Gene Summary

Gene:DDX5; DEAD-box helicase 5
Aliases: p68, HLR1, G17P1, HUMP68
Summary:This gene encodes a member of the DEAD box family of RNA helicases that are involved in a variety of cellular processes as a result of its role as an adaptor molecule, promoting interactions with a large number of other factors. This protein is involved in pathways that include the alteration of RNA structures, plays a role as a coregulator of transcription, a regulator of splicing, and in the processing of small noncoding RNAs. Members of this family contain nine conserved motifs, including the conserved Asp-Glu-Ala-Asp (DEAD) motif, important to ATP binding and hydrolysis as well as RNA binding and unwinding activities. Dysregulation of this gene may play a role in cancer development. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:probable ATP-dependent RNA helicase DDX5
Source:NCBIAccessed: 30 August, 2019


What does this gene/protein do?
Show (32)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transcription
  • Staging
  • MicroRNAs
  • Gene Expression Regulation
  • p53 Protein
  • Tumor Suppressor Proteins
  • Post-Transcriptional RNA Processing
  • Protein Binding
  • Breast Cancer
  • Risk Factors
  • Messenger RNA
  • Cell Movement
  • Transforming Growth Factor beta
  • Chromosome 17
  • siRNA
  • p300-CBP Transcription Factors
  • RNA Interference
  • Steroids
  • Cancer Gene Expression Regulation
  • ras Proteins
  • Biomarkers, Tumor
  • Thyroid Hormones
  • Oligonucleotide Array Sequence Analysis
  • beta Catenin
  • Neoplasm Invasiveness
  • Xenograft Models
  • Drug Resistance
  • Western Blotting
  • DEAD-box RNA Helicases
  • Ddx5
  • Colorectal Cancer
  • Superoxide Dismutase
  • Cell Proliferation
  • Reproducibility of Results
  • Prostate Cancer
  • Transcription Factors
  • Estrogen Receptor alpha
  • Stomach Cancer
  • Up-Regulation
  • Gene Expression Profiling
  • S Phase
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DDX5 (cancer-related)

Zhao X, Reebye V, Hitchen P, et al.
Mechanisms involved in the activation of C/EBPα by small activating RNA in hepatocellular carcinoma.
Oncogene. 2019; 38(18):3446-3457 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is generally accompanied by high mortality and low cure rate. CCAAT enhancer-binding proteins (CEBPs) are transcriptional regulators that play a key role in maintaining liver function. Altered expression of C/EBPα and C/EBPβ occurs in many tumours including HCC. saRNAs are small double-stranded RNAs that enhance target gene expression at the transcriptional level. In this report, we activate CEPBA with saRNAs and suppress CEBPB with siRNAs in cells that represent three different degrees of HCC. We performed functional assays to investigate the effects of enhancing C/EBPα and its downstream targets, p21 and albumin across these lines. We also used Mass-spectrometry (MS) subsequent to a ChIP pull-down assay to characterise the components of the protein complex involved in regulating saRNA function. Putative saRNA interacting protein candidates that were identified by MS were knocked-down with siRNAs to investigate its impact on saRNA activity. We confirmed CEBPA-saRNA decreased proliferation and migration in the differentiated lines (HepG3/Hep3B). The undifferentiated line (PLCPRF5) showed saRNA-induced increase in CEBPA but with no loss in proliferation. This effect was reversed when CEBPB was suppressed with CEBPB-siRNA. When interrogating saRNA mode of action; three saRNA interacting proteins, CTR9, HnRNPA2/B1 and DDX5 were identified by MS. Targeted knock-down of these two proteins (by siRNA) abrogated saRNA activity. This study provides insight into how different HCC lines are affected by CEBPA-saRNAs and that endogenous abundance of CEBPB and saRNA accessory proteins may dictate efficacy of CEBPA-saRNA when used in a therapeutic context.

Nyamao RM, Wu J, Yu L, et al.
Roles of DDX5 in the tumorigenesis, proliferation, differentiation, metastasis and pathway regulation of human malignancies.
Biochim Biophys Acta Rev Cancer. 2019; 1871(1):85-98 [PubMed] Related Publications
The DEAD-box RNA helicase DDX5 is a member of a family of highly conserved proteins involved in gene-expression regulation and ATP-dependent RNA helicase activities. Recently, it has been reported to be aberrantly expressed in many tumors, and is linked to the regulation of many cancer-related pathways. It co-activates many transcription factors, with profound implications for cancer development, and the de-regulation of its functions is ultimately associated with tumor formation and progression. Moreover, it is strongly implicated in the tumorigenesis, invasiveness and metastasis, as well as the proliferation of several cancer types. In this review, we seek to elucidate the role of DDX5 in the development and progression of human malignancies and put forward its prospective applications in future cancer research.

Liu Y, Xu J, Choi HH, et al.
Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer.
Nat Commun. 2018; 9(1):4718 [PubMed] Free Access to Full Article Related Publications
Chromosome 17q23 amplification occurs in ~11% of human breast cancers. Enriched in HER2+ breast cancers, the 17q23 amplification is significantly correlated with poor clinical outcomes. In addition to the previously identified oncogene WIP1, we uncover an oncogenic microRNA gene, MIR21, in a majority of the WIP1-containing 17q23 amplicons. The 17q23 amplification results in aberrant expression of WIP1 and miR-21, which not only promotes breast tumorigenesis, but also leads to resistance to anti-HER2 therapies. Inhibiting WIP1 and miR-21 selectively inhibits the proliferation, survival and tumorigenic potential of the HER2+ breast cancer cells harboring 17q23 amplification. To overcome the resistance of trastuzumab-based therapies in vivo, we develop pH-sensitive nanoparticles for specific co-delivery of the WIP1 and miR-21 inhibitors into HER2+ breast tumors, leading to a profound reduction of tumor growth. These results demonstrate the great potential of the combined treatment of WIP1 and miR-21 inhibitors for the trastuzumab-resistant HER2+ breast cancers.

Wang R, Bao HB, Du WZ, et al.
P68 RNA helicase promotes invasion of glioma cells through negatively regulating DUSP5.
Cancer Sci. 2019; 110(1):107-117 [PubMed] Free Access to Full Article Related Publications
Gliomas are the most common central nervous system tumors. They show malignant characteristics indicating rapid proliferation and a high invasive capacity and are associated with a poor prognosis. In our previous study, p68 was overexpressed in glioma cells and correlated with both the degree of glioma differentiation and poor overall survival. Downregulating p68 significantly suppressed proliferation in glioma cells. Moreover, we found that the p68 gene promoted glioma cell growth by activating the nuclear factor-κB signaling pathway by a downstream molecular mechanism that remains incompletely understood. In this study, we found that dual specificity phosphatase 5 (DUSP5) is a downstream target of p68, using microarray analysis, and that p68 negatively regulates DUSP5. Upregulating DUSP5 in stably expressing cell lines (U87 and LN-229) suppressed proliferation, invasion, and migration in glioma cells in vitro, consistent with the downregulation of p68. Furthermore, upregulating DUSP5 inhibited ERK phosphorylation, whereas downregulating DUSP5 rescued the level of ERK phosphorylation, indicating that DUSP5 might negatively regulate ERK signaling. Additionally, we show that DUSP5 levels were lower in high-grade glioma than in low-grade glioma. These results suggest that the p68-induced negative regulation of DUSP5 promoted invasion by glioma cells and mediated the activation of the ERK signaling pathway.

Xue Y, Jia X, Li L, et al.
DDX5 promotes hepatocellular carcinoma tumorigenesis via Akt signaling pathway.
Biochem Biophys Res Commun. 2018; 503(4):2885-2891 [PubMed] Related Publications
The DEAD-box-protein DDX5 is an ATP-dependent RNA helicase and also acts as co-activator that contributes to progression and metastasis of various tumours. However, its expression as well as prognostic roles of DDX5 in hepatocellular carcinoma (HCC) remain elusive. In this study, we investigated clinical significance and biological functions of DDX5 in HCC. Our results suggested that DDX5 showed overexpression at both transcriptional and translational levels in HCC tissues compared with adjacent normal tissues. Moreover, DDX5 expression was demonstrated to be correlated with tumor size (p < 0.001), N stage (p = 0.013), M stage (p = 0.006), tumor differentiation (p < 0.001) and American Joint Committee on Cancer (AJCC) stage (p = 0.001). Simultaneously, high DDX5 expression was found to be significantly correlated to worse outcome including Disease free survival (DFS) (p = 0.016) and overall survival (OS) (p = 0.032) according to Kaplan-Meier survival analysis. In vitro studies, it suggested that knockdown of DDX5 suppressed HCC cells migration, invasion and epithelial -to- mesenchymal transition (EMT) process. Depletion of DDX5 could promote HCC cells growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that PI3K/Akt signaling pathway obtained the highest enrichment. Furthermore, we found that knockdown of DDX5 decreased Akt as well as p-Akt (S473) expressions. Collectively, these findings suggested that DDX5 facilitated HCC cells growth via Akt signaling pathway. DDX5 played a crucial role in HCC proliferation and tumorigenesis and may be a novel prognostic marker and potential therapeutic target for HCC.

Yi GZ, Xiang W, Feng WY, et al.
Identification of Key Candidate Proteins and Pathways Associated with Temozolomide Resistance in Glioblastoma Based on Subcellular Proteomics and Bioinformatical Analysis.
Biomed Res Int. 2018; 2018:5238760 [PubMed] Free Access to Full Article Related Publications
TMZ resistance remains one of the main reasons why treatment of glioblastoma (GBM) fails. In order to investigate the underlying proteins and pathways associated with TMZ resistance, we conducted a cytoplasmic proteome research of U87 cells treated with TMZ for 1 week, followed by differentially expressed proteins (DEPs) screening, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and validation of key candidate proteins in TCGA dataset. A total of 161 DEPs including 65 upregulated proteins and 96 downregulated proteins were identified. Upregulated DEPs were mainly related to regulation in actin cytoskeleton, focal adhesion, and phagosome and PI3K-AKT signaling pathways which were consistent with our previous studies. Further, the most significant module consisted of 28 downregulated proteins that were filtered from the PPI network, and 9 proteins (DHX9, HNRNPR, RPL3, HNRNPA3, SF1, DDX5, EIF5B, BTF3, and RPL8) among them were identified as the key candidate proteins, which were significantly associated with prognosis of GBM patients and mainly involved in ribosome and spliceosome pathway. Taking the above into consideration, we firstly identified candidate proteins and pathways associated with TMZ resistance in GBM using proteomics and bioinformatic analysis, and these proteins could be potential biomarkers for prevention or prediction of TMZ resistance in the future.

Sha M, Lin M, Wang J, et al.
Long non-coding RNA MIAT promotes gastric cancer growth and metastasis through regulation of miR-141/DDX5 pathway.
J Exp Clin Cancer Res. 2018; 37(1):58 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The objective of this study was to investigate the role and mechanism of long non-coding RNA MIAT in gastric cancer (GC).
METHODS: Real-time PCR was used to determine MIAT level in 120 GC tissues, and in two gastric cancer cell lines. The clinicopathological characteristics of MIAT in GC patients were analyzed. Small interfering RNA specific for MIAT (si-MIAT) and lentivector for si-MIAT was performed to down-regulate MIAT expression in GC cells and in animal tumor model, respectively. The interaction of MIAT and miR-141 was measured by RNA pull-down assay and RNA immunoprecipitation. The biological function of si-MIAT on GC cell growth and metastasis were explored through flow cytometry assay, invasion and migration assay in vitro.
RESULTS: MIAT was highly expressed in GC tissues and cell lines and correlated with differentiation degree, TNM stage, distant metastasis, and lymph node metastasis. MIAT knockdown inhibited GC growth and metastasis both in vitro and in vivo. Furthermore, MIAT acted as miR-141 sponge and regulated its target gene DDX5 expression. In BGC-823 and MGC-803 cells with si-MIAT, DDX5 overexpression resulted in an increase of cell proliferation, migration and invasion.
CONCLUSIONS: Our data indicated that MIAT played an oncogenic role in GC growth and metastasis, and could serve as a novel molecular target for treating GC.

Das M, Renganathan A, Dighe SN, et al.
DDX5/p68 associated lncRNA LOC284454 is differentially expressed in human cancers and modulates gene expression.
RNA Biol. 2018; 15(2):214-230 [PubMed] Free Access to Full Article Related Publications
Long non-coding RNAs (lncRNAs) are emerging as important players in regulation of gene expression in higher eukaryotes. DDX5/p68 RNA helicase protein which is involved in splicing of precursor mRNAs also interacts with lncRNAs like, SRA and mrhl, to modulate gene expression. We performed RIP-seq analysis in HEK293T cells to identify the complete repertoire of DDX5/p68 interacting transcripts including 73 single exonic (SE) lncRNAs. The LOC284454 lncRNA is the second top hit of the list of SE lncRNAs which we have characterized in detail for its molecular features and cellular functions. The RNA is located in the same primary transcript harboring miR-23a∼27a∼24-2 cluster. LOC284454 is a stable, nuclear restricted and chromatin associated lncRNA. The sequence is conserved only in primates among 26 different species and is expressed in multiple human tissues. Expression of LOC284454 is significantly reduced in breast, prostate, uterus and kidney cancer and also in breast cancer cell lines (MCF7 and T47D). Global gene expression studies upon loss and gain of function of LOC284454 revealed perturbation of genes related to cancer-related pathways. Focal adhesion and cell migration pathway genes are downregulated under overexpression condition, and these genes are significantly upregulated in breast cancer cell lines as well as breast cancer tissue samples suggesting a functional role of LOC284454 lncRNA in breast cancer pathobiology.

Ayoubian H, Fröhlich T, Pogodski D, et al.
Antibodies against the mono-methylated arginine-glycine repeat (MMA-RG) of the Epstein-Barr virus nuclear antigen 2 (EBNA2) identify potential cellular proteins targeted in viral transformation.
J Gen Virol. 2017; 98(8):2128-2142 [PubMed] Related Publications
The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.

Fu Q, Song X, Liu Z, et al.
miRomics and Proteomics Reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc Feedback Loop Modulated by HDGF/DDX5/β-catenin Complex in Lung Adenocarcinoma.
Clin Cancer Res. 2017; 23(20):6336-6350 [PubMed] Related Publications

Qing S, Tulake W, Ru M, et al.
Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection.
Tumour Biol. 2017; 39(4):1010428317697547 [PubMed] Related Publications
It is known that high-risk human papillomavirus infection is the main etiological factor in cervical carcinogenesis. However, human papillomavirus screening is not sufficient for early diagnosis. In this study, we aimed to identify potential biomarkers common to cervical carcinoma and human papillomavirus infection by proteomics for human papillomavirus-based early diagnosis and prognosis. To this end, we collected 76 cases of fresh cervical tissues and 116 cases of paraffin-embedded tissue slices, diagnosed as cervical squamous cell carcinoma, cervical intraepithelial neoplasia II-III, or normal cervix from ethnic Uighur and Han women. Human papillomavirus infection by eight oncogenic human papillomavirus types was detected in tissue DNA samples using a quantitative polymerase chain reaction. The protein profile of cervical specimens from human papillomavirus 16-positive squamous cell carcinoma and human papillomavirus-negative normal controls was analyzed by proteomics and bioinformatics. The expression of candidate proteins was further determined by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. We identified 67 proteins that were differentially expressed in human papillomavirus 16-positive squamous cell carcinoma compared to normal cervix. The quantitative reverse transcriptase-polymerase chain reaction analysis verified the upregulation of ASAH1, PCBP2, DDX5, MCM5, TAGLN2, hnRNPA1, ENO1, TYPH, CYC, and MCM4 in squamous cell carcinoma compared to normal cervix ( p < 0.05). In addition, the transcription of PCBP2, MCM5, hnRNPA1, TYPH, and CYC was also significantly increased in cervical intraepithelial neoplasia II-III compared to normal cervix. Immunohistochemistry staining further confirmed the overexpression of PCBP2, hnRNPA1, ASAH1, and DDX5 in squamous cell carcinoma and cervical intraepithelial neoplasia II-III compared to normal controls ( p < 0.05). Our data suggest that the expression of ASAH1, PCBP2, DDX5, and hnRNPA1, and possibly MCM4, MCM5, CYC, ENO1, and TYPH, is upregulated during cervical carcinogenesis and potentially associated with human papillomavirus infection. Further validation studies of the profile will contribute to establishing auxiliary diagnostic markers for human papillomavirus-based cancer prognosis.

Ma Z, Feng J, Guo Y, et al.
Knockdown of DDX5 Inhibits the Proliferation and Tumorigenesis in Esophageal Cancer.
Oncol Res. 2017; 25(6):887-895 [PubMed] Related Publications
DEAD (Asp-Glu-Ala-Asp) box protein 5 (DDX5), a prototypical member of the DEAD/H-box protein family, has been involved in several human malignancies. However, the expression and biological role of DDX5 in esophageal cancer (EC) remain largely unknown. In this study, we examined the role of DDX5 in regulating EC cell proliferation and tumorigenesis and explored its possible molecular mechanism. We found that DDX5 was overexpressed in human EC cell lines. In addition, knockdown of DDX5 significantly inhibited the proliferation of EC cells in vitro and the growth of EC xenografts in vivo. Knockdown of DDX5 also suppressed the migration/invasion and epithelial-to-mesenchymal transition (EMT) phenotype in EC cells. Furthermore, we observed that knockdown of DDX5 inhibited the expression of β-catenin, c-Myc, and cyclin D1 in EC cells. In conclusion, our findings provide the first evidence that siRNA-DDX5 inhibited the proliferation and invasion of EC cells through suppressing the Wnt/β-catenin signaling pathway. Therefore, DDX5 may be a novel potential therapeutic target for the prevention and treatment of EC.

Du C, Li DQ, Li N, et al.
DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway.
Sci Rep. 2017; 7:42876 [PubMed] Free Access to Full Article Related Publications
DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) is an ATP-dependent RNA helicase that is overexpressed in various malignancies. Increasing evidence suggests that DDX5 participates in carcinogenesis and cancer progression via promoting cell proliferation and metastasis. However, the functional role of DDX5 in gastric cancer is largely unknown. In this study, we observed that DDX5 was significantly up-regulated in gastric cancer tissues compared with the paired adjacent normal tissues. The expression of DDX5 correlated strongly with Ki67 index and pathological stage of gastric cancer. In vitro and in vivo studies suggested that knockdown of DDX5 inhibited gastric cancer cell proliferation, colony formation and xenografts growth, whereas ectopic expression of DDX5 promoted these cellular functions. Mechanically, DDX5 induced gastric cancer cell growth by activating mTOR/S6K1. Treatment of everolimus, the specific mTOR inhibitor, significantly attenuated DDX5-mediated cell proliferation. Interestingly, the expression of DDX5 and p-mTOR in gastric cancer tissues demonstrated a positive correlation. Taken together, these results revealed a novel role of DDX5 in gastric cancer cell proliferation via the mTOR pathway. Therefore, DDX5 may serve as a therapeutic target in gastric cancer.

Cai W, Xiong Chen Z, Rane G, et al.
Wanted DEAD/H or Alive: Helicases Winding Up in Cancers.
J Natl Cancer Inst. 2017; 109(6) [PubMed] Related Publications
Cancer is one of the most studied areas of human biology over the past century. Despite having attracted much attention, hype, and investments, the search to find a cure for cancer remains an uphill battle. Recent discoveries that challenged the central dogma of molecular biology not only further increase the complexity but also demonstrate how various types of noncoding RNAs such as microRNA and long noncoding RNA, as well as their related processes such as RNA editing, are important in regulating gene expression. Parallel to this aspect, an increasing number of reports have focused on a family of proteins known as DEAD/H-box helicases involved in RNA metabolism, regulation of long and short noncoding RNAs, and novel roles as "editing helicases" and their association with cancers. This review summarizes recent findings on the roles of RNA helicases in various cancers, which are broadly classified into adult solid tumors, childhood solid tumors, leukemia, and cancer stem cells. The potential small molecule inhibitors of helicases and their therapeutic value are also discussed. In addition, analyzing next-generation sequencing data obtained from public portals and reviewing existing literature, we provide new insights on the potential of DEAD/H-box helicases to act as pharmacological drug targets in cancers.

Sciarrillo R, Wojtuszkiewicz A, Kooi IE, et al.
Using RNA-sequencing to Detect Novel Splice Variants Related to Drug Resistance in In Vitro Cancer Models.
J Vis Exp. 2016; (118) [PubMed] Free Access to Full Article Related Publications
Drug resistance remains a major problem in the treatment of cancer for both hematological malignancies and solid tumors. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by well-known genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) modifications, drug resistance mechanisms might also be regulated by splicing aberrations. This is a rapidly growing field of investigation that deserves future attention in order to plan more effective therapeutic approaches. The protocol described in this paper is aimed at investigating the impact of aberrant splicing on drug resistance in solid tumors and hematological malignancies. To this goal, we analyzed the transcriptomic profiles of several in vitro models through RNA-seq and established a qRT-PCR based method to validate candidate genes. In particular, we evaluated the differential splicing of DDX5 and PKM transcripts. The aberrant splicing detected by the computational tool MATS was validated in leukemic cells, showing that different DDX5 splice variants are expressed in the parental vs. resistant cells. In these cells, we also observed a higher PKM2/PKM1 ratio, which was not detected in the Panc-1 gemcitabine-resistant counterpart compared to parental Panc-1 cells, suggesting a different mechanism of drug-resistance induced by gemcitabine exposure.

Sarkar M, Khare V, Ghosh MK
The DEAD box protein p68: a novel coactivator of Stat3 in mediating oncogenesis.
Oncogene. 2017; 36(22):3080-3093 [PubMed] Related Publications
DEAD box RNA helicase p68 acts as a transcriptional coactivator of several oncogenic transcription factors apart from being a vital player of RNA metabolism. Signal transducer and activator of transcription 3 (Stat3) is a major oncogenic contributor of diverse cancers, including that of colon. Deciphering the mechanistic insights of coactivation of Stat3 transcriptional activity may aid in improved therapeutic strategies. Here we report for the first time a novel mechanism of alliance between p68 and Stat3 in stimulating transcriptional activity of Stat3. Interestingly, we observed that the expression of p68 and Stat3 bears strong positive correlation and significant colocalization in normal and colon carcinoma patient samples. We demonstrated that p68 directly interacts with Stat3 in HEK293 cells as well as multiple colon cancer cell lines. Additionally, p68 positively modulated both mRNA and protein expression levels of Stat3 target genes; promoter activity of Stat3 target gene Mcl-1 in multiple colon cancer cell lines. Also, p68 occupied the promoters of multiple Stat3 target genes in enhancing Stat3-dependent transcription. Moreover, the strong positive correlation between the abundance of p68 and Stat3 target genes in the same set of colon carcinoma samples further supported our observations. Enhanced expression levels of Stat3 target genes observed in primary tumors and metastatic lung nodules, generated in mice colorectal allograft model using syngeneic cells stably expressing p68, further reinforced our in vitro findings. Hence, this study unravels novel modes of p68-mediated oncogenesis through coactivation of Stat3 and enhancing Stat3 signaling.

Chen L, Jin Y, Wang L, et al.
Identification of reference genes and miRNAs for qRT-PCR in human esophageal squamous cell carcinoma.
Med Oncol. 2017; 34(1):2 [PubMed] Related Publications
It is important to select an appropriate reference gene and miRNA when using quantitative real-time polymerase chain reaction (qRT-PCR) to analyze gene and miRNA expression. However, many commonly used reference genes and miRNAs are not stably expressed and therefore not suitable for normalization or quantification of qRT-PCR data. This study aims to identify appropriate reference genes and miRNAs for use in human esophageal squamous carcinoma qRT-PCR analysis. Using data provided by The Cancer Genome Atlas, we identified DDX5, LAPTM4A, P4HB, RHOA, miR-28-5p, miR-34a-5p, and miR-186-5p as candidate reference genes and miRNAs. We used qRT-PCR to verify the expression levels of these candidates and another seven commonly used reference genes and miRNAs. A set of 50 paired human normal esophageal tissues and squamous cell carcinoma samples were used in the analysis. We then used geNorm and NormFinder to analyze the results. DDX5, LAPTM4A, RHOA, ACTB, RNU48, miR-28-5p, miR-34a-5p, and miR-186-5p were stably expressed, indicating they are suitable for used as references in qRT-PCR analysis of esophageal squamous cell carcinoma. However, expression levels of 18s rRNA, GAPDH, P4HB, 5s rRNA, U6, and RNU6B varied greatly between esophageal normal and squamous cell carcinoma samples, indicating that they are not suitable for use as references in the qRT-PCR analysis of esophageal squamous cell carcinoma.

Zhang H, Xing Z, Mani SK, et al.
RNA helicase DEAD box protein 5 regulates Polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis.
Hepatology. 2016; 64(4):1033-48 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Chronic hepatitis B virus (HBV) infection is a major factor in hepatocellular carcinoma (HCC) pathogenesis by a mechanism not yet understood. Elucidating mechanisms of HBV-mediated hepatocarcinogenesis is needed to gain insights into classification and treatment of HCC. In HBV replicating cells, including virus-associated HCCs, suppressor of zeste 12 homolog (SUZ12), a core subunit of Polycomb repressive complex2 (PRC2), undergoes proteasomal degradation. This process requires the long noncoding RNA, Hox transcript antisense intergenic RNA (HOTAIR). Intriguingly, HOTAIR interacts with PRC2 and also binds RNA-binding E3 ligases, serving as a ubiquitination scaffold. Herein, we identified the RNA helicase, DEAD box protein 5 (DDX5), as a regulator of SUZ12 stability and PRC2-mediated gene repression, acting by regulating RNA-protein complexes formed with HOTAIR. Specifically, knockdown of DDX5 and/or HOTAIR enabled reexpression of PRC2-repressed genes epithelial cell adhesion molecule (EpCAM) and pluripotency genes. Also, knockdown of DDX5 enhanced transcription from the HBV minichromosome. The helicase activity of DDX5 stabilized SUZ12- and PRC2-mediated gene silencing, by displacing the RNA-binding E3 ligase, Mex-3 RNA-binding family member B (Mex3b), from HOTAIR. Conversely, ectopic expression of Mex3b ubiquitinated SUZ12, displaced DDX5 from HOTAIR, and induced SUZ12 down-regulation. In G2 phase of cells expressing the HBV X protein (HBx), SUZ12 preferentially associated with Mex3b, but not DDX5, resulting in de-repression of PRC2 targets, including EpCAM and pluripotency genes. Significantly, liver tumors from HBx/c-myc bitransgenic mice and chronically HBV-infected patients exhibited a strong negative correlation between DDX5 messenger RNA levels, pluripotency gene expression, and liver tumor differentiation. Notably, chronically infected HBV patients with HCC expressing reduced DDX5 exhibited poor prognosis after tumor resection, identifying DDX5 as an important player in poor prognosis HCC.
CONCLUSION: The RNA helicase DDX5, and E3 ligase Mex3b, are important cellular targets for the design of novel, epigenetic therapies to combat HBV infection and poor prognosis HBV-associated liver cancer. (Hepatology 2016;64:1033-1048).

Gurtner A, Falcone E, Garibaldi F, Piaggio G
Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity.
J Exp Clin Cancer Res. 2016; 35:45 [PubMed] Free Access to Full Article Related Publications
A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA maturation. Alterations in the miRNA biogenesis machinery impact on the establishment and development of cancer programs. Accumulation of pri-microRNAs and corresponding depletion of mature microRNAs occurs in human cancers compared to normal tissues, strongly indicating an impairment of crucial steps in microRNA biogenesis. In agreement, inhibition of microRNA biogenesis, by depletion of Dicer1 and Drosha, tends to enhance tumorigenesis in vivo. The p53 tumor suppressor gene, TP53, is mutated in half of human tumors resulting in an oncogene with Gain-Of-Function activities. In this review we discuss recent studies that have underlined a role of mutant p53 (mutp53) on the global regulation of miRNA biogenesis in cancer. In particular we describe how a new transcriptionally independent function of mutant p53 in miRNA maturation, through a mechanism by which this oncogene is able to interfere with the Drosha processing machinery, generally inhibits miRNA processing in cancer and consequently impacts on carcinogenesis.

Zhang X, Gee H, Rose B, et al.
Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers.
BMC Cancer. 2016; 16:86 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The rates of oropharyngeal cancers such as tonsil cancers are increasing. The tumour suppressor protein Programmed Cell Death Protein 4 (PDCD4) has been implicated in the development of various human cancers and small RNAs such as microRNAs (miRNAs) can regulate its expression. However the exact regulation of PDCD4 by multiple miRNAs in oropharyngeal squamous cell carcinoma (SCC) is not well understood.
RESULTS: Using two independent oropharyngeal SCC cohorts with a focus on the tonsillar region, we identified a miRNA profile differentiating SCC tissue from normal. Both miR-21 and miR-499 were highly expressed in tonsil SCC tissues displaying a loss of PDCD4. Interestingly, expression of the miRNA machinery, Dicer1, Drosha, DDX5 (Dead Box Helicase 5) and DGCR8 (DiGeorge Syndrome Critical Region Gene 8) were all elevated by greater than 2 fold in the tonsil SCC tissue. The 3'UTR of PDCD4 contains three binding-sites for miR-499 and one for miR-21. Using a wild-type and truncated 3'UTR of PDCD4, we demonstrated that the initial suppression of PDCD4 was mediated by miR-21 whilst sustained suppression was mediated by miR-499. Moreover the single miR-21 site was able to elicit the same magnitude of suppression as the three miR-499 sites.
CONCLUSION: This study describes the regulation of PDCD4 specifically in tonsil SCC by miR-499 and miR-21 and has documented the loss of PDCD4 in tonsil SCCs. These findings highlight the complex interplay between miRNAs and tumour suppressor gene regulation and suggest that PDCD4 loss may be an important step in tonsillar carcinogenesis.

Jacob J, Favicchio R, Karimian N, et al.
LMTK3 escapes tumour suppressor miRNAs via sequestration of DDX5.
Cancer Lett. 2016; 372(1):137-46 [PubMed] Related Publications
Lemur tyrosine kinase-3 (LMTK3) plays an important role in cancer progression and is associated with breast, lung, gastric and colorectal cancer. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that typically repress target genes at post-transcriptional level and have an important role in tumorigenesis. By performing a miRNA expression profile, we identified a subset of miRNAs modulated by LMTK3. We show that LMTK3 induces miR-34a, miR-196-a2 and miR-182 levels by interacting with DEAD-box RNA helicase p68 (DDX5). LMTK3 binds via DDX5 to the pri-miRNA of these three mature miRNAs, thereby sequestrating them from further processing. Ectopic expression of miR-34a and miR-182 in LMTK3-overexpressing cell lines (MCF7-LMTK3 and MDA-MB-231-LMTK3) inhibits breast cancer proliferation, invasion and migration. Interestingly, miR-34a and miR-182 directly bind to the 3'UTR of LMTK3 mRNA and consequently inhibit both its stability and translation, acting as tumour suppressor-like miRNAs. In aggregate, we show that LMTK3 is involved in miRNA biogenesis through modulation of the Microprocessor complex, inducing miRNAs that target LMTK3 itself.

Ajiro M, Jia R, Yang Y, et al.
A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells.
Nucleic Acids Res. 2016; 44(4):1854-70 [PubMed] Free Access to Full Article Related Publications
Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis.

Jiang FZ, He YY, Wang HH, et al.
Mutant p53 induces EZH2 expression and promotes epithelial-mesenchymal transition by disrupting p68-Drosha complex assembly and attenuating miR-26a processing.
Oncotarget. 2015; 6(42):44660-74 [PubMed] Free Access to Full Article Related Publications
The tumor suppressor p53 and the transcriptional repressor Enhancer of Zeste Homolog 2 (EZH2) have both been implicated in the regulation of epithelial-mesenchymal transition (EMT) and tumor metastasis via their impacts on microRNA expression. Here, we report that mutant p53 (mutp53) promotes EMT in endometrial carcinoma (EC) by disrupting p68-Drosha complex assembly. Overexpression of mutp53 has the opposite effect of wild-type p53 (WTp53), repressing miR-26a expression by reducing pri-miR-26a-1 processing in p53-null EC cells. Re-expression of miR-26a in mutp53 EC cells decreases cell invasion and promotes mesenchymal-epithelial transition (MET). Rescuing miR-26a expression also inhibits EZH2, N-cadherin, Vimentin, and Snail expression and induces E-cadherin expression both in vitro and in vivo. Moreover, patients with higher serum miR-26a levels have a better survival rate. These results suggest that p53 gain-of-function mutations accelerate EC tumor progression and metastasis by interfering with Drosha and p68 binding and pri-miR-26a-1 processing, resulting in reduced miR-26a expression and EZH2 overexpression.

Ye X
Confluence analysis of multiple omics on platinum resistance of ovarian cancer.
Eur J Gynaecol Oncol. 2015; 36(5):514-9 [PubMed] Related Publications
OBJECTIVE: The study aimed to provide novel insight into the mechanism of platinum resistance of ovarian cancer.
MATERIALS AND METHODS: RNA-seq data ERP000710 were obtained from Gene Expression Omnibus database, including specimens from six platinum sensitive samples and six platinum tolerance samples. The author analyzed the data of the 12 samples as a whole because of the low flux sequencing. Single nucleotide polymorphisms (SNPs) were identified between platinum-sensitive and platinum-tolerant samples using VARSCAN, followed by functional prediction of the SNPs. After processed by Btrim software, the data were subjected to Cuffdiff for the identification of differentially expressed genes (DEGs), followed by function and pathway enrichment analysis. In addition, VARSCAN software was used to detect the specific mutations in platinum tolerance samples, combined with functional prediction of mutations.
RESULTS: The author obtained 38 new SNPs after excluding 22 SNP from dbSNP database and 1000 Genomes Project and found ESRP1, LDHA, DDX5, and HEXA were associated with platinum resistance of ovarian cancer. Totally, 290 upregulated and 157 down-regulated genes were selected. Biological processes such as immune response, inflammatory response, and response to wounding and pathways such as cell adhesion molecules, calcium signaling, and NOD-like receptor signaling pathways were enriched with upregulated genes. Cell-cell signaling, cell morphogenesis, and basal cell carcinoma pathway were related to downregulated genes.
CONCLUSION: Based on high-throughput RNA-seq data and confluence analysis of multiple omics, the author explored the biological mechanisms on platinum tolerance of ovarian cancer, which may provide new ideas and methods for further research.

González-Duarte RJ, Cázares-Ordoñez V, Díaz L, et al.
The expression of RNA helicase DDX5 is transcriptionally upregulated by calcitriol through a vitamin D response element in the proximal promoter in SiHa cervical cells.
Mol Cell Biochem. 2015; 410(1-2):65-73 [PubMed] Related Publications
The DEAD box RNA helicase DDX5 is a multifunctional protein involved in the regulatory events of gene expression. Herein, we presented evidence indicating that DDX5 is transcriptionally upregulated by calcitriol, the hormonal form of vitamin D3. In silico analysis revealed the presence of two putative vitamin D response elements (VDREs) in the DDX5 promoter region. Using luciferase reporter assays, we demonstrated that the DDX5 promoter containing these putative VDREs significantly increased the luciferase activity in vitamin D receptor (VDR)-positive SiHa cells upon calcitriol treatment. Electrophoretic mobility shift assays showed the ability of VDR and retinoid X receptor to interact only with the most proximal VDRE, while chromatin immunoprecipitation analysis confirmed the occupancy of this VDRE by the VDR. Finally, we demonstrated that calcitriol significantly increased both DDX5 mRNA and protein in SiHa cells. In summary, this study shows that DDX5 gene is transcriptionally upregulated by calcitriol through a VDRE located in its proximal promoter. Given the importance of DDX5 as a master regulator of differentiation programs, our study suggests that the pro-differentiating properties of calcitriol may be related with the induction of DDX5.

Heerma van Voss MR, Vesuna F, Trumpi K, et al.
Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer.
Oncotarget. 2015; 6(29):28312-26 [PubMed] Free Access to Full Article Related Publications
Identifying druggable targets in the Wnt-signaling pathway can optimize colorectal cancer treatment. Recent studies have identified a member of the RNA helicase family DDX3 (DDX3X) as a multilevel activator of Wnt signaling in cells without activating mutations in the Wnt-signaling pathway. In this study, we evaluated whether DDX3 plays a role in the constitutively active Wnt pathway that drives colorectal cancer. We determined DDX3 expression levels in 303 colorectal cancers by immunohistochemistry. 39% of tumors overexpressed DDX3. High cytoplasmic DDX3 expression correlated with nuclear β-catenin expression, a marker of activated Wnt signaling. Functionally, we validated this finding in vitro and found that inhibition of DDX3 with siRNA resulted in reduced TCF4-reporter activity and lowered the mRNA expression levels of downstream TCF4-regulated genes. In addition, DDX3 knockdown in colorectal cancer cell lines reduced proliferation and caused a G1 arrest, supporting a potential oncogenic role of DDX3 in colorectal cancer. RK-33 is a small molecule inhibitor designed to bind to the ATP-binding site of DDX3. Treatment of colorectal cancer cell lines and patient-derived 3D cultures with RK-33 inhibited growth and promoted cell death with IC50 values ranging from 2.5 to 8 μM. The highest RK-33 sensitivity was observed in tumors with wild-type APC-status and a mutation in CTNNB1. Based on these results, we conclude that DDX3 has an oncogenic role in colorectal cancer. Inhibition of DDX3 with the small molecule inhibitor RK-33 causes inhibition of Wnt signaling and may therefore be a promising future treatment strategy for a subset of colorectal cancers.

Wang Z, Luo Z, Zhou L, et al.
DDX5 promotes proliferation and tumorigenesis of non-small-cell lung cancer cells by activating β-catenin signaling pathway.
Cancer Sci. 2015; 106(10):1303-12 [PubMed] Free Access to Full Article Related Publications
The DEAD-box-protein DDX5 is an ATP-dependent RNA helicase that is frequently overexpressed in various cancers and acts as a transcriptional co-activator of several transcription factors, including β-catenin. DDX5 is reported to be involved in cancer progression by promoting cell proliferation and epithelial-mesenchymal transition. However, the clinical significance and biological role of DDX5 in non-small-cell lung cancer (NSCLC) remain largely unknown. In this study, we examined the expression of DDX5 in clinical NSCLC samples, investigated its role in regulating NSCLC cell proliferation and tumorigenesis, and explored the possible molecular mechanism. We found that DDX5 was significantly overexpressed in NSCLC tissues as compared with the matched normal adjacent tissues. In addition, overexpression of DDX5 was associated with advanced clinical stage, higher Ki67 index, and shorter overall survival in NSCLC patients. Upregulation of DDX5 promoted proliferation of NSCLC cells in vitro and growth of NSCLC xenografts in vivo, whereas downregulation of DDX5 showed the opposite effects. Furthermore, DDX5 directly interacted with β-catenin, promoted its nuclear translocation, and co-activated the expression of cyclin D1 and c-Myc. β-catenin silencing significantly abrogated DDX5-induced cyclin D1 and c-Myc expression and proliferation in NSCLC cells. Interestingly, DDX5 and cyclin D1 expression followed positive correlation in the same set of NSCLC samples. These findings indicated that DDX5 played an important role in the proliferation and tumorigenesis of NSCLC cells by activating the β-catenin signaling pathway. Therefore, DDX5 may serve as a novel prognostic marker and potential therapeutic target in the treatment of NSCLC.

Sarkar M, Khare V, Guturi KK, et al.
The DEAD box protein p68: a crucial regulator of AKT/FOXO3a signaling axis in oncogenesis.
Oncogene. 2015; 34(47):5843-56 [PubMed] Related Publications
Increased abundance of proto-oncogene AKT and reduced expression of tumor suppressor Forkhead box O3 (FOXO3a), the downstream target of AKT, is frequent in carcinogenesis. Mechanistic insights of AKT gene regulation are limited. DEAD box RNA helicase p68 is overexpressed in various cancers and acts as a transcriptional co-activator of several transcription factors, including β-catenin. Here, we report a novel mechanism of p68-mediated transcriptional activation of AKT, and its ensuing effect on FOXO3a, in colon carcinogenesis. Interestingly, we found that the expression of p68 and AKT exhibits strong positive correlation in normal and colon carcinoma patient samples. In addition, p68 increased both AKT messenger RNA (mRNA) and protein, enhanced AKT promoter activity in multiple colon cancer cell lines. Conversely, p68 knockdown led to reduced AKT mRNA and protein, diminished AKT promoter activity. Here, we demonstrated that p68 occupies AKT promoter with β-catenin as well as nuclear factor-κB (NF-κB)and cooperates with these in potentiating AKT transcription. Furthermore, p68 and FOXO3a expression followed inverse correlation in the same set of colon carcinoma samples. We observed that p68 significantly reduced FOXO3a protein level in an AKT-dependent manner. Studies in primary tumors and metastatic lung nodules generated in mice colorectal allograft model, using syngeneic cells stably expressing p68, corroborated our in vitro findings. Hence, a new mechanism of oncogenesis is attributed to p68 by upregulation of AKT and consequent nuclear exclusion and degradation of tumor suppressor FOXO3a.

Selvanathan SP, Graham GT, Erkizan HV, et al.
Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.
Proc Natl Acad Sci U S A. 2015; 112(11):E1307-16 [PubMed] Free Access to Full Article Related Publications
The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.

González-Duarte RJ, Cázares-Ordoñez V, Ávila-Chávez E
The microRNA biogenesis machinery: regulation by steroid hormones and alterations in cancer.
Rev Invest Clin. 2014 Sep-Oct; 66(5):460-4 [PubMed] Related Publications
MicroRNAs are a class of non-coding RNAs that regulate gene expression at the post-transcriptional level. The major proteins of the canonical microRNA biogenesis pathway in human are: Drosha, DGCR8, DDX5, DDX17, Exportin 5, Dicer and Argonaute 2. Recent studies suggest that gene expression of some canonical microRNA biogenesis components could be regulated by steroid hormones. Furthermore, various alterations in microRNA biogenesis have been associated with diseases like cancer. Due to the importance of microRNAs in cell physiology, the study of the factors that regulate or affect their biogenesis is critical.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DDX5, Cancer Genetics Web: http://www.cancer-genetics.org/DDX5.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999