DAPK2

Gene Summary

Gene:DAPK2; death-associated protein kinase 2
Aliases: DRP1, DRP-1
Location:15q22.31
Summary:This gene encodes a protein that belongs to the serine/threonine protein kinase family. This protein contains a N-terminal protein kinase domain followed by a conserved calmodulin-binding domain with significant similarity to that of death-associated protein kinase 1 (DAPK1), a positive regulator of programmed cell death. Overexpression of this gene was shown to induce cell apoptosis. It uses multiple polyadenylation sites. [provided by RefSeq, Jul 2008]
Databases:VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:death-associated protein kinase 2
HPRD
Source:NCBIAccessed: 21 August, 2015

Ontology:

What does this gene/protein do?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DAPK2 (cancer-related)

Arantes LM, de Carvalho AC, Melendez ME, et al.
Validation of methylation markers for diagnosis of oral cavity cancer.
Eur J Cancer. 2015; 51(5):632-41 [PubMed] Related Publications
PURPOSE: Activation of proto-oncogenes and inactivation of tumour suppressor genes are the major genetic alterations involved in carcinogenesis. The increase in methylation at the promoter region of a tumour suppressor gene can lead to gene inactivation, selecting cells with proliferative advantage. Thus, promoter hypermethylation is considered a marker in a variety of malignant tumours, including oral cavity.
EXPERIMENTAL DESIGN: The methylation pattern of eight genes was evaluated in 40 oral cavity squamous cell carcinomas (OSCCs) and 40 saliva samples from healthy individuals by Q-MSP. Different combinations of genes were also assessed in order to identify gene panels that could better distinguish between OSCC and saliva samples.
RESULTS: CCNA1, DAPK, DCC and TIMP3 methylation were highly specific for being found in the OSCC samples. Moreover, the combination of these genes improved detection when compared with single markers, reaching values of 92.5% for sensitivity and specificity (when using the panel CCNA1, DCC, TIMP3). Moreover, DAPK, DCC and TIMP3 were hypermethylated in nearly 90% of clinically T1 and T2 cases.
CONCLUSION: The pursuing of this panel of hypermethylated genes is an important tool for the detection of individuals with OSCC. Moreover, the identification of these markers in early stages of OSCC shows the feasibility of using the panel on saliva as possible biomarkers for early diagnosis. The lack of association between the methylation status of these genes and clinical characteristics shows that they are able to distinguish OSCC cases irrespective of social and clinical factors (gender, age, human papillomavirus (HPV) status, clinical stage, vascular embolisation and perineural invasion).

Kashatus JA, Nascimento A, Myers LJ, et al.
Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth.
Mol Cell. 2015; 57(3):537-51 [PubMed] Article available free on PMC after 05/02/2016 Related Publications
Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.

Chen KM, Stephen JK, Havard S, et al.
IGSF4 methylation as an independent marker of human papillomavirus-positive oropharyngeal squamous cell carcinoma.
JAMA Otolaryngol Head Neck Surg. 2015; 141(3):257-63 [PubMed] Related Publications
IMPORTANCE: Human papillomavirus (HPV) is a known causative agent for oropharyngeal squamous cell carcinoma (OPSCC). Whereas it is becoming more firmly established that HPV-positive head and neck squamous cell carcinoma is associated with better survival outcomes, believed to be because of better response to chemoradiation therapy, the specific mechanisms for these improved survival outcomes remain underexplored.
OBJECTIVE: To examine the relationship between HPV status and promoter methylation in an OPSCC cohort.
DESIGN, SETTING, AND PARTICIPANTS: Real-time quantitative polymerase chain reaction was used to examine oncogenic HPV type 16 in a retrospective cohort of 121 patients with primary OPSCC. Aberrant promoter methylation of IGSF4, DAPK1, and ESR1 genes, known to be methylated in head and neck squamous cell carcinoma, including OPSCC, was examined by means of quantitative methylation-specific polymerase chain reaction.
INTERVENTIONS: Patients received standard therapy.
MAIN OUTCOMES AND MEASURES: Univariate associations between HPV and methylation were analyzed using Fisher exact tests followed by multivariable logistic regression. Cox proportional-hazards regression was used to model the risk of death given age, race, sex, HPV status, methylation, stage, smoking, and treatment.
RESULTS: In univariate logistic regression analyses, HPV-positive status was significantly associated with Caucasian race (P = .02), treatment (radiotherapy only, P = .01; chemoradiotherapy, P = .007), and IGSF4 methylation (P = .005). The final multivariate logistic model, after controlling for patient characteristics (sex, age, smoking, race, and treatment) with backward variable selection among genes, retained IGSF4 methylation (OR, 4.5 [95% CI, 1.6-12.8]; P = .005), Caucasian race (OR, 2.9 [95% CI, 1.0-8.3]; P = .053), treatment (radiotherapy only vs neither: OR, 11.62 [95% CI, 2.02-66.82]; P = .02; chemoradiotherapy vs neither: OR, 11.15 [95% CI, 1.92-64.65]; P = .01), male sex (OR, 4.7 [95% CI, 1.3-17.0]; P = .02), and younger age (OR, 0.9 [95% CI, 0.90-1.0]; P = .008) as independent predictors of HPV-positive status. Cox regression modeling indicated HPV-negative status, age, male sex, smoking, and radiation treatment as independent predictors of mortality.
CONCLUSIONS AND RELEVANCE: Methylation of IGSF4 is an independent predictor of HPV-positive status. DNA methylation in conjunction with HPV infection appears to play a role in OPSCC.

Cunniff B, Wozniak AN, Sweeney P, et al.
Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells.
Redox Biol. 2014; 3:79-87 [PubMed] Article available free on PMC after 05/02/2016 Related Publications
Peroxiredoxin 3 (PRX3), a typical 2-Cys peroxiredoxin located exclusively in the mitochondrial matrix, is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide, a byproduct of cellular respiration originating from the mitochondrial electron transport chain. Mitochondrial oxidants are produced in excess in cancer cells due to oncogenic transformation and metabolic reorganization, and signals through FOXM1 and other redox-responsive factors to support a hyper-proliferative state. Over-expression of PRX3 in cancer cells has been shown to counteract oncogene-induced senescence and support tumor cell growth and survival making PRX3 a credible therapeutic target. Using malignant mesothelioma (MM) cells stably expressing shRNAs to PRX3 we show that decreased expression of PRX3 alters mitochondrial structure, function and cell cycle kinetics. As compared to control cells, knockdown of PRX3 expression increased mitochondrial membrane potential, basal ATP production, oxygen consumption and extracellular acidification rates. shPRX3 MM cells failed to progress through the cell cycle compared to wild type controls, with increased numbers of cells in G2/M phase. Diminished PRX3 expression also induced mitochondrial hyperfusion similar to the DRP1 inhibitor mdivi-1. Cell cycle progression and changes in mitochondrial networking were rescued by transient expression of either catalase or mitochondrial-targeted catalase, indicating high levels of hydrogen peroxide contribute to perturbations in mitochondrial structure and function in shPRX3 MM cells. Our results indicate that PRX3 levels establish a redox set point that permits MM cells to thrive in response to increased levels of mROS, and that perturbing the redox status governed by PRX3 impairs proliferation by altering cell cycle-dependent dynamics between mitochondrial networking and energy metabolism.

Wang J, Hansen K, Edwards R, et al.
Mitochondrial division inhibitor 1 (mdivi-1) enhances death receptor-mediated apoptosis in human ovarian cancer cells.
Biochem Biophys Res Commun. 2015; 456(1):7-12 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) based strategy is a promising targeted therapeutic approach for the treatment of a variety of cancers including ovarian cancer. However, the inherent or acquired resistance of tumor cells to TRAIL limits the potential application of TRAIL-mediated therapy. In this study, we identified that mitochondrial division inhibitor-1 (mdivi-1) is able to enhance the sensitivity of human ovarian cancer cells to death receptor ligands including TRAIL, FAS ligands, and TNF-α. Importantly, the combination of TRAIL and mdivi-1 has no apparent cytotoxic effect on non-transformed human cells, indicating a significant therapeutic window. We identified that caspase-8 and not the modulation of TRAIL receptors is required for the combination effect of TRAIL and mdivi-1. We further demonstrated that the enhanced efficacy of combination of mdivi-1 and death ligands is not dependent on the originally reported target of mdivi-1, Drp1, and is also not dependent on the two important pro-apoptotic Bcl-2 family proteins Bax and Bak. Thus, our study presents a novel strategy in enhancing the apoptotic effect of death receptor ligands and provides a new effective TRAIL-based combination approach for treating human ovarian cancer.

Xiong J, Li Y, Huang K, et al.
Association between DAPK1 promoter methylation and cervical cancer: a meta-analysis.
PLoS One. 2014; 9(9):e107272 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
BACKGROUND: Death-associated protein kinase1 (DAPK1) is an important tumor suppressor gene. DNA methylation can inactivate genes, which has often been observed in the carcinogenesis of cervical cancer. During the past several decades, many studies have explored the association between DAPK1 promoter methylation and cervical cancer. However, many studies were limited by the small samples size and the findings were inconsistent among them. Thus, we conducted a meta-analysis to assess the association between DAPK1 promoter methylation and cervical cancer.
METHODS: We systematically searched eligible studies in the PubMed, Web of Science, EMBASE and CNKI databases. Using meta-regression, subgroup analysis and sensitivity analysis, we explored the potential sources of heterogeneity. The odds ratio (OR) and 95% confidence interval (95% CI) were calculated by Meta-Analysis in R.
RESULTS: A total of 15 studies from 2001 to 2012, comprising 818 tumor tissues samples and 671 normal tissues samples, were analyzed in this meta-analysis. The frequencies of DAPK1 promoter methylation ranged from 30.0% to 78.6% (median, 59.3%) in cervical cancer tissue and 0.0% to 46.7% (median, 7.8%) in normal cervical tissue. The pooled OR was 19.66 (95%CI = 8.72-44.31) with the random effects model, and heterogeneity was found through the sensitivity analysis. The I2 = 60% (P = 0.002) decreased to I2 = 29.2% (P = 0.144) when one heterogeneous study was excluded, and the pooled OR increased to 21.80 (95%CI = 13.44-35.36) with the fixed effects model.
CONCLUSION: The results suggested a strong association between DAPK1 promoter methylation and cervical cancer. This study also indicated that DAPK1 promoter methylation may be a biomarker during cervical carcinogenesis that might serve as an early indication of cervical cancer.

Kristensen LS, Asmar F, Dimopoulos K, et al.
Hypermethylation of DAPK1 is an independent prognostic factor predicting survival in diffuse large B-cell lymphoma.
Oncotarget. 2014; 5(20):9798-810 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma. Improvements in overall survival have been observed with the introduction of rituximab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), however, prognostic markers are still needed. Methylation of the death associated protein kinase (DAPK or DAPK1) gene and TP53 mutations are likely to have prognostic value in DLBCL. We have assessed TP53 mutations and allelic DAPK1 methylation patterns in a cohort of 119 DLBCL patients uniformly treated with R-CHOP-like regimens. We found that DAPK1 promoter methylation was associated with shorter overall survival (p=0.017) and disease-specific survival (p=0.023). In multivariate analyses DAPK1 methylation remained as an independent prognostic factor predicting disease-specific survival (p=0.038). When only considering individuals heterozygous for the rs13300553 SNP monoallelic methylation of the A-allele was associated with shorter overall- and disease-specific survival (p<0.001). Patients carrying both DAPK1 methylation and a TP53 mutation had an inferior survival compared to patients carrying only one of these molecular alterations, however, this was borderline statistically significant. Allele-specific DAPK1 methylation patterns were also studied in a cohort of 67 multiple myeloma patients, and all of the methylated multiple myeloma samples heterozygous for the rs13300553 SNP were methylated on both alleles.

Akita M, Suzuki-Karasaki M, Fujiwara K, et al.
Mitochondrial division inhibitor-1 induces mitochondrial hyperfusion and sensitizes human cancer cells to TRAIL-induced apoptosis.
Int J Oncol. 2014; 45(5):1901-12 [PubMed] Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer treatment, but some cancer cell types are resistant to TRAIL cytotoxicity. Therefore, overcoming this resistance is necessary for effective TRAIL therapy. Mitochondrial morphology is important for the maintenance of cell function and survival, and is regulated by the delicate balance between fission and fusion. However, the role of mitochondrial morphology dynamics in TRAIL-induced apoptosis is unknown. Here we show that mitochondrial division inhibitor-1 (mdivi-1), an inhibitor of dynamin-related protein1 (Drp1), modulates mitochondrial morphology and TRAIL-induced apoptosis in human cancer cells. mdivi-1 treatment (≥12.5 µM) caused dose- and time‑dependent cell death in malignant melanoma, lung cancer and osteosarcoma cells, while sparing normal cells. mdivi-1 also sensitized cancer cells to TRAIL-induced apoptosis. This potentiation of apoptosis occurred through a caspase-depependent mechanism including the mitochondrial and endoplasmic reticulum (ER) stress pathways. Mdivi-1 potentiated mitochondrial oxidative stress, a major cause of mitochondrial and ER stresses, as evidenced by increases in mitochondrial reactive oxygen species levels, mitochondrial mass, and cardiolipin oxidation. Live cell fluorescence imaging using MitoTracker Red CMXRos revealed that Mdivi-1 caused substantial mitochondrial hyperfusion. Moreover, silencing of Drp1 expression also caused mitochondrial hyperfusion and sensitized cancer cells to TRAIL-induced apoptosis. Our results suggest that cancer cells are more vulnerable than normal cells to a perturbation in mitochondrial morphology dynamics and that this higher susceptibility can be exploited to selectively kill cancer cells and sensitize to TRAIL.

Millares L, Rosell A, Setó L, et al.
Variability in the measurement of the methylation status of lung cancer-related genes in bronchial secretions.
Oncol Rep. 2014; 32(4):1435-40 [PubMed] Related Publications
Assessment of the methylation status of genes related to the development of lung cancer (LC) in bronchial secretions has been proposed as a biomarker for early detection. Several techniques are available to detect gene methylation, and the method chosen may have an effect on the results. A cross-sectional study was conducted in which the methylation status of DAPK, CDKN2A (p16) and RASSF1A genes in sputum and bronchial washing (BW) from subjects at risk for LC was analyzed. The methylation results of both samples were compared, considering BW as the reference. Results obtained by methylation-sensitive PCR (MSP) were validated by methylation-sensitive high-resolution melting (MS-HRM). The methylation results obtained in sputum and BW samples did not show statistically significant differences for any of the three genes analyzed in 65 subjects (McNemar test>0.05). Concordant results between sputum and BW were found in 40 patients for DAPK (61%), in 52 patients for p16 (80%) and in 63 patients for RASSF1 (97%). More methylated samples were found in BW, however, and sputum sensitivities and specificities for the identification of methylation status were 44 and 72% for DAPK gene, 21 and 94% for p16 and 100 and 98% for RASSF1A, respectively. When MSP results were validated by MS-HRM, DAPK and p16 gene samples methylated by MSP appeared to be unmethylated by MS-HRM. One sample showing methylation of RASSF1A gene also showed methylation when tested following MS-HRM procedure. Sputum and BW samples may be considered equally valid for the identification of methylated genes in bronchial secretions. The low sensitivity of sputum for the assessment of the methylation status of DAPK and p16 genes, however, suggests that the analysis of two or more sputum samples, or of a BW obtained semi-invasively, would be needed to attain higher reliability, together with the use of confirmatory techniques for positive results.

Leong KJ, Beggs A, James J, et al.
Biomarker-based treatment selection in early-stage rectal cancer to promote organ preservation.
Br J Surg. 2014; 101(10):1299-309 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
BACKGROUND: Total mesorectal excision (TME) remains commonplace for T1-2 rectal cancer owing to fear of undertreating a small proportion of patients with node-positive disease. Molecular stratification may predict cancer progression. It could be used to select patients for organ-preserving surgery if specific biomarkers were validated.
METHODS: Gene methylation was quantified using bisulphite pyrosequencing in 133 unirradiated rectal cancer TME specimens. KRAS mutation and microsatellite instability status were also defined. Molecular parameters were correlated with histopathological indices of disease progression. Predictive models for nodal metastasis, lymphovascular invasion (LVI) and distant metastasis were constructed using a multilevel reverse logistic regression model.
RESULTS: Methylation of the retinoic acid receptor β gene, RARB, and that of the checkpoint with forkhead and ring finger gene, CHFR, was associated with tumour stage (RARB: 51·9 per cent for T1-2 versus 33·9 per cent for T3-4, P < 0·001; CHFR: 5·5 per cent for T1-2 versus 12·6 per cent for T3-4, P = 0·005). Gene methylation associated with nodal metastasis included RARB (47·1 per cent for N- versus 31·7 per cent for N+; P = 0·008), chemokine ligand 12, CXCL12 (12·3 per cent for N- versus 8·9 per cent for N+; P = 0·021), and death-associated protein kinase 1, DAPK1 (19·3 per cent for N- versus 12·3 per cent for N+; P = 0·022). RARB methylation was also associated with LVI (45·1 per cent for LVI- versus 31·7 per cent for LVI+; P = 0·038). Predictive models for nodal metastasis and LVI achieved sensitivities of 91·1 and 85·0 per cent, and specificities of 55·3 and 45·3 per cent, respectively.
CONCLUSION: This methylation biomarker panel provides a step towards accurate discrimination of indolent and aggressive rectal cancer subtypes. This could offer an improvement over the current standard of care, whereby fit patients are offered radical surgery.

Wan YY, Zhang JF, Yang ZJ, et al.
Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells.
Oncol Rep. 2014; 32(2):619-26 [PubMed] Related Publications
Glioblastoma is one of the most aggressive brain tumors with high morbidity and mortality. Hypoxia is often the common characteristic of tumor microenvironment, and hypoxia-inducible factor-1α (HIF-1α) is an essential factor regulating the migratory activity of cancer cells including glioblastoma. Recently, mitochondrial dynamics was found to be involved in the aggression of cancer cells. However, whether dynamin-related protein 1 (Drp1) contributes to the migration of human glioblastoma cells under hypoxia remains unknown. In the present study, hypoxia was found to upregulate the transcription and expression of Drp1, and stimulated mitochondrial fission in glioblastoma U251 cells. Inhibition of HIF-1α with echinomycin blocked hypoxia‑induced expression of Drp1. Notably, Drp1 inhibitor Mdivi-1 efficiently attenuated hypoxia-induced mitochondrial fission and migration of U251 cells. In addition, three U251 stable cell lines expressing GFP, GFP-Drp1 and dominant negative GFP-Drp1‑K38A were established to examine the direct role of Drp1 in hypoxia-induced migration. MTT assay showed that there was no significant difference in proliferation of three cell lines. Compared with the GFP cell line, exogenously expressed GFP-Drp1-K38A inhibited hypoxia-induced migration of U251 cells, while stable expression of GFP-Drp1 enhanced the migration of U251 cells under hypoxia. Therefore, this study indicates the involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells, and suggests Drp1 to be a potential therapeutic target to suppress the aggression of glioblastoma in the future.

Chung CL, Tsai HP, Tsai CY, et al.
Differential hypermethylation of death-associated protein kinase promoter in central neurocytoma and oligodendroglioma.
Biomed Res Int. 2014; 2014:506458 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
BACKGROUND: Central neurocytoma and oligodendroglioma are rare tumors of the central nervous system. However, diagnosis between these two types of tumors is challenging due to their many cytological and histological similarities. Death-associated protein kinase (DAPK) is a calcium/calmodulin-regulated serine/threonine protein kinase involved in many apoptosis pathways, and repressed expression of DAPK by promoter hypermethylation has been found in a variety of human cancers. The purpose of this study was to assess DAPK protein expression and promoter hypermethylation in central neurocytoma and oligodendroglioma.
METHOD: Central neurocytoma and oligodendroglioma samples were obtained from age- and sex-matched patients. DAPK protein expression was performed using immunohistochemical assays in formalin-fixed, paraffin-embedded sections. DAPK promoter hypermethylation was carried out using bisulfite-modified genomic DNA in methylation-specific PCR followed by separation in agarose gels.
FINDINGS: A statistically significant difference (P = 0.021) in DAPK promoter hypermethylation between central neurocytoma (76.9%) and oligodendroglioma (20%) was observed. High levels of DAPK protein expression were generally found in oligodendroglioma (90%), compared with 38.5% in central neurocytoma (P = 0.054; not statistically significant). There was an inverse correlation between DAPK protein expression and DAPK promoter hypermethylation in the cohort of 23 patients (P = 0.002).
CONCLUSIONS: The results show that DAPK promoter hypermethylation and repressed expression of DAPK protein were more common in central neurocytoma than in oligodendroglioma. Thus, DAPK promoter hypermethylation could be useful for differential diagnosis between these two types of tumors, whereas DAPK protein expression might be less predictive. The role of DAPK promoter hypermethylation in the pathogenesis of central neurocytoma warrants further study.

Dier U, Shin DH, Hemachandra LP, et al.
Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line.
PLoS One. 2014; 9(5):e98479 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that altered mitochondrial fission dynamics represents a phenotype of a subpopulation of EOCs.

Seo SK, Kim JH, Choi HN, et al.
Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction.
Biochem Biophys Res Commun. 2014; 449(4):490-5 [PubMed] Related Publications
TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

Krajnović M, Jovanović MP, Mihaljević B, et al.
Hypermethylation of p15 gene in diffuse - large B-cell lymphoma: association with less aggressiveness of the disease.
Clin Transl Sci. 2014; 7(5):384-90 [PubMed] Related Publications
In this study, methylation-specific polymerase chain reaction was used to investigate the potential prognostic significance of the methylation status of p15, p16, MGMT, and DAPK genes in 51 specimens of diffuse large B-cell lymphoma (DLBCL). Hypermethylation of p15 gene was significantly more prevalent in patients without relapse (p = 0.001) and there was a trend toward more frequent presence of p15 methylation in patients without death outcome within 5-year follow-up period (p = 0.086) Also, there was a trend toward accumulation of p15 methylation with favorable clinicopathological parameters including: age ≤ 60 years (p = 0.091), normal levels of lactate dehydrogenase (p = 0.090), Eastern Cooperative Oncology Group performance status < 2 (p = 0.095), and low/intermediate low International Prognostic Index (p = 0.076). In the female group and group of the patients without bulky tumor mass, treated with chemotherapeutic regimens including rituximab, methylation of p15 was significantly related to longer overall survival (p = 0.036 and 0.027, respectively). Our results suggest that promoter methylation of p15 gene could have prognostic value in DLBCL patients treated with rituximab when used in combination with gender and tumor size.

Giachelia M, Bozzoli V, D'Alò F, et al.
Quantification of DAPK1 promoter methylation in bone marrow and peripheral blood as a follicular lymphoma biomarker.
J Mol Diagn. 2014; 16(4):467-76 [PubMed] Related Publications
Hypermethylation of DAPK1 promoter gene was found to be a frequent epigenetic alteration in follicular lymphoma (FL). We evaluated whether the quantification of DAPK1 methylation in the bone marrow (BM) and peripheral blood of FL patients at diagnosis and during follow-up provides important prognostic information. DAPK1 methylation was quantitated by real-time MethyLight PCR in 107 patients at diagnosis, at end of therapy, and during follow-up. Information on BCL2-IGH rearrangement and clinical characteristics were available for all patients. Aberrant DAPK1 methylation was found in 22 of 26 (85%) lymph node biopsy samples, 62 of 107 (58%) BM specimens, and 25 of 63 (40%) peripheral blood samples at diagnosis. DAPK1 methylation was greater in patients with BM infiltration and a higher Follicular Lymphoma International Prognostic Index score. The presence of aberrant DAPK1 methylation in BM significantly reduced progression-free survival following immunochemotherapy, independent of Follicular Lymphoma International Prognostic Index score. Residual or increased methylation after treatment was associated with an increased risk for relapse. With watchful waiting, greater DAPK1 methylation at diagnosis was associated with a shorter time to antilymphoma treatment. Our study indicates that quantification of DAPK1 methylation represents a prognostically relevant FL biomarker, with promising implications for risk assessment.

Ng HY, Wan TS, So CC, Chim CS
Epigenetic inactivation of DAPK1, p14ARF, mir-34a and -34b/c in acute promyelocytic leukaemia.
J Clin Pathol. 2014; 67(7):626-31 [PubMed] Related Publications
AIM: TP53 mutation frequently occurs in solid cancers but not haematological cancers including acute promyelocytic leukaemia (APL) characterised by t(15;17). Both DAPK1 and p14(ARF) positively regulate p53 whereas miR-34a and -34b/c are direct transcriptional targets of p53. We studied if DNA methylation might contribute to inactivation of gene/microRNA (miRNA) in the TP53 tumour suppressor network.
METHODS: Promoter methylation of DAPK1, p14(ARF), miR-34a and -34b/c were studied in 10 normal bone marrow samples, NB4 cell line and 60 APL primary samples at diagnosis by methylation-specific PCR (MSP).
RESULTS: DAPK1, p14(ARF), miR-34a and -34b/c were completely unmethylated in normal bone marrow samples. DAPK1, miR-34a and -34b/c were completely methylated in NB4. Treatment of NB4 by 5'-Aza-2'-deoxyctidine resulted in promoter demethylation together with re-expression of DAPK1 and both miRNAs. In primary APL samples, methylation of miR-34b/c was detected in 43% in contrast to absence of methylation of DAPK1, p14(ARF) or miR-34a. Overexpression of miR-34b in NB4 resulted in inhibition of proliferation.
CONCLUSIONS: Methylation of DAPK1, miR-34a and -34b/c is tumour-specific, and associated with gene/miRNAs silencing. miR-34b/c is a tumour suppressor miRNA in APL. Methylation of miR-34b/c may contribute to APL leukaemogenesis.

Zhao YX, Cui M, Chen SF, et al.
Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1.
CNS Neurosci Ther. 2014; 20(6):528-38 [PubMed] Related Publications
AIMS: Disturbance of the balance between mitochondrial fission and fusion has been implicated in cerebral ischemia and several neurodegenerative diseases, whereas the underlying mechanisms remain poorly understood. In the present study, we attempted to investigate the role of dynamin-related protein 1 (Drp1), a key mitochondrial fission protein, in the pathogenesis of cerebral ischemia.
METHODS: Using Drp1 siRNA or Mdivi-1, a small molecule inhibitor of Drp1, we examined the effect of Drp1 knockdown or inhibition on oxygen-glucose deprivation (OGD)-induced mitochondrial dysfunction and death of SH-SY-5Y cells. Cell death and viability were evaluated with LDH and MTT assays, respectively, and mitochondrial morphology, mitochondrial membrane potential (Δψm), and ATP production were assessed using epifluorescence microscopy, flow cytometry, and HPLC, respectively. Moreover, to examine the effect of Drp1 inhibition on ischemic brain injury, middle cerebral artery occlusion (MCAO) mice were injected (i.p.) with Mdivi1, and blood-brain barrier permeability, brain water content, and cell apoptosis were assessed.
RESULTS: Knockdown or inhibition of Drp1 by Mdivi-1 significantly attenuated OGD-induced cell death in SH-SY-5Y cells, associated with reduced morphological change of mitochondria and attenuated Bax insertion,oligomerization. Moreover, treatment of the MCAO mice with Mdivi-1 remarkably reduced the infarct volume and neurological deficits in a dose-dependent manner, associated with marked reduction of mitochondrial fragmentation and BAX expression.
CONCLUSIONS: Down-regulation or inhibition of Drp1 may reduce cerebral ischemic damage through maintaining normal mitochondrial morphology and function, and decreasing Bax insertion and oligomerization in mitochondria.

O'Flanagan CH, Morais VA, Wurst W, et al.
The Parkinson's gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes.
Oncogene. 2015; 34(11):1363-74 [PubMed] Related Publications
PINK1 (phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced kinase 1), a Parkinson's disease-associated gene, was identified originally because of its induction by the tumor-suppressor PTEN. PINK1 promotes cell survival and potentially metastatic functions and protects against cell stressors including chemotherapeutic agents. However, the mechanisms underlying PINK1 function in cancer cell biology are unclear. Here, using several model systems, we show that PINK1 deletion significantly reduced cancer-associated phenotypes including cell proliferation, colony formation and invasiveness, which were restored by human PINK1 overexpression. Results show that PINK1 deletion causes major defects in cell cycle progression in immortalized mouse embryonic fibroblasts (MEFs) from PINK1(-/-) mice, and in BE(2)-M17 cells stably transduced with short hairpin RNA against PINK1. Detailed cell cycle analyses of MEF cell lines from several PINK1(-/-) mice demonstrate an increased proportion of cells in G2/M and decreased number of cells in G1 following release from nocodazole block. This was concomitant with increased double and multi-nucleated cells, a reduced ability to undergo cytokinesis and to re-enter G1, and significant alterations in cell cycle markers, including failure to increase cyclin D1, all indicative of mitotic arrest. PINK1(-/-) cells also demonstrated ineffective cell cycle exit following serum deprivation. Cell cycle defects associated with PINK1 deficiency occur at points critical for cell division, growth and stress resistance in cancer cells were rescued by ectopic expression of human PINK1 and demonstrated PINK1 kinase dependence. The importance of PINK1 for cell cycle control is further supported by results showing that cell cycle deficits induced by PINK1 deletion were linked mechanistically to aberrant mitochondrial fission and its regulation by dynamin-related protein-1 (Drp1), known to be critical for progression of mitosis. Our data indicate that PINK1 has tumor-promoting properties and demonstrates a new function for PINK1 as a regulator of the cell cycle.

Zhang Q, Hu H, Shi X, Tang W
Knockdown of S100P by lentiviral-mediated RNAi promotes apoptosis and suppresses the colony-formation ability of gastric cancer cells.
Oncol Rep. 2014; 31(5):2344-50 [PubMed] Related Publications
S100P is a putative candidate oncogene in several types of human tumors. However, expression of S100P, its potential role and its clinical significance in gastric cancer remain unclear. In the present study, S100P expression was examined by immunohistochemistry using a tissue microarray. Positive staining for S100P was noted in 77.1% of the cases while 22.9% were negative. In two gastric cancer cell lines, MGC-803 and SGC-7901, S100P expression was knocked down by a lentiviral short hairpin delivery system. The RNA interference-mediated downregulation of S100P expression markedly promoted cell apoptosis and inhibited cell colony-formation ability of the gastric cancer cells. In addition, knockdown of S100P significantly regulated the expression of 12 apoptosis-associated genes with a >1.5-fold change compared with the negative control. Among them, FOS, DDIT3 and FN1 were significantly upregulated, while FASLG, DAPK1, CTNNB1 and CASP2 were notably downregulated following S100P silencing. These results suggest that S100P acts as an oncogenic factor in gastric cancer and is a potential molecular target for gastric cancer gene therapy.

Li FF, Yang Y, Wang XL, et al.
Promoter methylation of DAPK gene may contribute to the pathogenesis of nonsmall cell lung cancer: a meta-analysis.
Tumour Biol. 2014; 35(6):6011-20 [PubMed] Related Publications
We performed a meta-analysis of cohort studies to determine whether promoter methylation of the death-associated protein kinase (DAPK) gene contributes to the pathogenesis of nonsmall cell lung cancer (NSCLC). A range of electronic databases were searched: MEDLINE (1966 ∼ 2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980 ∼ 2013), CINAHL (1982 ∼ 2013), Web of Science (1945 ∼ 2013), and the Chinese Biomedical Database (CBM; 1982 ∼ 2013) without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratio (OR) with 95 % confidence interval (95 % CI) was calculated. Our meta-analysis integrated results from 12 clinical cohort studies that met all inclusion criteria with a total of 1,027 NSCLC patients. We observed that the frequency of DAPK gene methylation in cancer tissues were significantly higher than that in the adjacent normal and benign tissues (cancer tissues vs. benign tissues: OR=8.50, 95 % CI=5.88 ∼ 12.28, P<0.001; cancer tissues vs. adjacent tissues: OR=5.95, 95 % CI=4.11 ∼ 8.60, P<0.001; cancer tissues vs. normal tissues: OR=4.75, 95 % CI=3.28 ∼ 6.87, P<0.001; respectively). Subgroup analysis by ethnicity demonstrated that DAPK gene methylation was closely associated with the development and progression of NSCLC among both Asians and Caucasians (all P<0.05). Furthermore, we conducted a subgroup analysis based on sample source and discovered that DAPK gene methylation was implicated in the pathogenesis of NSCLC in both blood and tissue subgroups (all P<0.05). Our results suggest that DAPK promoter methylation may be involved in NSCLC carcinogenesis. Thus, the detection of aberrant DAPK methylation may be helpful in the diagnosis and prognosis of NSCLC.

Wang LQ, Kwong YL, Wong KF, et al.
Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia.
J Transl Med. 2014; 12:52 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
BACKGROUND: TP53 mutation/deletion is uncommon in chronic lymphocytic leukemia (CLL). We postulated that components of TP53-centered tumor suppressor network, miR-34b/c, in addition to DAPK1 and miR-34a might be inactivated by DNA hypermethylation. Moreover, we tested if miR-34b/c methylation might correlate with miR-203 or miR-124-1 methylation in CLL.
METHODS: miR-34b/c, miR-34a and DAPK1 methylation was studied in 11 normal controls, 7 CLL cell lines, and 78 diagnostic CLL samples by methylation-specific polymerase chain reaction. MEC-1 cells were treated with 5-Aza-2'-deoxycytidine for reversal of methylation-associated miRNA silencing. Tumor suppressor properties of miR-34b were demonstrated by over-expression of precursor miR-34b in MEC-1 cells.
RESULTS: miR-34b/c promoter was unmethylated in normal controls, but completely methylated in 4 CLL cell lines. miR-34b/c expression was inversely correlated with miR-34b/c methylation. Different MSP statuses of miR-34b/c, including complete methylation and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. 5-Aza-2'-deoxycytidine treatment resulted in promoter demethylation and miR-34b re-expression in MEC1 cells. Moreover, over-expression of miR-34b resulted in inhibition of cellular proliferation and increased cell death. In primary CLL samples, miR-34a, miR-34b/c and DAPK1 methylation was detected in 2.6%, 17.9% and 34.6% of patients at diagnosis respectively. Furthermore, 39.7%, 3.8% and 2.6% patients had methylation of one, two or all three genes respectively. Overall, 46.2% patients had methylation of at least one of these three genes. Besides, miR-34b/c methylation was associated with methylation of miR-34a (P = 0.03) and miR-203 (P = 0.012) in CLL.
CONCLUSIONS: Taken together, miR-34b/c is a tumor suppressor miRNA frequently methylated, and hence silenced in CLL. Together with DAPK1 methylation, miR-34b/c methylation is implicated in the disruption of the TP53-centered tumor suppressor network. Moreover, the association of miRNA methylation warrants further study.

Bodoor K, Haddad Y, Alkhateeb A, et al.
DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients.
Asian Pac J Cancer Prev. 2014; 15(1):75-84 [PubMed] Related Publications
Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.

Kupčinskaitė-Noreikienė R, Skiecevičienė J, Jonaitis L, et al.
CpG island methylation of the MLH1, MGMT, DAPK, and CASP8 genes in cancerous and adjacent noncancerous stomach tissues.
Medicina (Kaunas). 2013; 49(8):361-6 [PubMed] Related Publications
BACKGROUND AND OBJECTIVE. Many factors are involved in the development of gastric adenocarcinoma. The CpG island methylation of apoptosis and mismatch repair genes by the loss of their function is important in gastric adenocarcinoma. The aim of this study was to determine the methylation frequency of MLH1, MGMT, CASP8, and DAPK in cancerous and adjacent noncancerous stomach tissues, to determine possible associations with the selected clinicopathological characteristics, and to identify possible correlation between the methylation of individual genes. MATERIAL AND METHODS. The methylation status of MLH1, MGMT, DAPK, and CASP8 was investigated in 69 patients with gastric adenocarcinoma by using methylation-specific polymerase chain reaction. The associations between patients' clinical characteristics and methylation status were assessed. RESULTS. The methylation frequency of the MLH1, DAPK, MGMT, and CASP8 gene promoters in cancerous and adjacent noncancerous tissues was 31.9% and 27.5%; 47.8% and 46.4%; 36.2% and 44.9%; and 5.8% and 5.8%, respectively, but the differences were not significant. There was no significant association between the methylation status of the mentioned genes and clinicopathological characteristics, such as age, sex, tumor type by the Lauren classification, degree of differentiation G, and TNM staging. An inverse correlation between the methylation of the DAPK and MLH1 gene promoters in cancerous and surrounding noncancerous tissues was found. CONCLUSIONS. The methylation of the MLH1, MGMT, DAPK, and CASP8 genes was found to occur both in cancerous and noncancerous stomach tissues. These findings provide additional insights into gene methylation patterns in gastric adenocarcinoma.

Cho Y, Turner ND, Davidson LA, et al.
Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation.
Exp Biol Med (Maywood). 2014; 239(3):302-10 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2'-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

Li Y, Geng P, Jiang W, et al.
Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells.
Tumour Biol. 2014; 35(5):4831-9 [PubMed] Related Publications
Radiation resistance is a major problem preventing successful treatment. Therefore, identifying sensitizers is vitally important for radiotherapy success. Epigenetic events such as DNA methylation have been proposed to mediate the sensitivity of tumor therapy. In this study, we investigated the influence of demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on the radiosensitivity of human osteosarcoma cell lines. 5-Aza-CdR was capable of sensitizing three osteosarcoma cells to irradiation in a time-dependent manner, with the maximum effect attained by 48 h. Pretreatment with 5-Aza-CdR synchronized cells in G2/M phase of the cell cycle and enhanced irradiation-induced apoptosis compared with irradiation alone in SaOS2, HOS, and U2OS cells. Moreover, 5-Aza-CdR restored mRNA expressions of 14-3-3σ, CHK2, and DAPK-1 in the three cells, accompanied with demethylation of their promoters. These findings demonstrate that demethylation with 5-Aza-CdR increases radiosensitivity in some osteosarcoma cells through arresting cells at G2/M phase and increasing apoptosis, which is partly mediated by upregulation of 14-3-3σ, CHK2, and DAPK-1 genes, suggesting that 5-Aza-CdR may be a potential radiosensitizer to improve the therapy effect in osteosarcoma.

Pignatta S, Arienti C, Zoli W, et al.
Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome.
Mol Cell Endocrinol. 2014; 382(1):314-24 [PubMed] Related Publications
Advanced prostate cancers, initially sensitive to androgen deprivation therapy, frequently progress to the castration-resistant prostate cancer phenotype (CRPC) through mechanisms not yet fully understood. In this study we investigated mitochondrial involvement in the establishment of refractoriness to hormone therapy. Two human prostate cancer cell lines were used, the parental LNCaP and the resistant LNCaP-Rbic, the latter generated after continuous exposure to 20 μM of (R)-bicalutamide, the active enantiomer of Casodex®. We observed a significant decrease in mtDNA content and a lower expression of 8 mitochondria-encoded gene transcripts involved in respiratory chain complexes in both cell lines. We also found that (R)-bicalutamide differentially modulated dynamin-related protein (Drp-1) expression in LNCaP and LNCaP-Rbic cells. These data seem to indicate that the androgen-independent phenotype in our experimental model was due, at least in part, to alterations in mitochondrial dynamics and to a breakdown in the Drp-1-mediated mitochondrial network.

Ratovitski EA
Phospho-ΔNp63α/microRNA network modulates epigenetic regulatory enzymes in squamous cell carcinomas.
Cell Cycle. 2014; 13(5):749-61 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
The tumor protein (TP) p63/microRNAs functional network may play a key role in supporting the response of squamous cell carcinomas (SCC) to chemotherapy. We show that the cisplatin exposure of SCC-11 cells led to upregulation of miR-297, miR-92b-3p, and miR-485-5p through a phosphorylated ΔNp63α-dependent mechanism that subsequently modulated the expression of the protein targets implicated in DNA methylation (DNMT3A), histone deacetylation (HDAC9), and demethylation (KDM4C). Further studies showed that mimics for miR-297, miR-92b-3p, or miR-485-5p, along with siRNA against and inhibitors of DNMT3A, HDAC9, and KDM4C modulated the expression of DAPK1, SMARCA2, and MDM2 genes assessed by the quantitative PCR, promoter luciferase reporter, and chromatin immunoprecipitation assays. Finally, the above-mentioned treatments affecting epigenetic enzymes also modulated the response of SCC cells to chemotherapeutic drugs, rendering the resistant SCC cells more sensitive to cisplatin exposure, thereby providing the groundwork for novel chemotherapeutic venues in treating patients with SCC.

Kalantari M, Osann K, Calleja-Macias IE, et al.
Methylation of human papillomavirus 16, 18, 31, and 45 L2 and L1 genes and the cellular DAPK gene: Considerations for use as biomarkers of the progression of cervical neoplasia.
Virology. 2014; 448:314-21 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
During progression of cervical cancer, human papillomavirus genomes and cellular tumor suppressor genes can become methylated. Toward a better understanding of these biomarkers, we studied 104 samples with HPV16, 18, 31, and 45 representing five pathological categories from asymptomatic infection to cancer. We grouped all samples by HPV type and pathology and measured the overall methylation of informative amplicons of HPV late genes and the cellular DAPK gene. Methylation of all four HPV types as well as of the DAPK gene is lowest in asymptomatic infection and increases successively in all four pathological categories during progression to cancer. 27 out of 28 cancer samples showed methylation both in the L2/L1 genes as well as in DAPK, but a much lower fraction in all other pathological categories. We discuss the problem to develop diagnostic tests based on complex methylation patterns that make it difficult to classify amplicons as "methylated" or "unmethylated".

Mao P, Hever-Jardine MP, Rahme GJ, et al.
Serine/threonine kinase 17A is a novel candidate for therapeutic targeting in glioblastoma.
PLoS One. 2013; 8(11):e81803 [PubMed] Article available free on PMC after 02/01/2016 Related Publications
STK17A is a relatively uncharacterized member of the death-associated protein family of serine/threonine kinases which have previously been associated with cell death and apoptosis. Our prior work established that STK17A is a novel p53 target gene that is induced by a variety of DNA damaging agents in a p53-dependent manner. In this study we have uncovered an additional, unanticipated role for STK17A as a candidate promoter of cell proliferation and survival in glioblastoma (GBM). Unexpectedly, it was found that STK17A is highly overexpressed in a grade-dependent manner in gliomas compared to normal brain and other cancer cell types with the highest level of expression in GBM. Knockdown of STK17A in GBM cells results in a dramatic alteration in cell shape that is associated with decreased proliferation, clonogenicity, migration, invasion and anchorage independent colony formation. STK17A knockdown also sensitizes GBM cells to genotoxic stress. STK17A overexpression is associated with a significant survival disadvantage among patients with glioma which is independent of age, molecular phenotype, IDH1 mutation, PTEN loss, and alterations in the p53 pathway and partially independent of grade. In summary, we demonstrate that STK17A provides a proliferative and survival advantage to GBM cells and is a potential target to be exploited therapeutically in patients with glioma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DAPK2, Cancer Genetics Web: http://www.cancer-genetics.org/DAPK2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999