (P=0.002) and induced tumor cell apoptosis in a Hep3B cell xenograft mouse model without significant weight loss or toxicity. PEG-IFN-λ1 also significantly inhibited (P=0.000) serum HBsAg secretion from Hep3B xenograft tumors in vivo. Thus, PEG-IFN-λ1 can suppress Hep3B xenograft tumor growth and inhibit HBsAg production and may be a potential treatment for HBV-related HCC.

Zhu Y, Karakhanova S, Huang X, et al.
Influence of interferon-α on the expression of the cancer stem cell markers in pancreatic carcinoma cells.
Exp Cell Res. 2014; 324(2):146-56 [PubMed] Related Publications
The cytokine interferon-α (IFNα) belongs to the group of type I interferons already used in cancer therapy. This drug possesses radio- and chemo-sensitizing, and shows anti-angiogenic properties. Cancer stem cells (CSC) are a unique population of tumor cells that initiate secondary tumors, and are responsible for metastasis formation. Patients with pancreatic ductal adenocarcinoma (PDAC) have an especially poor prognosis, with 5-year survival rates of only ~1% and median survival of 4-6 months. PDAC is characterized by the presence of CSC. In this work we demonstrate for the first time that IFNα up-regulates the expression of the CSC markers CD24, CD44 and CD133 in in vitro and in vivo models of PDAC. We showed the IFNα effects on the migration and invasion of PDAC cells, which is associated with the level of the CSC marker expression. In vivo, this drug inhibits tumor growth but promotes metastasis formation in the early stage of tumor growth. We propose that IFNα may enhance the enrichment of CSC in PDAC tumors. Additionally we also suggest that in combination therapy of solid tumors with IFNα, this drug should be given to patients prior to chemotherapy to achieve the CSC activation.

Saulep-Easton D, Vincent FB, Le Page M, et al.
Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia.
Leukemia. 2014; 28(10):2005-15 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5(+)CD19(+) B cells in the peripheral blood, and in primary and secondary lymphoid organs. A major complication associated with CLL is severe recurrent infections, which are often fatal. Vulnerability to infection is due to a wide variety of immunological defects, yet the initiating events of immunodeficiency in CLL are unclear. Using CLL patient samples and a mouse model of CLL, we have discovered that plasmacytoid dendritic cells (pDCs), which underpin the activity of effector immune cells critical for anti-viral immunity and anti-tumor responses, are reduced in number and functionally impaired in progressive CLL. As a result, the levels of interferon alpha (IFNα) production, a cytokine critical for immunity, are markedly reduced. Lower pDC numbers with impaired IFNα production was due to the decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 (TLR9), respectively. Reduced Flt3 expression was reversed using inhibitors of TGF-β and TNF, an effect correlating with a reduction in tumor load. Defects in pDC numbers and function offer new insight into mechanisms underpinning the profound immunodeficiency affecting CLL patients and provide a potentially novel avenue for restoring immunocompetency in CLL.

Liu Q, Tomei S, Ascierto ML, et al.
Melanoma NOS1 expression promotes dysfunctional IFN signaling.
J Clin Invest. 2014; 124(5):2147-59 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells.

Minter MR, Zhang M, Ates RC, et al.
Type-1 interferons contribute to oxygen glucose deprivation induced neuro-inflammation in BE(2)M17 human neuroblastoma cells.
J Neuroinflammation. 2014; 11:43 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Hypoxic-ischaemic injuries such as stroke and traumatic brain injury exhibit features of a distinct neuro-inflammatory response in the hours and days post-injury. Microglial activation, elevated pro-inflammatory cytokines and macrophage infiltration contribute to core tissue damage and contribute to secondary injury within a region termed the penumbra. Type-1 interferons (IFNs) are a super-family of pleiotropic cytokines that regulate pro-inflammatory gene transcription via the classical Jak/Stat pathway; however their role in hypoxia-ischaemia and central nervous system neuro-inflammation remains unknown. Using an in vitro approach, this study investigated the role of type-1 IFN signalling in an inflammatory setting induced by oxygen glucose deprivation (OGD).
METHODS: Human BE(2)M17 neuroblastoma cells or cells expressing a type-1 interferon-α receptor 1 (IFNAR1) shRNA or negative control shRNA knockdown construct were subjected to 4.5 h OGD and a time-course reperfusion period (0 to 24 h). Q-PCR was used to evaluate IFNα, IFNβ, IL-1β, IL-6 and TNF-α cytokine expression levels. Phosphorylation of signal transducers and activators of transcription (STAT)-1, STAT-3 and cleavage of caspase-3 was detected by western blot analysis. Post-OGD cellular viability was measured using a MTT assay.
RESULTS: Elevated IFNα and IFNβ expression was detected during reperfusion post-OGD in parental M17 cells. This correlated with enhanced phosphorylation of STAT-1, a downstream type-1 IFN signalling mediator. Significantly, ablation of type-1 IFN signalling, through IFNAR1 knockdown, reduced IFNα, IFNβ, IL-6 and TNF-α expression in response to OGD. In addition, MTT assay confirmed the IFNAR1 knockdown cells were protected against OGD compared to negative control cells with reduced pro-apoptotic cleaved caspase-3 levels.
CONCLUSIONS: This study confirms a role for type-1 IFN signalling in the neuro-inflammatory response following OGD in vitro and suggests its modulation through therapeutic blockade of IFNAR1 may be beneficial in reducing hypoxia-induced neuro-inflammation.

Kroczynska B, Mehrotra S, Arslan AD, et al.
Regulation of interferon-dependent mRNA translation of target genes.
J Interferon Cytokine Res. 2014; 34(4):289-96 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.

Happold C, Roth P, Silginer M, et al.
Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells.
Mol Cancer Ther. 2014; 13(4):948-61 [PubMed] Related Publications
Glioblastoma is the most common malignant brain tumor in adults and characterized by a poor prognosis. Glioma cells expressing O(6)-methylguanine DNA methyltransferase (MGMT) exhibit a higher level of resistance toward alkylating agents, including the standard of care chemotherapeutic agent temozolomide. Here, we demonstrate that long-term glioma cell lines (LTL) as well as glioma-initiating cell lines (GIC) express receptors for the immune modulatory cytokine IFN-β and respond to IFN-β with induction of STAT-3 phosphorylation. Exposure to IFN-β induces a minor loss of viability, but strongly interferes with sphere formation in GIC cultures. Furthermore, IFN-β sensitizes LTL and GIC to temozolomide and irradiation. RNA interference confirmed that both IFN-β receptors, R1 and R2, are required for IFN-β-mediated sensitization, but that sensitization is independent of MGMT or TP53. Most GIC lines are highly temozolomide-resistant, mediated by MGMT expression, but nevertheless susceptible to IFN-β sensitization. Gene expression profiling following IFN-β treatment revealed strong upregulation of IFN-β-associated genes, including a proapoptotic gene cluster, but did not alter stemness-associated expression signatures. Caspase activity and inhibition studies revealed the proapoptotic genes to mediate glioma cell sensitization to exogenous death ligands by IFN-β, but not to temozolomide or irradiation, indicating distinct pathways of death sensitization mediated by IFN-β. Thus, IFN-β is a potential adjunct to glioblastoma treatment that may target the GIC population. IFN-β operates independently of MGMT-mediated resistance, classical apoptosis-regulatory networks, and stemness-associated gene clusters.

Mathieu MG, Miles AK, Ahmad M, et al.
The helicase HAGE prevents interferon-α-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1.
Cell Death Dis. 2014; 5:e1061 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
The tumour suppressor PML (promyelocytic leukaemia protein) regulates several cellular pathways involving cell growth, apoptosis, differentiation and senescence. PML also has an important role in the regulation of stem cell proliferation and differentiation. Here, we show the involvement of the helicase HAGE in the transcriptional repression of PML expression in ABCB5+ malignant melanoma-initiating cells (ABCB5+ MMICs), a population of cancer stem cells which are responsible for melanoma growth, progression and resistance to drug-based therapy. HAGE prevents PML gene expression by inhibiting the activation of the JAK-STAT (janus kinase-signal transducers and activators of transcription) pathway in a mechanism which implicates the suppressor of cytokine signalling 1 (SOCS1). Knockdown of HAGE led to a significant decrease in SOCS1 protein expression, activation of the JAK-STAT signalling cascade and a consequent increase of PML expression. To confirm that the reduction in SOCS1 expression was dependent on the HAGE helicase activity, we showed that SOCS1, effectively silenced by small interfering RNA, could be rescued by re-introduction of HAGE into cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes SOCS1 mRNA unwinding and protein expression in vitro. Finally, using a stem cell proliferation assay and tumour xenotransplantation assay in non-obese diabetic/severe combined immunodeficiency mice, we show that HAGE promotes MMICs-dependent tumour initiation and tumour growth by preventing the anti-proliferative effects of interferon-α (IFNα). Our results suggest that the helicase HAGE has a key role in the resistance of ABCB5+ MMICs to IFNα treatment and that cancer therapies targeting HAGE may have broad implications for the treatment of malignant melanoma.

Benedict WF, Fisher M, Zhang XQ, et al.
Use of monitoring levels of soluble forms of cytokeratin 18 in the urine of patients with superficial bladder cancer following intravesical Ad-IFNα/Syn3 treatment in a phase l study.
Cancer Gene Ther. 2014; 21(3):91-4 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
A phase l study using intravesical Ad-IFNαSyn3 for patients with bacillus Calmette-Guérin-resistant superficial bladder cancer showed a complete remission (CR) of 43% at 90 days after treatment with high levels of interferon-α (IFNα) being produced. Ad-IFNα kills bladder cancer cells by two apoptotic and one necrotic mechanism that can be measured by soluble forms of cytokeratin 18 (CK18) using M30 and M65 ELISAs, assays for caspase-cleaved (apoptotic) and uncleaved (necrotic) cell death, respectively. Therefore, we determined whether M30 and M65 levels in the urine after treatment could document all three mechanisms of cancer cell kill and also predict having a CR. High levels of both M30 and M65 were found in all patients within 24 h after treatment with all three types of cancer cell death occurring. Moreover, the return of both M30 and M65 levels in the urine to normal levels within 5 days or more after treatment was strongly associated with obtaining a CR (P=0.003). This is the first time that such assays have been used to study response to therapy in the urine of patients with bladder cancer and in the future may prove valuable in predicting clinical outcome.

Chen ZY, Wei W, Guo ZX, et al.
Using multiple cytokines to predict hepatocellular carcinoma recurrence in two patient cohorts.
Br J Cancer. 2014; 110(3):733-40 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Cytokines are tightly linked to the carcinogenesis, development and prognosis of hepatocellular carcinoma (HCC). We determined the prognostic value of 39 circulating cytokines in HCC patients after radical resection and then developed a novel cytokine-based prognostic classifier (CBPC) for the prediction of patient prognosis.
METHODS: A total of 179 patients were divided into two cohorts based on the date of radical resection. Thirty-nine cytokines were simultaneously analysed in patient serum samples using multiplex bead-based Luminex technology. Support vector machine-based methods and Cox proportional hazard models were used to develop a CBPC from the training cohort, which was then validated in the validation cohort.
RESULTS: Among seven cytokines significantly correlating with the disease-free survival (DFS) in the training cohort, six of them were validated to be significant prognostic factors to predict DFS and overall survival (OS) in the validation cohort, namely fibroblast growth factor 2 (FGF-2), growth-regulated oncogene (GRO), interleukin 8 (IL-8), interferon gamma-induced protein 10 (IP-10), vascular endothelial growth factor (VEGF), and interferon alpha-2 (IFN-α2). By integrating six cytokines and three clinical characteristics, we developed a CBPC to predict the recurrence and 3-year OS of HCC patients (sensitivity, 0.648; specificity, 0.918). In the validation cohort, the CBPC were confirmed to have significant predictive power for predicting tumour recurrence and OS (sensitivity, 0.585; specificity, 0.857). Interestingly, IFN-α2 was the only cytokine being independent prognostic factor in both patient cohorts.
CONCLUSION: Our study verifies the presence of specific cytokine-phenotype associations with patient prognosis in HCC. The CBPC developed include multiple circulating cytokines and may serve as a novel screening approach for identifying HCC patients with a high risk of post-resection recurrence and shorter OS. These individuals may also be suitable for cytokine-targeted therapies.

Booy S, van Eijck CH, Dogan F, et al.
Influence of type-I Interferon receptor expression level on the response to type-I Interferons in human pancreatic cancer cells.
J Cell Mol Med. 2014; 18(3):492-502 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Pancreatic cancer is a highly aggressive malignancy with limited treatment options. Type-I interferons (e.g. IFN-α/-β) have several anti-tumour activities. Over the past few years, clinical studies evaluating the effect of adjuvant IFN-α therapy in pancreatic cancer yielded equivocal results. Although IFN-α and -β act via the type-I IFN receptor, the role of the number of receptors present on tumour cells is still unknown. Therefore, this study associated, for the first time, in a large panel of pancreatic cancer cell lines the effects of IFN-α/-β with the expression of type-I IFN receptors. The anti-tumour effects of IFN-α or IFN-β on cell proliferation and apoptosis were evaluated in 11 human pancreatic cell lines. Type-I IFN receptor expression was determined on both the mRNA and protein level. After 7 days of incubation, IFN-α significantly reduced cell growth in eight cell lines by 5-67%. IFN-β inhibited cell growth statistically significant in all cell lines by 43-100%. After 3 days of treatment, IFN-β induced significantly more apoptosis than IFN-α. The cell lines variably expressed the type-I IFN receptor. The maximal inhibitory effect of IFN-α was positively correlated with the IFNAR-1 mRNA (P < 0.05, r = 0.63), IFNAR-2c mRNA (P < 0.05, r = 0.69) and protein expression (P < 0.05, r = 0.65). Human pancreatic cancer cell lines variably respond to IFN-α and -β. The expression level of the type-I IFN receptor is of predictive value for the direct anti-tumour effects of IFN-α treatment. More importantly, IFN-β induces anti-tumour effects already at much lower concentrations, is less dependent on interferon receptor expression and seems, therefore, more promising than IFN-α.

Massimino M, Consoli ML, Mesuraca M, et al.
IRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation.
Carcinogenesis. 2014; 35(5):1132-43 [PubMed] Related Publications
Interferon regulatory factor 5 (IRF5) modulates the expression of genes controlling cell growth and apoptosis. Previous findings have suggested a lack of IRF5 transcripts in both acute and chronic leukemias. However, to date, IRF5 expression and function have not been investigated in chronic myeloid leukemia (CML). We report that IRF5 is expressed in CML cells, where it interacts with the BCR-ABL kinase that modulates its expression and induces its tyrosine phosphorylation. Tyrosine-phosphorylated IRF5 displayed reduced transcriptional activity that was partially restored by imatinib mesylate (IM). Interestingly, a mutant devoid of a BCR-ABL consensus site (IRF5(Y104F)) still presented significant tyrosine phosphorylation. This finding suggests that the oncoprotein phosphorylates additional tyrosine residues or induces downstream signaling pathways leading to further IRF5 phosphorylation. We also found that ectopic expression of IRF5 decreases the proliferation of CML cell lines by slowing their S-G2 transition, increasing the inhibition of BCR-ABL signaling and enhancing the lethality effect observed after treatment with IM, α-2-interferon and a DNA-damaging agent. Furthermore, IRF5 overexpression successfully reduced the clonogenic ability of CML CD34-positive progenitors before and after exposure to the above-indicated cytotoxic stimuli. Our data identify IRF5 as a downstream target of the BCR-ABL kinase, suggesting that its biological inactivation contributes to leukemic transformation.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IFNA17, Cancer Genetics Web: http://www.cancer-genetics.org/IFNA17.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 07 August, 2015     Cancer Genetics Web, Established 1999