Gene Summary

Gene:AR; androgen receptor
Summary:The androgen receptor gene is more than 90 kb long and codes for a protein that has 3 major functional domains: the N-terminal domain, DNA-binding domain, and androgen-binding domain. The protein functions as a steroid-hormone activated transcription factor. Upon binding the hormone ligand, the receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen responsive genes. This gene contains 2 polymorphic trinucleotide repeat segments that encode polyglutamine and polyglycine tracts in the N-terminal transactivation domain of its protein. Expansion of the polyglutamine tract causes spinal bulbar muscular atrophy (Kennedy disease). Mutations in this gene are also associated with complete androgen insensitivity (CAIS). Two alternatively spliced variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:androgen receptor
Source:NCBIAccessed: 21 August, 2015


What does this gene/protein do?
Show (71)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AR (cancer-related)

Tsvetkova A, Todorova A, Todorov T, et al.
Molecular and clinico-histological data in aggressive prostate cancer patients from Bulgaria.
J BUON. 2015 Mar-Apr; 20(2):498-504 [PubMed] Related Publications
PURPOSE: Metastatic prostate cancer (PCa) is one of the leading causes of death in men worldwide. We report Bulgarian patients with strongly aggressive, castration-resistant PCa.
METHODS: PCA3 overexpression, GSTP1 promoter hyper-methylation, TMPRSS2-ERG gene fusions, IVS1-27G>A in the KLF6 gene and mutations in androgen receptor (AR) gene, for diagnostic purposes were assessed. PCR, real-time PCR (RT-PCR), sequencing, and bisulfite conversion of DNA were applied. We correlated the molecular data to the histological and clinical findings.
RESULTS: The obtained molecular profile in 11 PCa Bulgarian patients coincided with the clinico-histological data of strongly aggressive PCa. Association was detected between the tumor stage (assessed by TNM as T3 and T4) and the detected molecular profile of aggressive cancer behavior with one exception, assessed as T2. None of our patients had positive family history of prostate cancer and no somatic mutations were detected in the AR gene. All patients showed normal genotype with respect to the KLF6 IVS1- 27G>A polymorphism. The rest of the markers were positive in fresh prostatic tissues and biopsies from all patients, whereas only one blood sample showed triple positive result.
CONCLUSIONS: The appearance of PCa-specific markers in blood was considered as a predictor for a PCa (micro) dissemination into the circulation. The GSTP1 promoter hypermethylation is the earliest epigenetic alteration, which indicates cancerous changes and the first and long-lasting marker that is detectable in blood circulation. The molecular profile needs to be strictly monitored during treatment, which is of great help in determining the patient's individual response to therapy.

Robinson D, Van Allen EM, Wu YM, et al.
Integrative clinical genomics of advanced prostate cancer.
Cell. 2015; 161(5):1215-28 [PubMed] Article available free on PMC after 21/05/2016 Related Publications
Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.

Iobagiu C, Lambert C, Raica M, et al.
Loss of heterozygosity in tumor tissue in hormonal receptor genes is associated with poor prognostic criteria in breast cancer.
Cancer Genet. 2015; 208(4):135-42 [PubMed] Related Publications
The estrogen receptors (ESRα and β) and the androgen receptor (AR) mediate genomic and non-genomic effects on breast tumor growth and proliferation. We analyzed 101 breast cancer patients for allelic loss in microsatellites located in regulatory regions of the ESRs and AR genes in breast cancer tumors. The loss of heterozygosity (LOH) at these loci was found in 36.2% of tumor tissues (ductal carcinoma cases), for 19% of cases at the ESRα locus, for 16% at the ESRβ locus, and for 10% at the AR locus. The LOH in at least one of the two ESR loci was correlated to poor prognosis criteria: ESR-negative status (P = 0.007), PR-negative status (P = 0.003), high Scarff-Bloom-Richardson (SBR) grade (P = 0.0007), high MIB-1 proliferation index (P = 0.02), and diminished apoptosis potential (TP53-positive status, P = 0.018). When AR was also considered, the LOH in at least one of the three loci was associated with ESR-negative status (P = 0.036), PR-negative status (P = 0.027), high SBR grade (P = 0.005), high mitotic index (P = 0.0002), TP53-positive status (P = 0.029), and proliferating index (high MIB-1, P = 0.03). Allelic loss was observed in 26% of normal tissue adjacent to tumor with LOH at the ESRα locus and in 7.1% of tumors with LOH at the ESRβ locus. The LOH in tumor tissue in the regulatory regions of ESRα, ESRβ, and AR genes has potentially synergistic effects on tumor proliferation, histological aggressiveness, down-regulation of ESRα and progesterone receptor (PR) genes, and is an early genetic alteration in cancer that is possibly involved in passage to estrogen independence.

Okoh VO, Garba NA, Penney RB, et al.
Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells.
Br J Cancer. 2015; 112(10):1687-702 [PubMed] Article available free on PMC after 12/05/2016 Related Publications
BACKGROUND: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells.
METHODS: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1.
RESULTS: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells.
CONCLUSIONS: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer.

Moriarity BS, Otto GM, Rahrmann EP, et al.
A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis.
Nat Genet. 2015; 47(6):615-24 [PubMed] Related Publications
Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma.

Liu W, Vielhauer GA, Holzbeierlein JM, et al.
KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells.
Mol Pharmacol. 2015; 88(1):121-30 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer.

Wang C, Sun H, Zou R, et al.
MDC1 functionally identified as an androgen receptor co-activator participates in suppression of prostate cancer.
Nucleic Acids Res. 2015; 43(10):4893-908 [PubMed] Article available free on PMC after 01/07/2016 Related Publications
Mediator of DNA damage checkpoint protein 1 (MDC1) is essential for DNA damage response. However, the role of MDC1 in modulating gene transcription independently of DNA damage and the underlying mechanisms have not been fully defined. Androgen receptor (AR) is the central signaling pathway in prostate cancer (PCa) and its target genes are involved in both promotion and suppression of PCa. Here, we functionally identified MDC1 as a co-activator of AR. We demonstrate that MDC1 facilitates the association between AR and histone acetyltransferase GCN5, thereby increasing histone H3 acetylation level on cis-regulatory elements of AR target genes. MDC1 knockdown promotes PCa cells growth and migration. Moreover, depletion of MDC1 results in decreased expression of a subset of the endogenous androgen-induced target genes, including cell cycle negative regulator p21 and PCa metastasis inhibitor Vinculin, in AR positive PCa cell lines. Finally, the expression of MDC1 and p21 correlates negatively with aggressive phenotype of clinical PCa. These studies suggest that MDC1 as an epigenetic modifier regulates AR transcriptional activity and MDC1 may function as a tumor suppressor of PCa, and provide new insight into co-factor-AR-signaling pathway mechanism and a better understanding of the function of MDC1 on PCa.

Salvi S, Casadio V, Conteduca V, et al.
Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone.
Br J Cancer. 2015; 112(10):1717-24 [PubMed] Article available free on PMC after 12/05/2016 Related Publications
BACKGROUND: This study aimed to investigate copy number variations (CNVs) of CYP17A1 and androgen receptor (AR) genes in serum cell-free DNA collected before starting abiraterone in 53 consecutive patients with castration-resistant prostate cancer (CRPC).
METHODS: Serum DNA was isolated and CNVs were analysed for AR and CYP17A1 genes using Taqman copy number assays. The association between CNVs and progression-free/overall survival (PFS/OS) was evaluated by the Kaplan-Meier method and log-rank test.
RESULTS: Median PFS of patients with AR gene gain was 2.8 vs 9.5 months of non-gained cases (P < 0.0001). Patients with CYP17A1 gene gain had a median PFS of 2.8 months vs 9.2 months in the non-gained patients (P = 0.0014). A lower OS was reported in both cases (AR: P < 0.0001; CYP17A1: P = 0.0085). Multivariate analysis revealed that PSA decline ⩾ 50%, AR and CYP17A1 CNVs were associated with shorter PFS (P < 0.0001, P = 0.0004 and P = 0.0450, respectively), while performance status, PSA decline ⩾ 50%, AR CNV and DNA concentration were associated with OS (P = 0.0021, P = 0.0014, P = 0.0026 and P = 0.0129, respectively).
CONCLUSIONS: CNVs of AR and CYP17A1 genes would appear to be associated with outcome of CRPC patients treated with abiraterone.

Simper NB, Jones CL, MacLennan GT, et al.
Basal cell carcinoma of the prostate is an aggressive tumor with frequent loss of PTEN expression and overexpression of EGFR.
Hum Pathol. 2015; 46(6):805-12 [PubMed] Related Publications
Basal cell carcinoma (also referred to as adenoid cystic carcinoma) is a rare tumor of the prostate. Although largely characterized as indolent, poor outcomes have been reported in a considerable fraction of cases. As yet, optimum treatment strategies for this cancer have not been developed. This study investigates protein expression of common or potential molecular therapeutic targets and reports on the clinicopathological features of 9 new cases. We evaluated the expression of ERBB2, KIT, androgen receptor, PTEN, EGFR, ERG, and p53 via immunohistochemistry. We also examined EGFR amplification and TMPRSS2-ERG gene rearrangement by fluorescence in situ hybridization. The mean clinical follow-up was 44 months. We found that basal cell carcinoma behaved aggressively with almost one-half of the cases displaying high-risk pathologic features or local recurrence (44%). One patient died as a result of metastatic disease. The most consistent abnormalities included a loss of PTEN expression (56% of cases) and EGFR overexpression (67% of cases). EGFR overexpression occurred in the absence of gene amplification. The TMPRSS2-ERG rearrangement was not detected in any of the tumors studied, nor was ERG protein positivity identified by immunostaining. In addition, ERBB2, KIT, p53, and androgen receptor expressions were either absent or showed only weak, limited reactivity. Our results suggest that there is a high morbidity associated with this tumor, and more intense follow-up and additional treatment may be indicated. Furthermore, targeted therapies directed against the EGFR and PTEN proteins or their constitutive pathways may be promising for future clinical management.

Trotter TN, Li M, Pan Q, et al.
Myeloma cell-derived Runx2 promotes myeloma progression in bone.
Blood. 2015; 125(23):3598-608 [PubMed] Article available free on PMC after 12/05/2016 Related Publications
The progression of multiple myeloma (MM) is governed by a network of molecular signals, the majority of which remain to be identified. Recent studies suggest that Runt-related transcription factor 2 (Runx2), a well-known bone-specific transcription factor, is also expressed in solid tumors, where expression promotes both bone metastasis and osteolysis. However, the function of Runx2 in MM remains unknown. The current study demonstrated that (1) Runx2 expression in primary human MM cells is significantly greater than in plasma cells from healthy donors and patients with monoclonal gammopathy of undetermined significance; (2) high levels of Runx2 expression in MM cells are associated with a high-risk population of MM patients; and (3) overexpression of Runx2 in MM cells enhanced tumor growth and disease progression in vivo. Additional studies demonstrated that MM cell-derived Runx2 promotes tumor progression through a mechanism involving the upregulation of Akt/β-catenin/Survivin signaling and enhanced expression of multiple metastatic genes/proteins, as well as the induction of a bone-resident cell-like phenotype in MM cells. Thus, Runx2 expression supports the aggressive phenotype of MM and is correlated with poor prognosis. These data implicate Runx2 expression as a major regulator of MM progression in bone and myeloma bone disease.

Segal CV, Koufaris C, Powell C, Gooderham NJ
Effects of treatment with androgen receptor ligands on microRNA expression of prostate cancer cells.
Toxicology. 2015; 333:45-52 [PubMed] Related Publications
Post-transcriptional regulation by microRNA (miRNA) is an important aspect of androgen receptor (AR) signalling in prostate cancer cells. However, the global profiling of miRNA expression in prostate cancer cells following treatment with AR ligands has not been reported so far. In this study we examined the effect of treatment with two AR agonists (mibolerone (MIB) and dihydrotestosterone (DHT)) and an AR antagonist (bicalutamide (BIC)) on miRNA expression in the human androgen-dependent LNCaP prostate cancer cell line using microarray technology and verification of selected miRNA using quantitative real-time PCR (qRT-PCR). No miRNA was identified as differentially expressed following treatment with the AR antagonist BIC. In contrast, a number of common and compound-specific alterations in miRNA expression were observed following treatment with AR agonists. Unexpectedly it was found that treatment with the AR agonists resulted in the repression of miR-221, a miRNA previously established to be involved with prostate cancer development. This observation indicates that this miRNA may have a more complex role in prostate cancer development than considered previously. Treatment with MIB led to an induction of miR-210 expression, a hypoxia-related miRNA. This miRNA is reported to be involved in cell adaptation to hypoxia and thus induction in conditions of normoxia may be important in driving metabolic changes observed in prostate cancer. Thus examining the effect of AR agonists and antagonists on miRNA expression can provide novel insights into the response of cells to AR ligands and subsequent downstream events.

Kouri FM, Hurley LA, Daniel WL, et al.
miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.
Genes Dev. 2015; 29(7):732-45 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.

Fernandez EV, Reece KM, Ley AM, et al.
Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells.
Mol Pharmacol. 2015; 87(6):1006-12 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Enzalutamide is a potent second-generation androgen receptor (AR) antagonist with activity in metastatic castrate-resistant prostate cancer (CRPC). Although enzalutamide is initially effective, disease progression inevitably ensues with the emergence of resistance. Intratumoral hypoxia is also associated with CRPC progression and treatment resistance. Given that both AR and hypoxia inducible factor-1 α (HIF-1α) are key regulators of these processes, dual targeting of both signaling axes represents an attractive therapeutic approach. Crosstalk of the AR and HIF-1α signaling pathways were examined in prostate cancer cell lines (LNCaP, 22Rv1) with assays measuring the effect of androgen and hypoxia on AR-dependent and hypoxia-inducible gene transcription, protein expression, cell proliferation, and apoptosis. HIF-1α inhibition was achieved by siRNA silencing HIF-1α or via chetomin, a disruptor of HIF-1α-p300 interactions. In prostate cancer cells, the gene expression of AR targets (KLK3, FKBP5, TMPRSS2) was repressed by HIF-signaling; conversely, specific HIF-1α target expression was induced by dihydrotestosterone-mediated AR signaling. Treatment of CRPC cells with enzalutamide or HIF-1α inhibition attenuated AR-regulated and HIF-1α-mediated gene transcription. The combination of enzalutamide and HIF-1α inhibition was more effective than either treatment alone. Similarly, the combination also reduced vascular endothelial growth factor protein levels. HIF-1α siRNA synergistically enhanced the inhibitory effect of enzalutamide on cell growth in LNCaP and enzalutamide-resistant 22Rv1 cells via increased enzalutamide-induced apoptosis. In conclusion, the combination of enzalutamide with HIF-1α inhibition resulted in synergistic inhibition of AR-dependent and gene-specific HIF-dependent expression and prostate cancer cell growth.

Wang F, Pan J, Liu Y, et al.
Alternative splicing of the androgen receptor in polycystic ovary syndrome.
Proc Natl Acad Sci U S A. 2015; 112(15):4743-8 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders and a leading cause of female subfertility. The mechanism underlying the pathophysiology of PCOS remains to be illustrated. Here, we identify two alternative splice variants (ASVs) of the androgen receptor (AR), insertion and deletion isoforms, in granulosa cells (GCs) in ∼62% of patients with PCOS. AR ASVs are strongly associated with remarkable hyperandrogenism and abnormalities in folliculogenesis, and are absent from all control subjects without PCOS. Alternative splicing dramatically alters genome-wide AR recruitment and androgen-induced expression of genes related to androgen metabolism and folliculogenesis in human GCs. These findings establish alternative splicing of AR in GCs as the major pathogenic mechanism for hyperandrogenism and abnormal folliculogenesis in PCOS.

Peterson LF, Sun H, Liu Y, et al.
Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies.
Blood. 2015; 125(23):3588-97 [PubMed] Related Publications
Usp9x was recently shown to be highly expressed in myeloma patients with short progression-free survival and is proposed to enhance stability of the survival protein Mcl-1. In this study, we found that the partially selective Usp9x deubiquitinase inhibitor WP1130 induced apoptosis and reduced Mcl-1 protein levels. However, short hairpin RNA-mediated knockdown (KD) of Usp9x in myeloma cells resulted in transient induction of apoptosis, followed by a sustained reduction in cell growth. A compensatory upregulation of Usp24, a deubiquitinase closely related to Usp9x, in Usp9x KD cells was noted. Direct Usp24 KD resulted in marked induction of myeloma cell death that was associated with a reduction of Mcl-1. Usp24 was found to sustain myeloma cell survival and Mcl-1 regulation in the absence of Usp9x. Both Usp9x and Usp24 were expressed and activated in primary myeloma cells whereas Usp24 protein overexpression was noted in some patients with drug-refractory myeloma and other B-cell malignancies. Furthermore, we improved the drug-like properties of WP1130 and demonstrated that the novel compound EOAI3402143 dose-dependently inhibited Usp9x and Usp24 activity, increased tumor cell apoptosis, and fully blocked or regressed myeloma tumors in mice. We conclude that small-molecule Usp9x/Usp24 inhibitors may have therapeutic activity in myeloma.

Guo W, Keener AL, Jing Y, et al.
FOXA1 modulates EAF2 regulation of AR transcriptional activity, cell proliferation, and migration in prostate cancer cells.
Prostate. 2015; 75(9):976-87 [PubMed] Article available free on PMC after 01/06/2016 Related Publications
BACKGROUND: ELL-associated factor 2 (EAF2) is an androgen-regulated tumor suppressor in the prostate. However, the mechanisms underlying tumor suppressive function of EAF2 are still largely unknown. Identification of factors capable of modulating EAF2 function will help elucidate the mechanisms underlying EAF2 tumor suppressive function.
METHODS: Using eaf-1(the ortholog of EAF2) mutant C. elegans model, RNAi screen was used to identify factors on the basis of their knockdown to synergistically enhance the reduced fertility phenotype of the eaf-1 mutant C. elegans. In human cells, the interaction of EAF2 with FOXA1 and the effect of EAF2 on the FOXA1 protein levels were determined by co-immunoprecipitation and protein stability assay. The effect of EAF2 and/or FOXA1 knockdown on the expression of AR-target genes was determined by real-time RT-PCR and luciferase reporter assays. The effect of EAF2 and/or FOXA1 knockdown on LNCaP human prostate cancer cell proliferation and migration was tested using BrdU assay and transwell migration assay.
RESULTS: RNAi screen identified pha-4, the C. elegans ortholog of mammalian FOXA1, on the basis of its knockdown to synergistically enhance the reduced fertility phenotype of the eaf-1 mutant C. elegans causing sterility. EAF2 co-immunoprecipitated with FOXA1. EAF2 knockdown enhanced endogenous FOXA1 protein level, whereas transfected GFP-EAF2 down-regulated the FOXA1 protein. Also, EAF2 knockdown enhanced the expression of AR-target genes, cell proliferation, and migration in LNCaP cells. However, FOXA1 knockdown inhibited the effect of EAF2 knockdown on AR-target gene expression, cell proliferation, and migration in LNCaP cells, suggesting that FOXA1 can modulate EAF2 regulation of AR transcriptional activation, cell proliferation, and migration.
CONCLUSIONS: These findings suggest that regulation of the AR signaling pathway, cell proliferation, and migration through FOXA1 represents an important mechanism of EAF2 suppression of prostate carcinogenesis.

Liu YN, Yin J, Barrett B, et al.
Loss of Androgen-Regulated MicroRNA 1 Activates SRC and Promotes Prostate Cancer Bone Metastasis.
Mol Cell Biol. 2015; 35(11):1940-51 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Bone metastasis is the hallmark of progressive and castration-resistant prostate cancers. MicroRNA 1 (miR-1) levels are decreased in clinical samples of primary prostate cancer and further reduced in metastases. SRC has been implicated as a critical factor in bone metastasis, and here we show that SRC is a direct target of miR-1. In prostate cancer patient samples, miR-1 levels are inversely correlated with SRC expression and a SRC-dependent gene signature. Ectopic miR-1 expression inhibited extracellular signal-regulated kinase (ERK) signaling and bone metastasis in a xenograft model. In contrast, SRC overexpression was sufficient to reconstitute bone metastasis and ERK signaling in cells expressing high levels of miR-1. Androgen receptor (AR) activity, defined by an AR output signature, is low in a portion of castration-resistant prostate cancer. We show that AR binds to the miR-1-2 regulatory region and regulates miR-1 transcription. Patients with low miR-1 levels displayed correlated low canonical AR gene signatures. Our data support the existence of an AR-miR-1-SRC regulatory network. We propose that loss of miR-1 is one mechanistic link between low canonical AR output and SRC-promoted metastatic phenotypes.

Xiang Z, Abdallah AO, Govindarajan R, et al.
MYC amplification in multiple marker chromosomes and EZH2 microdeletion in a man with acute myeloid leukemia.
Cancer Genet. 2015; 208(3):96-100 [PubMed] Related Publications
The role of MYC and EZH2 in acute myeloid leukemia (AML) pathogenesis is poorly understood. Herein we present a case of AML with MYC amplification in marker chromosomes and a microdeletion of chromosome 7 below cytogenetic resolution. The karyotype of the patient's bone marrow aspirate showed three to five marker chromosomes in all dividing cells without other structural or numerical chromosomal abnormalities. Analysis by fluorescence in situ hybridization (FISH) with a probe specific for the human MYC gene revealed amplification of the oncogene localized to the marker chromosomes. Using whole genome single nucleotide polymorphism (SNP) microarray analysis, an approximately 4.4 Mb amplicon containing the MYC gene was identified with an estimated amplification of about 30 copies per leukemic cell and, thus, an average of about 8 copies per marker chromosome. A 6.4 Mb hemizygous microdeletion of chromosome 7 within band q36.1 was also found by SNP microarray analysis in a cellular-equivalent dosage of 50%. The microdeletion spans multiple genes, including EZH2, a gene with well-known cancer association. No mutation was found in the remaining EZH2 allele by next generation gene sequencing. The combination of MYC amplification and EZH2 deletion, which has not been described previously in AML, may suggest a synergistic role of the two oncogenes in the pathogenesis of the patient's acute leukemia.

Wang Y, Wu X, Ou L, et al.
PLCε knockdown inhibits prostate cancer cell proliferation via suppression of Notch signalling and nuclear translocation of the androgen receptor.
Cancer Lett. 2015; 362(1):61-9 [PubMed] Related Publications
Phospholipase Cε (PLCε), a key regulator of diverse cellular functions, has been implicated in various malignancies. Indeed, PLCε functions include cell proliferation, apoptosis and malignant transformation. Here, we show that PLCε expression is elevated in prostate cancer (PCa) tissues compared to benign prostate tissues. Furthermore, PLCε depletion using an adenovirally delivered shRNA significantly decreased cell growth and colony formation, arresting the PC3 and LNCaP cell lines in the S phase of the cell cycle. We also observed that PLCε was significantly correlated with Notch1 and androgen receptor (AR). Additionally, we demonstrate that the activation of both the Notch and AR signalling pathways is involved in PLCε-mediated oncogenic effects in PCa. Our findings suggest that PLCε is a putative oncogene and prognostic marker, potentially representing a novel therapeutic target for PCa.

Liu X, Wang J, Wang H, et al.
REG3A accelerates pancreatic cancer cell growth under IL-6-associated inflammatory condition: Involvement of a REG3A-JAK2/STAT3 positive feedback loop.
Cancer Lett. 2015; 362(1):45-60 [PubMed] Related Publications
Regenerating gene protein (REG) 3A is a 19 kD secretory pancreas protein with pro-growth function. Previously we demonstrated that overexpression of REG3A, acting as a key molecule for up-regulation of the JAK2/STAT3 pathway, contributed to inflammation-related pancreatic cancer (PaC) development. However the exact network associated with REG3A signaling still remains unclear. Here we determined that exposure of human PaC cells to cytokine IL-6 activated the oncogenic JAK2/STAT3 pathway, which directly upregulated REG3A expression, accelerated cell cycle progression by promoting CyclinD1 expression, and enhancing the expression of the anti-apoptosis Bcl family. Importantly, the activation of REG3A would instead enhance the JAK2/STAT3 pathway to constitute a REG3A-JAK2/STAT3 positive feedback loop, which leads to the amplification of the oncogenic effects of IL-6/JAK2/STAT3, a classic pathway linking to inflammation-related tumorigenesis, ultimately resulting in PaC cell over-proliferation and tumor formation both in vitro and in vivo. Moreover, EGFR was found to mediate the REG3A signal for PaC cell growth and JAK2/STAT3 activation, thus functioning as a REG3A receptor. Collectively, our results provide the first evidence for the presence of the synergistic effect of REG3A and IL-6 on PaC development via a REG3A-JAK2/STAT3 positive feedback loop.

Graham MK, Brown TR, Miller PS
Targeting the human androgen receptor gene with platinated triplex-forming oligonucleotides.
Biochemistry. 2015; 54(13):2270-82 [PubMed] Related Publications
Platinum-derivatized homopyrimidine triplex-forming oligonucleotides (Pt-TFOs) consisting of 2'-O-methyl-5-methyluridine, 2'-O-methyl-5-methylcytidine, and a single 3'-N7-trans-chlorodiammine platinum(II)-2'-deoxyguanosine were designed to cross-link to the transcribed strand at four different sequences in the human androgen receptor (AR) gene. Fluorescence microscopy showed that a fluorescein-tagged Pt-TFO localizes in both the cytoplasm and nucleus when it is transfected into LAPC-4 cells, a human prostate cancer cell line, using Lipofectamine 2000. A capture assay employing streptavidin-coated magnetic beads followed by polymerase chain reaction (PCR) amplification was used to demonstrate that 5'-biotin-conjugated Pt-TFOs cross-link in vitro to their four designated AR gene targets in genomic DNA extracted from LAPC-4 cells. Similarly, the capture assay was used to examine cross-linking between the 5'-biotin-conjugated Pt-TFOs and the AR gene in LAPC-4 cells in culture. Three of the four Pt-TFOs cross-linked to their designated target, suggesting that different regions of the AR gene are not uniformly accessible to Pt-TFO cross-linking. LAPC-4 cells were transfected with fluorescein-tagged Pt-TFO or a control oligonucleotide that does not bind or cross-link to AR DNA. The levels of AR mRNA in highly fluorescent cells isolated by fluorescence-activated cell sorting were determined by RT-qPCR, and the levels of AR protein were monitored by immunofluorescence microscopy. Decreases in mRNA and protein levels of 40 and 30%, respectively, were observed for fluorescein-tagged Pt-TFO versus control treated cells. Although the levels of knockdown of AR mRNA and protein were modest, the results suggest that Pt-TFOs hold potential as agents for controlling gene expression by cross-linking to DNA and disrupting transcription.

Takeoka K, Okumura A, Maesako Y, et al.
Crizotinib resistance in acute myeloid leukemia with inv(2)(p23q13)/RAN binding protein 2 (RANBP2) anaplastic lymphoma kinase (ALK) fusion and monosomy 7.
Cancer Genet. 2015; 208(3):85-90 [PubMed] Related Publications
This is the first report on the development of a p.G1269A mutation within the kinase domain (KD) of ALK after crizotinib treatment in RANBP2-ALK acute myeloid leukemia (AML). An elderly woman with AML with an inv(2)(p23q13)/RANBP2-ALK and monosomy 7 was treated with crizotinib. After a short-term hematological response and the restoration of normal hematopoiesis, she experienced a relapse of AML. Fluorescence in situ hybridization using the ALK break-apart probe confirmed the inv(2)(p23q13), while G-banded karyotyping revealed the deletion of a segment of the short arm of chromosome 1 [del(1)(p13p22)] after crizotinib therapy. The ALK gene carried a heterozygous mutation at the nucleotide position g.716751G>C within exon 25, causing the p.G1269A amino acid substitution within the ALK-KD. Reverse transcriptase PCR revealed that the mutated ALK allele was selectively transcribed and the mutation occurred in the ALK allele rearranged with RANBP2. As both the del(1)(p13p22) at the cytogenetic level and p.G1269A at the nucleotide level newly appeared after crizotinib treatment, it is likely that they were secondarily acquired alterations involved in crizotinib resistance. Although secondary genetic abnormalities in ALK are most frequently described in non-small cell lung cancers harboring an ALK alteration, this report suggests that an ALK-KD mutation can occur independently of the tumor cell type or fusion partner after crizotinib treatment.

Cascón A, Comino-Méndez I, Currás-Freixes M, et al.
Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene.
J Natl Cancer Inst. 2015; 107(5) [PubMed] Related Publications
Disruption of the Krebs cycle is a hallmark of cancer. IDH1 and IDH2 mutations are found in many neoplasms, and germline alterations in SDH genes and FH predispose to pheochromocytoma/paraganglioma and other cancers. We describe a paraganglioma family carrying a germline mutation in MDH2, which encodes a Krebs cycle enzyme. Whole-exome sequencing was applied to tumor DNA obtained from a man age 55 years diagnosed with multiple malignant paragangliomas. Data were analyzed with the two-sided Student's t and Mann-Whitney U tests with Bonferroni correction for multiple comparisons. Between six- and 14-fold lower levels of MDH2 expression were observed in MDH2-mutated tumors compared with control patients. Knockdown (KD) of MDH2 in HeLa cells by shRNA triggered the accumulation of both malate (mean ± SD: wild-type [WT] = 1±0.18; KD = 2.24±0.17, P = .043) and fumarate (WT = 1±0.06; KD = 2.6±0.25, P = .033), which was reversed by transient introduction of WT MDH2 cDNA. Segregation of the mutation with disease and absence of MDH2 in mutated tumors revealed MDH2 as a novel pheochromocytoma/paraganglioma susceptibility gene.

Yang S, Zhang J, Zhang Y, et al.
KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.
Prostate. 2015; 75(9):936-46 [PubMed] Related Publications
BACKGROUND: Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear.
METHODS: The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP).
RESULTS: Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription.
CONCLUSION: Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation.

Couto JA, Vivero MP, Kozakewich HP, et al.
A somatic MAP3K3 mutation is associated with verrucous venous malformation.
Am J Hum Genet. 2015; 96(3):480-6 [PubMed] Article available free on PMC after 05/09/2015 Related Publications
Verrucous venous malformation (VVM), also called "verrucous hemangioma," is a non-hereditary, congenital, vascular anomaly comprised of aberrant clusters of malformed dermal venule-like channels underlying hyperkeratotic skin. We tested the hypothesis that VVM lesions arise as a consequence of a somatic mutation. We performed whole-exome sequencing (WES) on VVM tissue from six unrelated individuals and looked for somatic mutations affecting the same gene in specimens from multiple persons. We observed mosaicism for a missense mutation (NM_002401.3, c.1323C>G; NP_002392, p.Iso441Met) in mitogen-activated protein kinase kinase kinase 3 (MAP3K3) in three of six individuals. We confirmed the presence of this mutation via droplet digital PCR (ddPCR) in the three subjects and found the mutation in three additional specimens from another four participants. Mutant allele frequencies ranged from 6% to 19% in affected tissue. We did not observe this mutant allele in unaffected tissue or in affected tissue from individuals with other types of vascular anomalies. Studies using global and conditional Map3k3 knockout mice have previously implicated MAP3K3 in vascular development. MAP3K3 dysfunction probably causes VVM in humans.

Oshimori N, Oristian D, Fuchs E
TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma.
Cell. 2015; 160(5):963-76 [PubMed] Article available free on PMC after 05/09/2015 Related Publications
Subsets of long-lived, tumor-initiating stem cells often escape cancer therapies. However, sources and mechanisms that generate tumor heterogeneity and drug-resistant cell population are still unfolding. Here, we devise a functional reporter system to lineage trace and/or genetic ablate signaling in TGF-β-activated squamous cell carcinoma stem cells (SCC-SCs). Dissecting TGF-β's impact on malignant progression, we demonstrate that TGF-β concentrating near tumor-vasculature generates heterogeneity in TGF-β signaling at tumor-stroma interface and bestows slower-cycling properties to neighboring SCC-SCs. While non-responding progenies proliferate faster and accelerate tumor growth, TGF-β-responding progenies invade, aberrantly differentiate, and affect gene expression. Intriguingly, TGF-β-responding SCC-SCs show increased protection against anti-cancer drugs, but slower-cycling alone does not confer survival. Rather, TGF-β transcriptionally activates p21, which stabilizes NRF2, thereby markedly enhancing glutathione metabolism and diminishing effectiveness of anti-cancer therapeutics. Together, these findings establish a surprising non-genetic paradigm for TGF-β signaling in fueling heterogeneity in SCC-SCs, tumor characteristics, and drug resistance.

Chung BM, Arutyunov A, Ilagan E, et al.
Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes.
J Cell Biol. 2015; 208(5):613-27 [PubMed] Article available free on PMC after 02/09/2015 Related Publications
High levels of the intermediate filament keratin 17 (K17) correlate with a poor prognosis for several types of epithelial tumors. However, the causal relationship and underlying mechanisms remain undefined. A recent study suggested that K17 promotes skin tumorigenesis by fostering a specific type of inflammation. We report here that K17 interacts with the RNA-binding protein hnRNP K, which has also been implicated in cancer. K17 is required for the cytoplasmic localization of hnRNP K and for its role in regulating the expression of multiple pro-inflammatory mRNAs. Among these are the CXCR3 ligands CXCL9, CXCL10, and CXCL11, which together form a signaling axis with an established role in tumorigenesis. The K17-hnRNP K partnership is regulated by the ser/thr kinase RSK and required for CXCR3-dependent tumor cell growth and invasion. These findings functionally integrate K17, hnRNP K, and gene expression along with RSK and CXCR3 signaling in a keratinocyte-autonomous axis and provide a potential basis for their implication in tumorigenesis.

Mousavi S, Panjehpour M, Izadpanahi MH, Aghaei M
Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues.
Prostate. 2015; 75(7):735-47 [PubMed] Related Publications
BACKGROUND: Adenosine, a purine nucleoside plays important roles in the pathogenesis of cancer initiation and promotion via interaction with four adenosine receptors. In the present study we examined the differential expression pattern of adenosine receptors in the malignant and adjacent normal human prostate tissues.
METHODS: Prostate cancer tissue samples and adjacent normal tissues were obtained from 20 patients undergoing radical prostatectomy and histopathological diagnosis was confirmed for each sample. Total RNA was extracted and reverse transcribed into cDNA and the mRNA expression levels of adenosine receptors were investigated by Taq-man real-time RT-PCR experiment. Quantitative protein analysis was done by Western blotting experiment. Moreover, the mRNA and protein expression levels of adenosine receptors were measured after androgen treatment.
RESULT: Taq-man real-time RT-PCR measurements show different expression levels of adenosine receptor transcripts. A2B adenosine receptor was predominantly expressed in tumor tissues (2.4-fold) followed by significantly expression of A3 (1.6-fold) and A2A adenosine receptors (1.5-fold) compared to adjacent normal tissues. The presence of adenosine receptors at protein levels in prostate cancer tissues compared with normal tissues was shown the following rank order: A2B  > A3  > A2A  > A1 . Androgen receptor regulates adenosine receptors mRNA and protein expression in AR-positive LNCaP cells, which was not seen in AR-negative PC-3 cells.
CONCLUSION: These results indicated for the first time, the differential mRNA expression profile and protein levels of adenosine receptors in the human prostate cancer. Interestingly, the A2B adenosine receptor followed by A3 is highly expressed in prostate tumor samples in comparison with the adjacent normal tissues. The findings support the possible key role of A2B adenosine receptor in promoting cancer cell growth and suggest that A2B may be a novel target for prostate cancer treatment.

Nasti TH, Rudemiller KJ, Cochran JB, et al.
Immunoprevention of chemical carcinogenesis through early recognition of oncogene mutations.
J Immunol. 2015; 194(6):2683-95 [PubMed] Article available free on PMC after 02/09/2015 Related Publications
Prevention of tumors induced by environmental carcinogens has not been achieved. Skin tumors produced by polyaromatic hydrocarbons, such as 7,12-dimethylbenz(a)anthracene (DMBA), often harbor an H-ras point mutation, suggesting that it is a poor target for early immunosurveillance. The application of pyrosequencing and allele-specific PCR techniques established that mutations in the genome and expression of the Mut H-ras gene could be detected as early as 1 d after DMBA application. Further, DMBA sensitization raised Mut H-ras epitope-specific CTLs capable of eliminating Mut H-ras(+) preneoplastic skin cells, demonstrating that immunosurveillance is normally induced but may be ineffective owing to insufficient effector pool size and/or immunosuppression. To test whether selective pre-expansion of CD8 T cells with specificity for the single Mut H-ras epitope was sufficient for tumor prevention, MHC class I epitope-focused lentivector-infected dendritic cell- and DNA-based vaccines were designed to bias toward CTL rather than regulatory T cell induction. Mut H-ras, but not wild-type H-ras, epitope-focused vaccination generated specific CTLs and inhibited DMBA-induced tumor initiation, growth, and progression in preventative and therapeutic settings. Transferred Mut H-ras-specific effectors induced rapid tumor regression, overcoming established tumor suppression in tumor-bearing mice. These studies support further evaluation of oncogenic mutations for their potential to act as early tumor-specific, immunogenic epitopes in expanding relevant immunosurveillance effectors to block tumor formation, rather than treating established tumors.

Wong LI, Labrecque MP, Ibuki N, et al.
p,p'-Dichlorodiphenyltrichloroethane (p,p'-DDT) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) repress prostate specific antigen levels in human prostate cancer cell lines.
Chem Biol Interact. 2015; 230:40-9 [PubMed] Related Publications
Despite stringent restrictions on their use by many countries since the 1970s, the endocrine disrupting chemicals, DDT and DDE are still ubiquitous in the environment. However, little attention has been directed to p,p'-DDT and the anti-androgen, p,p'-DDE on androgen receptor (AR) target gene transcription in human cells. Inhibitors of androgenic activity may have a deleterious clinical outcome in prostate cancer screens and progression, therefore we determined whether environmentally relevant concentrations of p,p'-DDT and p,p'-DDE negatively impact AR-regulated expression of prostate-specific antigen (PSA), and other AR target genes in human LNCaP and VCaP prostate cancer cells. Quantitative real-time PCR and immuno-blotting techniques were used to measure intracellular PSA, PSMA and AR mRNA and protein levels. We have shown for the first time that p,p'-DDT and p,p'-DDE repressed R1881-inducible PSA mRNA and protein levels in a dose-dependent manner. Additionally, we used the fully automated COBAS PSA detection system to determine that extracellular PSA levels were also significantly repressed. These chemicals achieve this by blocking the recruitment of AR to the PSA promoter region at 10 μM, as demonstrated by the chromatin immunoprecipitation (ChIP) in LNCaP cells. Both p,p'-DDT and p,p'-DDE repressed R1881-inducible AR protein accumulation at 10 μM. Thus, we conclude that men who have been exposed to either DDT or DDE may produce a false-negative PSA test when screening for prostate cancer, resulting in an inaccurate clinical diagnosis. More importantly, prolonged exposure to these anti-androgens may mimic androgen ablation therapy in individuals with prostate cancer, thus exacerbating the condition by inadvertently forcing adaptation to this stress early in the disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. AR: androgen receptor, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999