Gene Summary

Gene:FTCDNL1; formiminotransferase cyclodeaminase N-terminal like
Aliases: FONG
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
FTCDNL1 is implicated in:
- folic acid binding
- transferase activity
Data from Gene Ontology via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FTCDNL1 (cancer-related)

Michailidou K, Beesley J, Lindstrom S, et al.
Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.
Nat Genet. 2015; 47(4):373-80 [PubMed] Related Publications
Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

Eveno C, Mojica K, Ady JW, et al.
Gene therapy using therapeutic and diagnostic recombinant oncolytic vaccinia virus GLV-1h153 for management of colorectal peritoneal carcinomatosis.
Surgery. 2015; 157(2):331-7 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
BACKGROUND: Peritoneal carcinomatosis (PC) is a terminal progression of colorectal cancer (CRC). Poor response to cytoreductive operation and chemotherapy coupled with the inability to reliably track disease progression by the use of established diagnostic methods, make this a deadly disease. We examined the effectiveness of the oncolytic vaccinia virus GLV-1h153 as a therapeutic and diagnostic vehicle. We believe that viral expression of the human sodium iodide transporter (hNIS) provides both real-time monitoring of viral therapy and effective treatment of colorectal peritoneal carcinomatosis (CRPC).
METHODS: Infectivity and cytotoxic effect of GLV-1h153 on CRC cell lines was assayed in vitro. Viral replication was examined by standard viral plaque assays. Orthotopic CRPC xenografts were generated in athymic nude mice and subsequently administered GLV-1h153 intraperitoneally. A decrease in tumor burden was assessed by mass. Orthotopic tumors were visualized by single-photon emission computed tomography/computed tomography after Iodine ((131)I) administration and by fluorescence optical imaging.
RESULTS: GLV-1h153 infected and killed CRC cells in a time- and concentration-dependent manner. Viral replication demonstrated greater than a 2.35 log increase in titer over 4 days. Intraperitoneal treatment of orthotopic CRPC xenografts resulted in a substantial decrease in tumor burden. Infection of orthotopic xenografts was therapeutic and facilitated monitoring by (131)I-single-photon emission computed tomography/computed tomography via expression of hNIS in infected tissue.
CONCLUSION: GLV-1h153 kills CRC in vitro effectively and decreases tumor burden in vivo. We demonstrate that GLV-1h153 can be used as an agent to provide accurate delineation of tumor burden in vivo. These findings indicate that GLV-1h153 has potential for use as a therapeutic and diagnostic agent in the treatment of CRPC.

Kuchenbaecker KB, Ramus SJ, Tyrer J, et al.
Identification of six new susceptibility loci for invasive epithelial ovarian cancer.
Nat Genet. 2015; 47(2):164-71 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.

Park J, Chen YJ, Lu WP, Fong Y
The evolution of liver-directed treatments for hepatic colorectal metastases.
Oncology (Williston Park). 2014; 28(11):991-1003 [PubMed] Related Publications
The liver is the most common site of metastases from colorectal cancer. Over the past 3 decades, surgical resection has proved to be the most effective and potentially curative therapy for such metastases. This article will review the current practice of hepatic resection for colorectal liver metastases, including the possibility of combined resection of hepatic metastases at the time of resection of the primary cancer. Effective use of neoadjuvant and adjuvant chemotherapy has further expanded the pool of treatable patients. Most recently, ablative therapies based on needle-delivered thermoablation or radiation therapy have become additional weapons for effective treatment. The relative roles and combined use of these local therapies will be highlighted in this article. Overall, the recent combined advances in surgery, radiation therapy, ablative therapy, and chemotherapy have provided more patients with a chance for long-term survival.

Khan S, Greco D, Michailidou K, et al.
MicroRNA related polymorphisms and breast cancer risk.
PLoS One. 2014; 9(11):e109973 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

Degagné E, Pandurangan A, Bandhuvula P, et al.
Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs.
J Clin Invest. 2014; 124(12):5368-84 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL.

Cheung PF, Yip CW, Wong NC, et al.
Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity.
Cancer Immunol Res. 2014; 2(12):1209-19 [PubMed] Related Publications
Immunoevasion is an emerging hallmark of cancer. Impairment of natural killer (NK) cytotoxicity is a mechanism to evade host immunosurveillance. Granulin-epithelin precursor (GEP) is a hepatic oncofetal protein regulating growth, invasion, and chemoresistance in hepatocellular carcinoma (HCC). We examined the role of GEP in conferring HCC cells the ability to evade NK cytotoxicity. In HCC cell lines, GEP overexpression reduced, whereas GEP suppression enhanced sensitivity to NK cytotoxicity. GEP downregulated surface expression of MHC class I chain-related molecule A (MICA), ligand for NK stimulatory receptor NK group 2 member D (NKG2D), and upregulated human leukocyte antigen-E (HLA-E), ligand for NK inhibitory receptor CD94/NKG2A. Functionally, GEP augmented production of soluble MICA, which suppressed NK activation. Matrix metalloproteinase (MMP)2 and MMP9 activity was involved partly in the GEP-regulated MICA shedding from HCC cells. In primary HCCs (n = 80), elevated GEP (P < 0.001), MICA (P < 0.001), and HLA-E (P = 0.089) expression was observed when compared with those in nontumor (n = 80) and normal livers (n = 10). Serum GEP (P = 0.010) and MICA (P < 0.001) levels were higher in patients with HCC (n = 80) than in healthy individuals (n = 30). High serum GEP and/or MICA levels were associated with poor recurrence-free survival (log-rank test, P = 0.042). Importantly, GEP blockade by mAbs sensitized HCC cells to NK cytotoxicity through MICA. In summary, GEP rendered HCC cells resistant to NK cytotoxicity by modulating MICA expression, which could be reversed by GEP blockade using antibody. Serum GEP and MICA levels are prognostic factors and can be used to stratify patients for targeted therapy.

Perry JR, Day F, Elks CE, et al.
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Nature. 2014; 514(7520):92-7 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.

Fong Y, Lin YC, Wu CY, et al.
The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis.
ScientificWorldJournal. 2014; 2014:937051 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Sirtuins, NAD(+)-dependent deacetylases, could target both histones and nonhistone proteins in mammalian cells. Sirt1 is the major sirtuin and has been shown to involve various cellular processes, including antiapoptosis, cellular senescence. Sirt1 was reported to be overexpressed in many cancers, including lung cancer. Sirtinol, a specific inhibitor of Sirt1, has been shown to induce apoptosis of cancer cells by elevating endogenous level of reactive oxygen species. In the study, we investigated the effect of sirtinol on the proliferation and apoptosis of nonsmall cell lung cancer (NSCLC) H1299 cells. The results of proliferation assay and colony formation assay showed the antigrowth effect of sirtinol. The annexin-V staining further confirmed the apoptosis induction by sirtinol treatment. Interestingly, the levels of phosphorylated Akt and β-catenin were significantly downregulated with treating the apoptotic inducing doses. On the contrary, sirtinol treatment causes the significantly increased level of FoxO3a, a proapoptotic transcription factor targeted by Sirt1. These above results suggested that sirtinol may inhibit cell proliferation of H1299 cells by regulating the axis of Akt-β-catenin-FoxO3a. Overall, this study demonstrates that sirtinol attenuates the proliferation and induces apoptosis of NSCLC cells, indicating the potential treatment against NSCLC cells by inhibiting Sirt1 in future applications.

Lin CY, Hung SY, Chen HT, et al.
Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.
Biochem Pharmacol. 2014; 91(4):522-33 [PubMed] Related Publications
Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.

Chang MA, Patel V, Gwede M, et al.
IL-1β induces p62/SQSTM1 and represses androgen receptor expression in prostate cancer cells.
J Cell Biochem. 2014; 115(12):2188-97 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Chronic inflammation is associated with advanced prostate cancer (PCa), although the mechanisms governing inflammation-mediated PCa progression are not fully understood. PCa progresses to an androgen independent phenotype that is incurable. We previously showed that androgen independent, androgen receptor negative (AR(-) ) PCa cell lines have high p62/SQSTM1 levels required for cell survival. We also showed that factors in the HS-5 bone marrow stromal cell (BMSC) conditioned medium can upregulate p62 in AR(+) PCa cell lines, leading us to investigate AR expression under those growth conditions. In this paper, mRNA, protein, and subcellular analyses reveal that HS-5 BMSC conditioned medium represses AR mRNA, protein, and nuclear accumulation in the C4-2 PCa cell line. Using published gene expression data, we identify the inflammatory cytokine, IL-1β, as a candidate BMSC paracrine factor to regulate AR expression and find that IL-1β is sufficient to both repress AR and upregulate p62 in multiple PCa cell lines. Immunostaining demonstrates that, while the C4-2 population shows a primarily homogeneous response to factors in HS-5 BMSC conditioned medium, IL-1β elicits a strikingly heterogeneous response; suggesting that there are other regulatory factors in the conditioned medium. Finally, while we observe concomitant AR loss and p62 upregulation in IL-1β-treated C4-2 cells, silencing of AR or p62 suggests that IL-1β regulates their protein accumulation through independent pathways. Taken together, these in vitro results suggest that IL-1β can drive PCa progression in an inflammatory microenvironment through AR repression and p62 induction to promote the development and survival of androgen independent PCa.

Liu L, Zhou W, Cheng CT, et al.
TGFβ induces "BRCAness" and sensitivity to PARP inhibition in breast cancer by regulating DNA-repair genes.
Mol Cancer Res. 2014; 12(11):1597-609 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
UNLABELLED: Transforming growth factor beta (TGFβ) proteins are multitasking cytokines, in which high levels at tumor sites generally correlate with poor prognosis in human patients with cancer. Previously, it was reported that TGFβ downregulates the expression of ataxia telangiectasia-mutated (ATM) and mutS homolog 2 (MSH2) in breast cancer cells through an miRNA-mediated mechanism. In this study, expression of a panel of DNA-repair genes was examined, identifying breast cancer 1, early onset (BRCA1) as a target downregulated by TGFβ through the miR181 family. Correlations between the expression levels of TGFβ1 and the miR181/BRCA1 axis were observed in primary breast tumor specimens. By downregulating BRCA1, ATM, and MSH2, TGFβ orchestrates DNA damage response in certain breast cancer cells to induce a "BRCAness" phenotype, including impaired DNA-repair efficiency and synthetic lethality to the inhibition of poly (ADP-ribose) polymerase (PARP). Xenograft tumors with active TGFβ signaling exhibited resistance to the DNA-damaging agent doxorubicin but increased sensitivity to the PARP inhibitor ABT-888. Combination of doxorubicin with ABT-888 significantly improved the treatment efficacy in TGFβ-active tumors. Thus, TGFβ can induce "BRCAness" in certain breast cancers carrying wild-type BRCA genes and enhance the responsiveness to PARP inhibition, and the molecular mechanism behind this is characterized.
IMPLICATIONS: These findings enable better selection of patients with sporadic breast cancer for PARP interventions, which have exhibited beneficial effects in patients carrying BRCA mutations.

Comprehensive molecular profiling of lung adenocarcinoma.
Nature. 2014; 511(7511):543-50 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.

Tan TW, Chou YE, Yang WH, et al.
Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126.
Int Immunopharmacol. 2014; 22(1):107-14 [PubMed] Related Publications
Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma.

Gholami S, Chen CH, Gao S, et al.
Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer.
Cancer Gene Ther. 2014; 21(7):283-9 [PubMed] Related Publications
Triple-negative breast cancers (TNBCs) have poor clinical outcomes owing to a lack of targeted therapies. Activation of the MEK/MAPK pathway in TNBC has been associated with resistance to conventional chemotherapy and biologic agents and has a significant role in poor clinical outcomes. NV1066, a replication-competent herpes virus, infected, replicated in and killed all TNBC cell lines (MDA-MB-231, HCC1806, HCC38, HCC1937, HCC1143) tested. Greater than 90% cell kill was achieved in more-sensitive lines (MDA-MB-231, HCC1806, HCC38) by day 6 at a multiplicity of infection (MOI) of 0.1. In less-sensitive lines (HCC1937, HCC1143), NV1066 still achieved >70% cell kill by day 7 (MOI 1.0). In vivo, mean volume of flank tumors 14 days after treatment with NV1066 was 57 versus 438 mm(3) in controls (P=0.002). NV1066 significantly downregulated p-MAPK activation by 48 h in all cell lines in vitro and in MDA-MB-231 xenografts in vivo. NV1066 demonstrated synergistic effects with a MEK inhibitor, PD98059 in vitro. We demonstrate that oncolytic viral therapy (NV1066) effectively treats TNBC with correlation to decreased MEK/MAPK signaling. These findings merit future studies investigating the potential role of NV1066 as a sensitizing agent for conventional chemotherapeutic and biologic agents by downregulating the MAPK signaling pathway.

Cha E, Klinger M, Hou Y, et al.
Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients.
Sci Transl Med. 2014; 6(238):238ra70 [PubMed] Related Publications
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) blockade can promote antitumor T cell immunity and clinical responses. The mechanism by which anti-CTLA-4 antibodies induces antitumor responses is controversial. To determine the effects of CTLA-4 blockade on the T cell repertoire, we used next-generation deep sequencing to measure the frequency of individual rearranged T cell receptor β (TCRβ) genes, thereby characterizing the diversity of rearrangements, known as T cell clonotypes. CTLA-4 blockade in patients with metastatic castration-resistant prostate cancer and metastatic melanoma resulted in both expansion and loss of T cell clonotypes, consistent with a global turnover of the T cell repertoire. Overall, this treatment increased TCR diversity as reflected in the number of unique TCR clonotypes. The repertoire of clonotypes continued to evolve over subsequent months of treatment. Whereas the number of clonotypes that increased with treatment was not associated with clinical outcome, improved overall survival was associated with maintenance of high-frequency clones at baseline. In contrast, the highest-frequency clonotypes fell with treatment in patients with short overall survival. Stably maintained clonotypes included T cells having high-avidity TCR such as virus-reactive T cells. Together, these results suggest that CTLA-4 blockade induces T cell repertoire evolution and diversification. Moreover, improved clinical outcomes are associated with less clonotype loss, consistent with the maintenance of high-frequency TCR clonotypes during treatment. These clones may represent the presence of preexisting high-avidity T cells that may be relevant in the antitumor response.

Caldwell IR, Oei P, Ng D, et al.
Analysis of molecular cytogenetic changes in metastatic renal cell carcinoma in the setting of everolimus treatment: a pilot project.
Clin Genitourin Cancer. 2014; 12(4):256-61 [PubMed] Related Publications
BACKGROUND: The mTOR inhibitors have improved outcomes for patients with metastatic renal cell carcinoma (mRCC) but the duration of benefit is variable. Currently there are no predictive biomarkers for preselecting patients who are more likely to benefit from these agents. We undertook an exploratory translational study evaluating molecular cytogenetic changes in the context of outcomes from treatment with everolimus.
PATIENTS AND METHODS: Ten patients with clear cell mRCC treated with everolimus were enrolled. Pretreatment tissue specimens were analyzed for molecular cytogenetic changes using fluorescence in situ hybridization and progression-free survival (PFS) data were obtained. Gene probes chosen for this analysis were: Von Hippel Lindau, fragile histidine triad, fibroblast growth factor receptor (FGFR) 1, FGFR3, PDGFβ, PDGFRβ, epidermal growth factor receptor, and myelocytomatosis viral oncogene.
RESULTS: Median PFS was 8.75 months. Two patients with the longest PFS (28 months and 23 months) had gain of PDGFβ and PDGFRβ. This was also observed in 3 other patients who had a PFS of 11.5 months, 8 months, and 5.5 months, respectively. Cytogenetic evolution was observed between primary and metastatic specimens.
CONCLUSION: PDGFβ and PDGFRβ gene status might be of relevance to everolimus therapy. Further research evaluating the utility of these potential biomarkers is required.

Read ML, Seed RI, Fong JC, et al.
The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells.
Endocrinology. 2014; 155(4):1222-34 [PubMed] Related Publications
The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.

Chen JC, Fong YC, Tang CH
Novel strategies for the treatment of chondrosarcomas: targeting integrins.
Biomed Res Int. 2013; 2013:396839 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Chondrosarcomas are a heterogeneous group of malignant bone tumors that are characterized by the production of cartilaginous extracellular matrix. They are the second most frequently occurring type of bone malignancy. Surgical resection remains the primary mode of treatment for chondrosarcomas, since conventional chemotherapy and radiotherapy are largely ineffective. Treatment of patients with high-grade chondrosarcomas is particularly challenging, owing to the lack of effective adjuvant therapies. Integrins are cell surface adhesion molecules that regulate a variety of cellular functions. They have been implicated in the initiation, progression, and metastasis of solid tumors. Deregulation of integrin expression and/or signaling has been identified in many chondrosarcomas. Therefore, the development of new drugs that can selectively target regulators of integrin gene expression and ligand-integrin signaling might hold great promise for the treatment of these cancers. In this review, we provide an overview of the current understanding of how growth factors, chemokines/cytokines, and other inflammation-related molecules can control the expression of specific integrins to promote cell migration. We also review the roles of specific subtypes of integrins and their signaling mechanisms, and discuss how these might be involved in tumor growth and metastasis. Finally, novel therapeutic strategies for targeting these molecules will be discussed.

Jun KH, Gholami S, Song TJ, et al.
A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter.
J Exp Clin Cancer Res. 2014; 33:2 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with (99m)Tc pertechnetate scintigraphy and ¹²⁴I positron emission tomography (PET).
METHODS: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. (99m)Tc pertechnetate scintigraphy and ¹²⁴I microPET imaging were performed.
RESULTS: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70% cytotoxicity in MNK- 45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by (99m)Tc pertechnetate scintigraphy and ¹²⁴I microPET imaging 2 days after treatment.
CONCLUSIONS: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings.

Ito H, Mo Q, Qin LX, et al.
Gene expression profiles accurately predict outcome following liver resection in patients with metastatic colorectal cancer.
PLoS One. 2013; 8(12):e81680 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
PURPOSE: The aim of this study was to build a molecular prognostic model based on gene signatures for patients with completely resected hepatic metastases from colorectal cancer (MCRC).
METHODS: Using the Illumina HumanHT-12 gene chip, RNA samples from the liver metastases of 96 patients who underwent R0 liver resection were analyzed. Patients were randomly assigned to a training (n = 60) and test (n = 36) set. The genes associated with disease-specific survival (DSS) and liver-recurrence-free survival (LRFS) were identified by Cox-regression and selected to construct a molecular risk score (MRS) using the supervised principle component method on the training set. The MRS was then evaluated in the independent test set.
RESULTS: Nineteen and 115 genes were selected to construct the MRS for DSS and LRFS, respectively. Each MRS was validated in the test set; 3-year DSS/LRFS rates were 42/32% and 79/80% for patients with high and low MRS, respectively (p = 0.007 for DSS and p = 0.046 for LRFS). In a multivariate model controlling for a previously validated clinical risk score (CRS), the MRS remained a significant predictor of DSS (p = 0.001) and LRFS (p = 0.03). When CRS and MRS were combined, the patients were discriminated better with 3-year DSS/LRFS rates of 90/89% in the low risk group (both risk scores low) vs 42/26% in the high risk group (both risk scores high), respectively (p = 0.002/0.004 for DSS/LRFS).
CONCLUSION: MRS based on gene expression profiling has high prognostic value and is independent of CRS. This finding provides a potential strategy for better risk-stratification of patients with liver MCRC.

Cao HH, Tse AK, Kwan HY, et al.
Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling.
Biochem Pharmacol. 2014; 87(3):424-34 [PubMed] Related Publications
Melanoma is highly resistant to chemotherapy, and the mortality rate is increasing rapidly worldwide. STAT3 signaling has been implicated in the pathogenesis of melanoma and constitutive activated STAT3 has been validated can as a target for melanoma therapy. Quercetin, a noncarcinogenic dietary flavonoid with low toxicity, has been shown to exert anti-melanoma activity. However, the anti-melanoma mechanisms of quercetin are not fully understood. In this study, we sought to test the involvement of STAT3 signaling in the inhibitory effects of quercetin on melanoma cell growth, migration and invasion. Our results showed that exposure to quercetin resulted in inhibition of proliferation of melanoma cells, induction of cell apoptosis, and suppression of migratory and invasive properties. Mechanistic study indicated that quercetin inhibited the activation of STAT3 signaling by interfering with STAT3 phosphorylation, and reducing STAT3 nuclear localization. This inhibited STAT3 transcription activity and down-regulated STAT3 targeted genes Mcl-1, MMP-2, MMP-9 and VEGF, which are involved in cell growth, migration and invasion. Importantly, overexpression of constitutively active STAT3 partially rescued the growth inhibiting effects induced by quercetin. Furthermore, quercetin suppressed A375 tumor growth and STAT3 activities in xenografted mice model, and inhibited murine B16F10 cells lung metastasis in an animal model. Overall, these results indicate that the antitumor activity of quercetin is at least partially due to inhibition of STAT3 signaling in melanoma cells. Our findings provided new insight into the action of quercetin potently inhibits the STAT3 signaling pathway, suggesting it has a potential role in the prevention and treatment of melanoma.

Fong JT, Jacobs RJ, Moravec DN, et al.
Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer.
PLoS One. 2013; 8(11):e78398 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4-5 and 11-22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2-4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.

Dawson MA, Gudgin EJ, Horton SJ, et al.
Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia.
Leukemia. 2014; 28(2):311-20 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Recent evidence suggests that inhibition of bromodomain and extra-terminal (BET) epigenetic readers may have clinical utility against acute myeloid leukemia (AML). Here we validate this hypothesis, demonstrating the efficacy of the BET inhibitor I-BET151 across a variety of AML subtypes driven by disparate mutations. We demonstrate that a common 'core' transcriptional program, which is HOX gene independent, is downregulated in AML and underlies sensitivity to I-BET treatment. This program is enriched for genes that contain 'super-enhancers', recently described regulatory elements postulated to control key oncogenic driver genes. Moreover, our program can independently classify AML patients into distinct cytogenetic and molecular subgroups, suggesting that it contains biomarkers of sensitivity and response. We focus AML with mutations of the Nucleophosmin gene (NPM1) and show evidence to suggest that wild-type NPM1 has an inhibitory influence on BRD4 that is relieved upon NPM1c mutation and cytosplasmic dislocation. This leads to the upregulation of the core transcriptional program facilitating leukemia development. This program is abrogated by I-BET therapy and by nuclear restoration of NPM1. Finally, we demonstrate the efficacy of I-BET151 in a unique murine model and in primary patient samples of NPM1c AML. Taken together, our data support the use of BET inhibitors in clinical trials in AML.

Gholami S, Chen CH, Lou E, et al.
Vaccinia virus GLV-1h153 in combination with 131I shows increased efficiency in treating triple-negative breast cancer.
FASEB J. 2014; 28(2):676-82 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
We investigated the therapeutic efficacy of a replication-competent oncolytic vaccinia virus, GLV-1h153, carrying human sodium iodide symporter (hNIS), in combination with radioiodine in an orthotopic triple-negative breast cancer (TNBC) murine model. In vitro viral infection was confirmed by immunoblotting and radioiodine uptake assays. Orthotopic xenografts (MDA-MB-231 cells) received intratumoral injection of GLV-1h153 or PBS. One week after viral injection, xenografts were randomized into 4 treatment groups: GLV-1h153 alone, GLV-1h153 and (131)I (∼ 5 mCi), (131)I alone, or PBS, and followed for tumor growth. Kruskal-Wallis and Wilcoxon tests were performed for statistical analysis. Radiouptake assay showed a 178-fold increase of radioiodine uptake in hNIS-expressing infected cells compared with PBS control. Systemic (131)I-iodide in combination with GLV-1h153 resulted in a 6-fold increase in tumor regression (24 compared to 146 mm(3) for the virus-only treatment group; P<0.05; d 40). We demonstrated that a novel vaccinia virus, GLV-1h153, expresses hNIS, increases the expression of the symporter in TNBC cells, and serves both as a gene marker for noninvasive imaging of virus and as a vehicle for targeted radionuclide therapy with (131)I.

Aust N, Schüle S, Altendorf-Hofmann AK, et al.
Loss of chromosome 4 correlates with better long-term survival and lower relapse rate after R0-resection of colorectal liver metastases.
J Cancer Res Clin Oncol. 2013; 139(11):1861-7 [PubMed] Related Publications
PURPOSE: Liver metastases are the major cause of cancer-related death in colorectal cancer patients with a tendency to recur in over 50 % of the cases even after curatively intended surgery. Prognosis after liver resection, however, can neither be based on macroscopic or light microscopic evaluation of the metastases nor on clinical data alone. This is a pilot study in order to determine a potential influence of chromosomal aberrations on overall survival and relapse rate after curative liver resection.
METHODS: Twenty randomly selected cases (10 patients with a survival of more and 10 patients with a survival of less than 5 years after resection) were studied by array comparative genomic hybridization.
RESULTS: The distributions concerning age, gender, stage and grading of primary tumor, percentage of patients with chemotherapy, number and distribution of the liver metastases, Nordlinger and Fong scores showed no differences between long- and short-term survivors and no correlation to any chromosomal aberration. However, the relapse rate of patients with (partial) monosomy 4 was lower and the long-time survival better than in the other patients.
CONCLUSIONS: Loss of chromosome 4 in colorectal liver metastases seems not only to be associated with the progression of the primary tumor as reported in the literature, but also with the long-term survival and the cumulative relapse rate after complete resection of colorectal liver metastases.

Wu CL, Tsai HC, Chen ZW, et al.
Ras activation mediates WISP-1-induced increases in cell motility and matrix metalloproteinase expression in human osteosarcoma.
Cell Signal. 2013; 25(12):2812-22 [PubMed] Related Publications
WISP-1 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matrix cellular proteins. Osteosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effect of WISP-1 on migration activity in human osteosarcoma cells is mostly unknown. In this study, we first found that the expression of WISP-1 in osteosarcoma patients was significantly higher than that in normal bone and corrected with tumor stage. Exogenous treatment of osteosarcoma cells with WISP-1 promoted cell motility and matrix metalloproteinase (MMP)-2 and MMP-9 expression. In addition, the Ras and Raf-1 inhibitor or siRNA abolished WISP-1-induced cell migration and MMP expression. On the other hand, activation of the Ras, Raf-1, MEK, ERK, and NF-κB signaling pathway after WISP-1 treatment was demonstrated, and WISP-1-induced expression of MMPs and migration activity were inhibited by the specific inhibitor, and mutant of MEK, ERK, and NF-κB cascades. Taken together, our results indicated that WISP-1 enhances the migration of osteosarcoma cells by increasing MMP-2 and MMP-9 expression through the integrin receptor, Ras, Raf-1, MEK, ERK, and NF-κB signal transduction pathway.

Rosario R, Wilson M, Cheng WT, et al.
Adult granulosa cell tumours (GCT): clinicopathological outcomes including FOXL2 mutational status and expression.
Gynecol Oncol. 2013; 131(2):325-9 [PubMed] Related Publications
OBJECTIVES: The aim of this research was to use nucleic acids isolated from formalin-fixed paraffin-embedded (FFPE) tissue to investigate the diagnostic potential and prognostic significance of FOXL2 in adult-type GCTs, particularly as a marker of identifying early stage patients that are likely to relapse.
METHODS: We performed a retrospective review of GCT patients referred to the Auckland Gynae-Oncology Multidisciplinary Team from 1955 to 2012. Baseline characteristics, clinical course, histopathology and survival data was recorded. Using nucleic acids extracted from FFPE tumour blocks, FOXL2 mutation status and expression was determined by DNA sequencing and RT-qPCR, respectively, and correlated with clinical data.
RESULTS: 57 adult GCT patients were identified, however FFPE tumour blocks were available for only 37 of these patients. Sequencing results confirmed the presence of the FOXL2 mutation in 70% of patients. FOXL2 mutation positive adult tumours showed a trend towards higher FOXL2 expression than wildtype adult tumours, particularly in stage I patients (p=0.051). In addition, patients with homozygous FOXL2 mutations had a significantly higher relapse rate (p=0.04). There was no significant correlation between FOXL2 mutation status or FOXL2 expression and any other clinical variables.
CONCLUSIONS: FFPE tumour blocks are a valuable resource of molecular information, especially when studying rare tumours such as GCTs. The FOXL2 mutation appears to have some diagnostic potential, however additional work in a larger cohort needs to be completed to confirm the prognostic significance of this gene mutation, and its expression.

Tse AK, Chow KY, Cao HH, et al.
The herbal compound cryptotanshinone restores sensitivity in cancer cells that are resistant to the tumor necrosis factor-related apoptosis-inducing ligand.
J Biol Chem. 2013; 288(41):29923-33 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis and kills cancer cells but not normal cells. However, TRAIL resistance due to low level of TRAIL receptor expression is widely found in cancer cells and hampers its development for cancer treatment. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are urgently needed. We investigated whether tanshinones, the major bioactive compounds of Salvia miltiorrhiza (danshen), can up-regulate TRAIL receptor expression. Among the major tanshinones being tested, cryptotanshinone (CT) showed the best ability to induce TRAIL receptor 2 (DR5) expression. We further showed that CT was capable of promoting TRAIL-induced cell death and apoptosis in A375 melanoma cells. CT-induced DR5 induction was not cell type-specific, as DR5 induction was observed in other cancer cell types. DR5 knockdown abolished the enhancing effect of CT on TRAIL responses. Mechanistically, induction of the DR5 by CT was found to be p53-independent but dependent on the induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). Knockdown of CHOP abolished CT-induced DR5 expression and the associated potentiation of TRAIL-mediated cell death. In addition, CT-induced ROS production preceded up-regulation of CHOP and DR5 and consequent sensitization of cells to TRAIL. Interestingly, CT also converted TRAIL-resistant lung A549 cancer cells into TRAIL-sensitive cells. Taken together, our results indicate that CT can potentiate TRAIL-induced apoptosis through up-regulation of DR5.

Au JT, Mittra A, Song TJ, et al.
Irreversible electroporation facilitates gene transfer of a GM-CSF plasmid with a local and systemic response.
Surgery. 2013; 154(3):496-503 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: Electroporation uses an electric field to induce pores in the cell membrane that can transfer macromolecules into target cells. Modulation of electrical parameters leads to irreversible electroporation (IRE), which is being developed for tissue ablation. We sought to evaluate whether the application of IRE may induce a lesser electric field in the periphery where reversible electroporation may occur, facilitating gene transfer of a granulocyte macrophage colony-stimulating factor (GM-CSF) plasmid to produce its biologic response.
METHODS: Yorkshire pigs underwent laparotomy, and IRE of the liver was performed during hepatic arterial infusion of 1 or 7 mg of a naked human GM-CSF plasmid. The serum, liver, lymph nodes, and bone marrow were harvested for analysis.
RESULTS: Human GM-CSF level rose from undetectable to 131 pg/mL in the serum at 24 hours after IRE and plasmid infusion. The liver demonstrated an ablation zone surrounded by an immune infiltrate that had greater macrophage intensity than when treated with IRE or plasmid infusion alone. This dominance of macrophages was dose dependent. Distant effects of GM-CSF were found in the bone marrow, where proliferating myeloid cells increased from 14% to 25%.
CONCLUSION: IRE facilitated gene transfer of the GM-CSF plasmid and brought about a local and systemic biologic response. This technique holds potential for tumor eradication and immunotherapy of residual cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FONG, Cancer Genetics Web: http://www.cancer-genetics.org/FONG.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999