CCR6

Gene Summary

Gene:CCR6; C-C motif chemokine receptor 6
Aliases: BN-1, DCR2, DRY6, CCR-6, CD196, CKRL3, GPR29, CKR-L3, CMKBR6, GPRCY4, STRL22, CC-CKR-6, C-C CKR-6
Location:6q27
Summary:This gene encodes a member of the beta chemokine receptor family, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. The gene is preferentially expressed by immature dendritic cells and memory T cells. The ligand of this receptor is macrophage inflammatory protein 3 alpha (MIP-3 alpha). This receptor has been shown to be important for B-lineage maturation and antigen-driven B-cell differentiation, and it may regulate the migration and recruitment of dentritic and T cells during inflammatory and immunological responses. Alternatively spliced transcript variants that encode the same protein have been described for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-C chemokine receptor type 6
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: CCR6 (cancer-related)

Jin P, Shin SH, Chun YS, et al.
Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF-κB signaling pathway.
Oncogene. 2018; 37(23):3070-3087 [PubMed] Related Publications
During tumor development, stromal cells are co-opted to the tumor milieu and provide favorable conditions for the tumor. Hypoxia stimulates cancer cells to acquire a more malignant phenotype via activation of hypoxia-inducible factor 1 (HIF-1). Given that cancer cells and astrocytes in glioblastomas coexist in a hypoxic microenvironment, we examined whether astrocytes affect the adaptation of glioblastoma cells to hypoxia. Immunoblotting, reporter assays, quantitative RT-PCR, and chromatin immunoprecipitation were performed to evaluate HIF-1 signaling in glioblastoma cells. Astrocyte-derived chemokine C-C motif ligand 20 (CCL20) was identified using cytokine arrays, and its role in glioblastoma development was evaluated in orthotopic xenografts. Astrocytes augmented HIF-1α expression in glioblastoma cells under hypoxia. The expression of HIF-1 downstream genes, cancer colony formation, and Matrigel invasion of glioblastoma cells were stimulated by conditioned medium from astrocytes pre-exposed to hypoxia. CCL20 was secreted in a hypoxia-dependent manner from astrocytes and busted the hypoxic induction of HIF-1α in glioblastoma cells. Mechanistically, the CCL20/CCR6 signaling pathway upregulates HIF-1α by stimulating nuclear factor kappa B-driven transactivation of the HIF1A gene. Compared with the control tumors, CCR6-deficient glioblastoma xenografts grew more slowly, with poor vascularization, and expressed lower levels of HIF-1α and its downstream proteins. Furthermore, CCR6 expression was correlated with HIF-1α expression in GEO and TCGA datasets from human glioblastoma tissues. These results suggest that glioblastoma cells adapt well to hypoxic stress by virtue of CCL20 derived from neighboring astrocytes.

Brunetti G, Di Benedetto A, Posa F, et al.
High expression of TRAIL by osteoblastic differentiated dental pulp stem cells affects myeloma cell viability.
Oncol Rep. 2018; 39(4):2031-2039 [PubMed] Related Publications
Cells from dental tissues have a mesenchymal stem cell (MSC) phenotype, are multipotent and can differentiate into osteoblastic cells, as we have previously found. MSCs, due to their tumor‑homing ability, are currently being used as cell‑based delivery systems for cancer protein therapeutics, such as the TNF‑related apoptosis‑inducing ligand (TRAIL). In the present study we revealed that dental pulp stem cells (DPSCs) expressed TRAIL to a greater extent when they were differentiated into the osteoblastic lineage. TRAIL affected the viability of undifferentiated DPSCs, while osteoblastic differentiated DPSCs were not sensitive to TRAIL. The expression trend of TRAIL receptors underwent changes during the osteoblastic differentiation of DPSCs exhibiting low DcR2 and high DR5 levels in the undifferentiated DPSCs and an opposite scenario was presented in the differentiated cells. The sensitivity of the undifferentiated DPSCs to the TRAIL‑apoptotic effect was also associated with low levels of intracellular anti‑apoptotic proteins, such as c‑FLIP, XIAP and the activation of caspase‑8 and ‑3. DPSC‑differentiated osteoblasts expressing high TRAIL levels were capable to affect the cell viability of the human myeloma cell line H929, thus representing an effective anticancer therapeutic method.

Wang LX, Li Y, Chen GZ
Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma.
PLoS One. 2018; 13(1):e0190447 [PubMed] Free Access to Full Article Related Publications
Metastatic melanoma is an aggressive skin cancer and is one of the global malignancies with high mortality and morbidity. It is essential to identify and verify diagnostic biomarkers of early metastatic melanoma. Previous studies have systematically assessed protein biomarkers and mRNA-based expression characteristics. However, molecular markers for the early diagnosis of metastatic melanoma have not been identified. To explore potential regulatory targets, we have analyzed the gene microarray expression profiles of malignant melanoma samples by co-expression analysis based on the network approach. The differentially expressed genes (DEGs) were screened by the EdgeR package of R software. A weighted gene co-expression network analysis (WGCNA) was used for the identification of DEGs in the special gene modules and hub genes. Subsequently, a protein-protein interaction network was constructed to extract hub genes associated with gene modules. Finally, twenty-four important hub genes (RASGRP2, IKZF1, CXCR5, LTB, BLK, LINGO3, CCR6, P2RY10, RHOH, JUP, KRT14, PLA2G3, SPRR1A, KRT78, SFN, CLDN4, IL1RN, PKP3, CBLC, KRT16, TMEM79, KLK8, LYPD3 and LYPD5) were treated as valuable factors involved in the immune response and tumor cell development in tumorigenesis. In addition, a transcriptional regulatory network was constructed for these specific modules or hub genes, and a few core transcriptional regulators were found to be mostly associated with our hub genes, including GATA1, STAT1, SP1, and PSG1. In summary, our findings enhance our understanding of the biological process of malignant melanoma metastasis, enabling us to identify specific genes to use for diagnostic and prognostic markers and possibly for targeted therapy.

Byford ET, Carr M, Ladikou E, et al.
Circulating Tfh1 (cTfh1) cell numbers and PD1 expression are elevated in low-grade B-cell non-Hodgkin's lymphoma and cTfh gene expression is perturbed in marginal zone lymphoma.
PLoS One. 2018; 13(1):e0190468 [PubMed] Free Access to Full Article Related Publications
CD4+ T-cell subsets are found in the tumour microenvironment (TME) of low-grade B-cell non-Hodgkin's lymphomas such as marginal zone lymphoma (MZL) or follicular lymphoma (FL). Both numbers and architecture of activating follicular helper T-cells (Tfh) and suppressive Treg in the TME of FL are associated with clinical outcomes. There has been almost no previous work on CD4+ T-cells in MZL. It is now recognised that circulating CD4+CXCR5+ T-cells are the memory compartment of Tfh cells. We determined differences in number of circulating Tfh (cTfh) cells and cTfh subsets between normal subjects and patients with FL or MZL. Lymphoma patients showed increased numbers of cTfh1 and reduced cTfh17 cells due to decreased expression of the subset-defining marker CCR6 in patients. PD1, a surface marker associated with Tfh cells, showed increased expression on cTfh subsets in patients. Focusing on MZL we determined expression of 96 T-cell associated genes by microfluidic qRT-PCR. Analysis of differentially expressed genes showed significant differences between normal subjects and patients both for bulk cTfh (CCL4) and the cTfh1 subset (JAK3). While our findings require confirmation in larger studies we suggest that analysis of number and gene expression of circulating T-cells might be a source of clinically useful information as is the case for T-cells within lymphoma lymph nodes.

Chang H, Wei JW, Tao YL, et al.
CCR6 Is a Predicting Biomarker of Radiosensitivity and Potential Target of Radiosensitization in Rectal Cancer.
Cancer Res Treat. 2018; 50(4):1203-1213 [PubMed] Free Access to Full Article Related Publications
PURPOSE: This study aimed to explore the functions and mechanisms of C-C motif chemokine receptor 6 (CCR6), a gene associated with progression and metastasis of colorectal cancer (CRC), in radiosensitivity of rectal cancer (RC).
Materials and Methods: RNA sequencing and immunohistochemical analysis on CCR6 expression were performed in pretreatment tissues of RC patients exhibiting different therapeutic effects of radiotherapy. Colonogenic survival assay was conducted in different CRC cell lines to assess their radiosensitivity. And the impact of CCR6 expression on radiosensitivity was validated through RNA interference. The DNA damage repair (DDR) abilities of cell lines with different CCR6 expression were evaluated through immunofluorescence-based γH2AX quantification.
RESULTS: The CCR6 mRNA level was higher in patients without pathologic complete remission (pCR) than in those with pCR (fold changed, 2.11; p=0.004). High-level expression of CCR6 protein was more common in the bad responders than in the good responders (76.3% vs. 37.5%, p < 0.001). The CRC cell lines with higher CCR6 expression (LoVo and sw480) appeared to be more radioresistant, compared with the sw620 cell line which had lower CCR6 expression. CCR6 knockdown made the LoVo cells more sensitive to ionizing radiation (sensitization enhancement ratio, 1.738; p < 0.001), and decreased their DDR efficiency.
CONCLUSION: CCR6 might affect the RC radiosensitivity through DDR process. These findings supported CCR6 as a predicting biomarker of radiosensitivity and a potential target of radiosensitization for RC patients.

Zhu CC, Chen C, Xu ZQ, et al.
CCR6 promotes tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer.
Biochim Biophys Acta Mol Basis Dis. 2018; 1864(2):387-397 [PubMed] Related Publications
Chemokines and chemokine receptors play an important role in tumorigenesis. Angiogenesis is a vital part of the occurrence, development and metastasis of cancer. CCR6 is an important factor during tumor progression; however, its function in tumor angiogenesis is not fully understood. In our study, we found that CCR6 was significantly overexpressed in colorectal cancer (CRC) tissues and predicted a poor prognosis in CRC patients. We then verified the function of CCR6 on tumor angiogenesis in vivo and in vitro. We observed that silencing CCR6 could decrease angiogenesis by inhibiting the proliferation and migration of human umbilical vein endothelial cells (HUVECs), whereas overexpression of CCR6 can promote angiogenesis. Additionally, we investigated the molecular mechanisms and demonstrated that activation of the AKT/NF-κB pathway maybe involved in CCR6-mediated tumor angiogenesis, which was able to promote the secretion of vascular endothelial growth factor A (VEGF-A). In conclusion, CCR6 facilitates tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. CCR6 inhibition may be a novel option for anti-vascular treatment in CRC.

You FP, Zhang J, Cui T, et al.
Th9 cells promote antitumor immunity via IL-9 and IL-21 and demonstrate atypical cytokine expression in breast cancer.
Int Immunopharmacol. 2017; 52:163-167 [PubMed] Related Publications
Breast cancer is a major cause of cancer-related death in women. Antitumor T cell responses play critical therapeutic roles, including direct cytotoxicity mediated by CD8

Dubey B, Jackson MD, Zeigler-Johnson C, et al.
Inflammation polymorphisms and prostate cancer risk in Jamaican men: Role of obesity/body size.
Gene. 2017; 636:96-102 [PubMed] Free Access to Full Article Related Publications
African ancestry and obesity are associated with higher risk of prostate cancer (PC). In a pilot study, we explored interactions between obesity (as measured by waist to hip ratio (WHR)) and inflammatory SNPs in relation to PC risk among Jamaican men. This study evaluated 87 chemokine and cytokine associated SNPs in obese and normal weight cases (N=109) and controls (N=102) using a stepwise penalized logistic regression approach in multivariable analyses. Upon stratification by WHR (normal weight (WHR<0.90) or obese (WHR≥0.90)), inheritance of CCR6 rs2023305 AG+GG (OR=1.75, p=0.007), CCR9 rs7613548 AG+GG (OR=1.71, p=0.012) and IL10ra rs2229113 AG+GG (OR=1.45, p=0.01) genotypes was associated with increase in overall or low grade (Gleason score<7) PC risk among normal weight men. These odds were elevated among obese men who possessed the CCR5 rs1799987 AG+GG (OR=1.95, p=0.003) and RNASEL rs12135247 CT+TT genotypes (OR=1.59, p=0.05). CCR7 rs3136685 AG+GG (p=0.032) was associated with a 1.52-1.70 fold increase in the risk of high grade cancer (Gleason score≥7) among obese men. CCR7 variant emerged as an important factor associated with high grade PC risk among obese men in our analyses. Overall, genetic loci found significant in normal weight men were not significant in obese men and vice-versa, partially explaining the role of obesity on PC risk among black men. Also, older age was an important risk factor both in normal weight and obese men but only with regard to low grade PC. Associations of inflammatory SNPs with obesity are suggestive and require further validation in larger cohorts to help develop an understanding of PC risk among obese and non-obese men of African descent.

Haghshenas MR, Ashraf MJ, Khademi B, et al.
Chemokine and chemokine receptor patterns in patients with benign and malignant salivary gland tumors: a distinct role for CCR7.
Eur Cytokine Netw. 2017; 28(1):27-35 [PubMed] Related Publications
To explore the molecular mechanisms involved in pathophysiology of malignant and benign salivary gland tumors (SGTs), we investigated main tumor-inducing chemokines and chemokine receptors, CXCL12/CXCR4/ACKR3 (CXCR7), CXCR3/CXCL10, CCR5/CCL5, CCL21/CCR7, CCL2, CCR4, CXCR5, CCR6, and CXCL8 in tumor tissues. Parotid tissues were obtained from 30 patients with malignant and benign SGTs. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the mRNA expression pattern of the mentioned chemokines/chemokine receptors and immunohistochemistry (IHC) was performed to verify the expression of CCR7. Expression levels of CCR7 and CCR4 transcripts were higher in the tumor tissues of malignant cases in comparison to benign ones (p = 0.03 and 0.02). Immunohistochemistry analysis confirmed that the protein level of CCR7 concurred with the mRNA expression. CCL2 gene transcripts were observed with a higher expression in patients with tumor-free lymph nodes (LN

Chew V, Lai L, Pan L, et al.
Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses.
Proc Natl Acad Sci U S A. 2017; 114(29):E5900-E5909 [PubMed] Free Access to Full Article Related Publications
The recent development of immunotherapy as a cancer treatment has proved effective over recent years, but the precise dynamics between the tumor microenvironment (TME), nontumor microenvironment (NTME), and the systemic immune system remain elusive. Here, we interrogated these compartments in hepatocellular carcinoma (HCC) using high-dimensional proteomic and transcriptomic analyses. By time-of-flight mass cytometry, we found that the TME was enriched in regulatory T cells (Tregs), tissue resident memory CD8

Lee JJ, Kao KC, Chiu YL, et al.
Enrichment of Human CCR6
J Immunol. 2017; 199(2):467-476 [PubMed] Related Publications
Human oral squamous cell carcinoma (OSCC) constitutes an inflammatory microenvironment enriched with chemokines such as CCL20, which promote cancer cell invasion and tumor progression. We found that in OSCC there is a correlation between the expression of

Valverde-Villegas JM, de Medeiros RM, Almeida SEM, Chies JAB
Immunogenetic profiling of 23 SNPs of cytokine and chemokine receptor genes through a minisequencing technique: Design, development and validation.
Int J Immunogenet. 2017; 44(3):135-144 [PubMed] Related Publications
The minisequencing technique offers accuracy and robustness to genotyping of polymorphic DNA variants, being an excellent option for the identification and analyses of prognostic/susceptibility markers in human diseases. Two multiplex minisequencing assays were designed and standardized to screen 23 candidate SNPs in cytokine, chemokine receptor and ligand genes previously associated with susceptibility to cancer and autoimmune disorders as well as to infectious diseases outcome. The SNPs were displayed in two separate panels (panel 1-IL2 rs2069762, TNFα rs1800629, rs361525; IL4 rs2243250; IL6 rs1800795; IL10 rs1800896, rs1800872; IL17A rs8193036, rs2275913 and panel 2-CCR3 rs309125, CCR4 rs6770096, rs2228428; CCR6 rs968334; CCR8 rs2853699; CXCR3 rs34334103, rs2280964;CXCR6 rs223435, rs2234358; CCL20 rs13034664, rs6749704; CCL22 rs4359426; CXCL10/IP-10 rs3921, rs56061981). A total of 305 DNA samples from healthy individuals were genotyped by minisequencing. To validate the minisequencing technique and to encompass the majority of the potential genotypes for all 23 SNPs, 20 of these samples were genotyped by Sanger sequencing. The results of both techniques were 100% in agreement. The technique of minisequencing showed high accuracy and robustness, avoiding the need for high quantities of DNA template samples. It was easily to be conducted in bulk samples derived from a highly admixed human population, being therefore an excellent option for immunogenetic studies.

Han NN, Zhou Q, Huang Q, Liu KJ
Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo.
Biomed Pharmacother. 2017; 89:827-837 [PubMed] Related Publications
Tamoxifen is known as a standard therapeutic treatment for estrogen receptor-positive breast cancer, which down-regulates breast cancer mortality by 31% approximately. Carnosic acid is a phenolic diterpene, which has anti-cancer, anti-inflammation, anti-diabetic and anti-bacterial properties, generated by various species coming from Lamiaceae family. The breast cancer is reported as one of the most common tumors among women worldwide. In our study, the possible benefits of carnosic acid cooperation with tamoxifen for breast cancer treatment in vitro and in vivo were investigated. Carnosic acid and tamoxifen cooperation led to apoptosis in breast cancer cells. Caspase-3 signaling pathway was promoted for carnosic acid and tamoxifen co-treatment. Consistently, anti-apoptotic molecules Bcl-2 and Bcl-xl were down-regulated, while pro-apoptotic signals Bax and Bad were up-regulated. The elevation of decoy receptor 1 and 2 (DcR1 and DcR2) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were enhanced for carnosic acid and tamoxifen cooperation. Furthermore, the mouse xenograft model in vivo suggested that carnosic acid and tamoxifen combined therapy inhibited breast cancer growth in comparison to the carnosic acid or tamoxifen monotherapy. Our study supplies a novel therapeutic strategy to induce apoptosis for suppressing breast cancer, which was relied on Caspase-3/TRAIL activation.

Geismann C, Grohmann F, Dreher A, et al.
Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer.
Biochim Biophys Acta Mol Cell Res. 2017; 1864(5):782-796 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers. From a clinical view, the transcription factor NF-κB is of particular importance, since this pathway confers apoptosis resistance and limits drug efficacy. Whereas the role of the most abundant NF-κB subunit p65/RelA in therapeutic resistance is well documented, only little knowledge of the RelA downstream targets and their functional relevance in TRAIL mediated apoptosis in PDAC is available. In the present study TRAIL resistant and sensitive PDAC cell lines were analyzed for differentially expressed RelA target genes, to define RelA downstream targets mediating TRAIL resistance. The most upregulated target gene was then further functionally characterized. Unbiased genome-wide expression analysis demonstrated that the chemokine CCL20 represents the strongest TRAIL inducible direct RelA target gene in resistant PDAC cells. Unexpectedly, targeting CCL20 by siRNA, blocking antibodies or by downregulation of the sole CCL20 receptor CCR6 had no effect on PDAC cell death or cancer cell migration, arguing against an autocrine role of CCL20 in PDAC. However, by using an ex vivo indirect co-culture system we were able to show that CCL20 acts paracrine to recruit immune cells. Importantly, CCL20-recruited immune cells further increase TRAIL resistance of CCL20-producing PDAC cells. In conclusion, our data show a functional role of a RelA-CCL20 pathway in PDAC TRAIL resistance. We demonstrate how the therapy-induced cross-talk of cancer cells with immune cells affects treatment responses, knowledge needed to tailor novel bi-specific treatments, which target tumor cell as well as immune cells.

Abe F, Kitadate A, Ikeda S, et al.
Histone deacetylase inhibitors inhibit metastasis by restoring a tumor suppressive microRNA-150 in advanced cutaneous T-cell lymphoma.
Oncotarget. 2017; 8(5):7572-7585 [PubMed] Free Access to Full Article Related Publications
Tumor suppressive microRNA (miR)-150 inhibits metastasis by combining with the C-C chemokine receptor 6 (CCR6) "seed sequence" mRNA of the 3'-untranslated region (3'-UTR) in advanced cutaneous T-cell lymphoma (CTCL). Because the histone deacetylase inhibitor (HDACI) vorinostat showed excellent outcomes for treating advanced CTCL, HDACIs may reduce the metastasis of CTCL by targeting miR-150 and/ or CCR6. To examine whether these candidate molecules are essential HDACI targets in advanced CTCL, we used the My-La, HH, and HUT78 CTCL cell lines for functional analysis because we previously demonstrated that their xenografts in NOD/Shi-scid IL-2γnul mice (CTCL mice) induced multiple metastases. We found that pan- HDACIs (vorinostat and panobinostat) inhibited the migration of CTCL cells and downregulated CCR6. The miRNA microarray analysis against CTCL cell lines demonstrated that these pan-HDACIs commonly upregulated 161 miRNAs, including 34 known tumor suppressive miRNAs such as miR-150. Although 35 miRNAs possessing the CCR6 "seed sequence" were included in these 161 miRNAs, miR-150 and miR-185-5p were downregulated in CTCL cells compared to in normal CD4+ T-cells. The transduction of 12 candidate miRNAs against CTCL cells revealed that miR-150 most efficiently inhibited their migration capabilities and downregulated CCR6. Quantitative reverse transcriptase-polymerase chain reaction demonstrated that miR-150 was downregulated in advanced but not early CTCL primary cases. Finally, we injected miR-150 or siCCR6 into CTCL mice and found that mouse survival was significantly prolonged. These results indicate that miR-150 and its target, CCR6, are essential therapeutic targets of pan-HDACIs in advanced CTCL with metastatic potential.

Lu E, Su J, Zhou Y, et al.
CCL20/CCR6 promotes cell proliferation and metastasis in laryngeal cancer by activating p38 pathway.
Biomed Pharmacother. 2017; 85:486-492 [PubMed] Related Publications
Chemokine and its receptors play important roles in laryngeal cancer development and progression. CCR6 is the receptor of CCL20 chemokine, but its function in laryngeal cancer is not known. The aim of this study is to explore the roles of CCR6 and its regulation mechanism in laryngeal cancer. We found CCR6 expression was higher in laryngeal cancer tissues compared with their normal controls, so did in laryngeal cancer cells. Cellular function indicated that down-regulation of CCR6 in laryngeal cancer cells could suppress cell proliferation and metastasis. Further research showed that CCR6 could activate p38, which was related with the changes of microRNA (miRNA) profile in laryngeal cancer cells. We also found that CCR6 was positively associated with miR-20a-5p, miR-489 and negatively related to miR-29-3p, miR-632 and miR-1276 in laryngeal cancer tissues.

Wu J, Xu X, Lee EJ, et al.
Phenotypic alteration of CD8+ T cells in chronic lymphocytic leukemia is associated with epigenetic reprogramming.
Oncotarget. 2016; 7(26):40558-40570 [PubMed] Free Access to Full Article Related Publications
Immunosuppression is a prevalent clinical feature in chronic lymphocytic leukemia (CLL) patients, with many patients demonstrating increased susceptibility to infections as well as increased failure of an antitumor immune response. However, much is currently not understood regarding the precise mechanisms that attribute to this immunosuppressive phenotype in CLL. To provide further clarity to this particular phenomenon, we analyzed the T-cell profile of CLL patient samples within a large cohort and observed that patients with an inverted CD4/CD8 ratio had a shorter time to first treatment as well as overall survival. These observations coincided with higher expression of the immune checkpoint receptor PD-1 in CLL patient CD8+ T cells when compared to age-matched healthy donors. Interestingly, we discovered that increased PD-1 expression in CD8+ T cells corresponds with decreased DNA methylation levels in a distal upstream locus of the PD-1 gene PDCD1. Further analysis using luciferase reporter assays suggests that the identified PDCD1 distal upstream region acts as an enhancer for PDCD1 transcription and this region becomes demethylated during activation of naïve CD8+ T cells by anti-CD3/anti-CD28 antibodies and IL2. Finally, we conducted a genome-wide DNA methylation analysis comparing CD8+ T cells from CLL patients against healthy donors and identified additional differentially methylated genes with known immune regulatory functions including CCR6 and KLRG1. Taken together, our findings reveal the occurrence of epigenetic reprogramming taking place within CLL patient CD8+ T cells and highlight the potential mechanism of how immunosuppression is accomplished in CLL.

Mays AC, Feng X, Browne JD, Sullivan CA
Chemokine and Chemokine Receptor Profiles in Metastatic Salivary Adenoid Cystic Carcinoma.
Anticancer Res. 2016; 36(8):4013-8 [PubMed] Related Publications
AIM: To characterize the chemokine pattern in metastatic salivary adenoid cystic carcinoma (SACC).
MATERIALS AND METHODS: Real-time polymerase chain reaction (RT-PCR) was used to compare chemokine and chemokine receptor gene expression in two SACC cell lines: SACC-83 and SACC-LM (lung metastasis). Chemokines and receptor genes were then screened and their expression pattern characterized in human tissue samples of non-recurrent SACC and recurrent SACC with perineural invasion.
RESULTS: Expression of chemokine receptors C5AR1, CCR1, CCR3, CCR6, CCR7, CCR9, CCR10, CXCR4, CXCR6, CXCR7, CCRL1 and CCRL2 were higher in SACC-83 compared to SACC-LM. CCRL1, CCBP2, CMKLR1, XCR1 and CXCR2 and 6 chemokine genes (CCL13, CCL27, CXCL14, CMTM1, CMTM2, CKLF) were more highly expressed in tissues of patients without tumor recurrence/perineural invasion compared to those with tumor recurrence. CCRL1 (receptor), CCL27, CMTM1, CMTM2, and CKLF (chemokine) genes were more highly expressed in SACC-83 and human tissues of patients without tumor recurrence/perineural invasion.
CONCLUSION: CCRL1, CCL27, CMTM1, CMTM2 and CKLF may play important roles in the development of tumor metastases in SACC.

Tsuruyama T, Hiratsuka T, Aini W, Nakamura T
STAT5A Modulates Chemokine Receptor CCR6 Expression and Enhances Pre-B Cell Growth in a CCL20-Dependent Manner.
J Cell Biochem. 2016; 117(11):2630-42 [PubMed] Related Publications
Signal transducer and activator of transcription 5A (STAT5A) contributes to B-cell responses to cytokines through suppressor of cytokine signaling (Socs) genes in innate immunity. However, its direct roles in B-cell responses to chemokines are poorly understood. In this study, we examined the role of STAT5A in the innate immune response. We found that STAT5A upregulated the transcription of C-C motif receptor 6 (Ccr6) to induce responses to its ligand, CCL20. STAT5A transcriptional activity proceeded through binding to the interferon-γ activation site (GAS) element in the CCR6 promoter in the genome of pre-B cells. High levels of STAT5A and CCR6 increased CCL20-dependent colony growth of pre-B cells. In human B-lymphoblastic lymphoma with inflammation, STAT5A phosphorylation was correlated with CCR6 expression (P > 0.05 compared with that in cases without inflammation). In conclusion, our data supported our hypothesis that STAT5A enhanced the response of pre-B cells to CCL20 to promote their growth.   J. Cell. Biochem. 117: 2630-2642, 2016. © 2016 Wiley Periodicals, Inc.

Kawaguchi K, Suzuki E, Yamaguchi A, et al.
Altered expression of major immune regulatory molecules in peripheral blood immune cells associated with breast cancer.
Breast Cancer. 2017; 24(1):111-120 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The purpose of this study was to clarify the alterations of major immune regulators in peripheral blood mononuclear cells (PBMCs) of cancer patients and to analyze the association with the disease progression in breast cancer patients.
METHODS: The study included 6 healthy volunteers (HVs), 12 primary breast cancer (PBC) patients, and 30 metastatic breast cancer (MBC) patients. The expression of immune regulators such as, CCR6, CD4, CD8, CD14, CD40, CD56, CD80, CTLA4, CXCR4, FOXP3, IDO-1, IDO-2, NKG2D, NRP-1, PD-1, and PD-L1 mRNA in PBMCs was measured by quantitative RT-PCR. Analysis of variance with contrasts was performed to find expression patterns of the three groups (HVs, PBC, MBC).
RESULTS: We clarified the alterations of mRNA of major immune regulators PD-L1, FOXP3, CD80, CD40, and CD14 in PBMCs of cancer patients and the association of these alternations with disease progression. Furthermore, PD-L1 expression was correlated with serum interferon-γ production.
CONCLUSION: Our data suggested that mRNA expressions of PD-L1, FOXP3, CD80, CD40 and CD14 in PBMCs are affected by disease progression. Understanding the roles of these various interactions will be of importance to future studies aiming to uncover biomarkers for predicting response to immune therapy.

Bock S, Murgueitio MS, Wolber G, Weindl G
Acute myeloid leukaemia-derived Langerhans-like cells enhance Th1 polarization upon TLR2 engagement.
Pharmacol Res. 2016; 105:44-53 [PubMed] Related Publications
Langerhans cells (LCs) represent a highly specialized subset of epidermal dendritic cells (DCs), yet not fully understood in their function of balancing skin immunity. Here, we investigated in vitro generated Langerhans-like cells obtained from the human acute myeloid leukaemia cell line MUTZ-3 (MUTZ-LCs) to study TLR- and cytokine-dependent activation of epidermal DCs. MUTZ-LCs revealed high TLR2 expression and responded robustly to TLR2 engagement, confirmed by increased CD83, CD86, PD-L1 and IDO expression, upregulated IL-6, IL-12p40 and IL-23p19 mRNA levels IL-8 release. TLR2 activation reduced CCR6 and elevated CCR7 mRNA expression and induced migration of MUTZ-LCs towards CCL21. Similar results were obtained by stimulation with pro-inflammatory cytokines TNF-α and IL-1β whereas ligands of TLR3 and TLR4 failed to induce a fully mature phenotype. Despite limited cytokine gene expression and production for TLR2-activated MUTZ-LCs, co-culture with naive CD4(+) T cells led to significantly increased IFN-γ and IL-22 levels indicating Th1 differentiation independent of IL-12. TLR2-mediated effects were blocked by the putative TLR2/1 antagonist CU-CPT22, however, no selectivity for either TLR2/1 or TLR2/6 was observed. Computer-aided docking studies confirmed non-selective binding of the TLR2 antagonist. Taken together, our results indicate a critical role for TLR2 signalling in MUTZ-LCs considering the leukemic origin of the generated Langerhans-like cells.

Marmary Y, Adar R, Gaska S, et al.
Radiation-Induced Loss of Salivary Gland Function Is Driven by Cellular Senescence and Prevented by IL6 Modulation.
Cancer Res. 2016; 76(5):1170-80 [PubMed] Related Publications
Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy.

Ouyang W, Zhang S, Yang B, et al.
β-catenin is regulated by USP9x and mediates resistance to TRAIL-induced apoptosis in breast cancer.
Oncol Rep. 2016; 35(2):717-24 [PubMed] Related Publications
To investigate the regulatory mechanisms of decoy receptor expression in TRAIL-resistant breast cancer MCF-7 cells, cytotoxicity and apoptosis assays were applied to examine sensitivity to TRAIL in breast cancer cells. Immunofluorescence and immunoprecipitation were used to detect the co-localization and interaction of USP9x and β-catenin. Luciferase assay was used to examine activity of the DcR1/DcR2/OPG reporter. Overexpression/silencing of β-catenin was performed to confirm β-catenin mediated transcription of the decoy receptors. Additionally, silencing of USP9x was performed to prove that USP9X stabilizes β-catenin and mediates TRAIL-resistance. It was found that USP9x interacted with β-catenin and inhibited the degradation of β-catenin through the deubiquitination of β-catenin. Luciferase reporter assays showed induction of DcR1/DcR2/OPG reporter activity observed upon co-transfection of β-catenin and Tcf-4. The overexpression/silencing of β-catenin further confirmed the role of β-catenin in the regulation of transcription of the decoy receptors. Silencing of USP9x directly evidenced that USP9x affected the protein expression level of β-catenin, the transcription level of the decoy receptors, and reversed TRAIL-resistance of MCF-7 cells. In conclusion, USP9x interacted with and stabilized β-catenin through deubiquitination to mediate transcription of the decoy receptors in breast cancer cells. Our results offer new insights into the mechanisms of resistance to TRAIL, and USP9x could potentially be a therapeutic target for TRAIL-resistant breast cancers.

Coperchini F, Pignatti P, Carbone A, et al.
TNF-α increases the membrane expression of the chemokine receptor CCR6 in thyroid tumor cells, but not in normal thyrocytes: potential role in the metastatic spread of thyroid cancer.
Tumour Biol. 2016; 37(4):5569-75 [PubMed] Related Publications
The chemokine receptor CCR6, selectively bound by CCL20, is involved in the metastatic spread of cancer cells. Tumor necrosis factor-α (TNF-α) displays a complex pro-tumorigenic actions, but it is unknown whether this cytokine could modulate the expression of chemokine receptors in thyroid tumors. The membrane expression of CCR6 was assessed by flow cytometry and immunofluorescence, in primary cultures of normal human thyroid (NHT) cells and in thyroid cancer cell lines (TPC-1 and BCPAP), both in basal conditions and after stimulation with TNF-α. In basal conditions, CCR6+ cells were virtually absent in NHT cells (0.4 ± 0.4 %), while they were detected in TPC-1 (23.6 ± 6.6 %) and in BCPAP (12.9 ± 9.4 %) tumor cells (ANOVA F: 10.534; p < 0.005). The incubation with TNF-α significantly increased the percentage of CCR6+ cells in TPC-1 (23.6 ± 6.6 % vs. 33.1 ± 8.7; p < 0.033) and in BCPAP (12.9 ± 9.4 % vs. 18.1 ± 11.5; p < 0.030), but not in NHT (0.4 ± 0.4 % vs. 0.2 ± 0.3; NS) cells. The magnitude of the TNF-α effect was similar for TPC-1 and BCPAP (∼40 % vs. baseline) cells. TPC-1 cells were characterized by a greater amount of CCR6 per cell as compared with BCPAP cells, both in basal conditions (148.3 ± 33.7 fluorescence intensity vs. 102.5 ± 22.1 p < 0.016) and after TNF-α stimulation (147.8 ± 46.3 fluorescence intensity vs. 95.3 ± 18.5; p < 0.025). Cell migration assays showed that TNF-α treatment significantly increased the rate of migrated cells in those cells in which it also increased the membrane expression of CCR6 (TPC-1 and BCPAP) as compared to basal condition (p < 0.05 for both TPC-1 and BCPAP cells). No effect was observed in NHT cells in which TNF-α stimulation had no effect in terms of CCR6 expression. We first report that TNF-α enhances the expression of CCR6 in thyroid tumor cells, thus providing evidence that TNF-α increases the metastatic potential of thyroid tumors.

Song B, Ma Y, Liu X, et al.
IL-22 promotes the proliferation of cancer cells in smoking colorectal cancer patients.
Tumour Biol. 2016; 37(1):1349-56 [PubMed] Related Publications
Chronic cigarette smoking increases the risk of developing colorectal cancer (CRC) and causes higher mortality of CRC patients. To improve our understanding of the underlying mechanism and devise treatment strategies specifically targeted at chronic smoking CRC patients, we examined the immune system of healthy and CRC patients who are complete nonsmokers or chronic primary smokers. We found that the serum concentrations of CRC nonsmokers and CRC smokers were skewed toward Th17-type cytokines, including interleukin (IL)-17 and IL-22. Notably, smoking CRC subjects had significantly higher levels of IL-22 than nonsmoking CRC patients. We also observed higher percentages of CCR4(+)CCR6(+) Th17 cells in circulating blood and higher secretion of IL-17 and IL-22 by peripheral blood mononuclear cells (PBMCs) of nonsmoking CRC and smoking CRC patients, compared to healthy individuals. Again, we observed elevated IL-17 and IL-22 secretion by CRC smokers than nonsmokers. Since IL-22 has been shown to stimulate tumorigenesis, which was also replicated in our experiments using cancer cell line model, we tested whether CRC patients' cell culture supernatant could also support tumor growth using this model. We found that both HT29 cells and LoVo cells had the highest proliferation in the supernatant from smoking CRC patients. Moreover, the proliferation of LoVo cells in smoking CRC supernatant was significantly higher than that in nonsmoking CRC supernatant. In addition, we found that the IL-22 concentration in normal gut tissue of the smoking CRC patients was significantly increased compared to that in nonsmoking CRC subjects, while no significant differences were observed in tumor tissues. Our results suggest that chronic smokers may have higher risk for CRC and worse prognosis due to dysregulated IL-22 production.

Liu JY, Li F, Wang LP, et al.
CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma.
Br J Cancer. 2015; 113(5):747-55 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumoural infiltration of T lymphocytes is determined by local patterns of specific chemokine expression. In this report, we examined the roles of CCL4 and CCL20 in the accumulation of CD8(+) cytotoxic T lymphocytes (CTLs) and regulatory T (Treg) lymphocytes in oesophageal squamous cell carcinoma (ESCC), and determined the correlations between chemokine expressions and ESCC patients' survival.
METHODS: Reverse transcriptase-PCR and immunohistochemistry (IHC) staining were performed to examine the expressions of interested genes. Flow cytometry was adopted to check the expressions of CCL4- and CCL6-specific receptors, CCR5 and CCR6, on CTLs and Treg cells. In addition, transwell assay was carried on.
RESULTS: The CCL4 expression was significantly correlated with the expression of CTL markers (CD8 and Granzyme B), whereas CCL20 was positively correlated with Treg markers (FoxP3 and IL-10). Consistently, CCR5 was found to be mainly expressed on CD8(+) T lymphocytes, while CCR6 showed prevalence on Treg lymphocytes and the frequencies of CCR5(+)CD8(+) CTLs and CCR6(+) Treg cells were higher in TIL compared with PBMC. Respectively, CCL4 and CCL20 recruited CD8(+) and regulatory T cells in vitro. Importantly, high levels of CCL4 in the lesions of ESCC patients predicted prolonged survival. Furthermore, CCL4(high)/CCL20(low) group demonstrated better overall survival, whereas CCL4(low)/CCL20(low) and CCL4(low)/CCL20(high) groups showed the worst overall survival.
CONCLUSIONS: Our data showed that CCL4 and CCL20 recruit functionally different T lymphocyte subsets into oesophageal carcinoma, indicating CCL4 and CCL20 are potential predictors of ESCC patients' survival.

Zhang J, Zhu D, Lv Q, et al.
The key role of astrocyte elevated gene-1 in CCR6-induced EMT in cervical cancer.
Tumour Biol. 2015; 36(12):9763-7 [PubMed] Related Publications
In recent years, astrocyte elevated gene-1 (AEG-1) has been recommended as an important mediator that is involved in the epithelial-to-mesenchymal transition (EMT) process. However, the mechanisms underlying the chemokine (C-C motif) ligand 20 (CCL20)/chemokine (C-C motif) receptor 6 (CCR6)-AEG-1 pathway-mediated EMT in cervical cancer (CC) have not been well featured till now. We used immunohistochemistry and immunoblotting to assess the expression of AEG-1 in 94 cervical cancer tissues and cells. Subsequently, cervical cancer SiHa cells were treated with si-AEG-1 and then subjected to in vitro assays. We observed that AEG-1 proteins were highly expressed in cervical cancer tissues and closely correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and metastasis. Importantly, we validated the expression of AEG-1, p-Erk1/2, p-Akt, vimentin, N-cadherin, and matrix metalloproteinase 2 (MMP2) increased in SiHa with CCL20 treatment in a concentration-dependent manner. When cells were treated with si-AEG-1, the expression of p-Erk1/2, p-Akt, vimentin, N-cadherin, and MMP2 was also downregulated. Using the cell cycle assay, the knockdown of AEG-1 inhibited the entry of G1 into S phase. In conclusion, AEG-1 mediates CCL20/CCR6-induced EMT development via both Erk1/2 and Akt signaling pathway in cervical cancer, which indicates that CCL20/CCR6-AEG-1-EMT pathway could be suggested as a useful target to affect the progression of cervical cancer.

Marsigliante S, Vetrugno C, Muscella A
Paracrine CCL20 loop induces epithelial-mesenchymal transition in breast epithelial cells.
Mol Carcinog. 2016; 55(7):1175-86 [PubMed] Related Publications
We previously found that CCL20 induced primarily cultured healthy breast cell proliferation and migration. The objective of this study was to investigate the hypothesis that CCL20 modulated the epithelial-mesenchymal transition (EMT) of primarily cultured healthy breast epithelial cells and the angiogenesis in areas adjacent to the tumor. Key results showed that CCL20 (a) down-regulated E-cadherin and ZO-1; (b) up-regulated N-cadherin, vimentin, and Snail expressions; (c) increased mRNA and secretion of VEGF and (d) increased angiogenic micro vessel sprouting. Thus, the signal transduction pathways evoked by CCL20 were investigated. We showed that NF-kB p65 down-regulation (by small interfering RNA, siRNA) reversed CCL20-induced Snail and blocked the up-regulation of vimentin and N-cadherin mRNAs. Furthermore, PI3K/AKT inhibition (by LY294002) completely blocked CCL20-induced Snail and NF-kB activation. Inhibition of JNK1/2 (by SP60125) or PKC-α (by siRNA) or src (by PP1) blocked NF-kB activation and Snail expression suggesting that these kinases are all upstream of NF-kB/Snail. Inhibition of mTOR (by rapamycin) abolished the effects of CCL20 on N-cadherin and vimentin protein synthesis. Furthermore, siRNA of PKC-δ inhibited the phosphorylation of CCL20-induced mTOR and S6, increased vimentin and N-cadherin expressions and, finally, blocked the CCL20 induced-EMT. CCL20 increased mRNA and secretion of VEGF by healthy breast cells by using PKC-α, src, Akt, NF-kB, and Snail signalling. In summary, tumor cells signal to the surrounding healthy cells through CCL20 inducing the modulation of the expression of molecules involved in EMT and promoting angiogenesis directly and indirectly through the secretion of VEGF, a major contributor to angiogenesis. © 2015 Wiley Periodicals, Inc.

Han G, Wu D, Yang Y, et al.
CrkL meditates CCL20/CCR6-induced EMT in gastric cancer.
Cytokine. 2015; 76(2):163-169 [PubMed] Related Publications
BACKGROUND: In recent years, Crk-like adapter protein (CrkL) has been identified as a key regulator in the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms underlying the CC chemokine receptor 6 (CCR6) and chemokine (C-C motif) ligand 20 (CCL20)-induced EMT in gastric cancer are still unclear.
METHODS: We conducted the immunohistochemistry and immunoblotting to detect the expression of CCR6 and CrkL in 90 cases of gastric cancer tissues and five kinds of cell lines. And then, gastric cancer cells were subjected to small interfering RNA (siRNA) treatment and in vitro assay.
RESULTS: Both CCR6 and CrkL were aberrantly expressed in gastric cancer specimens and closely correlated with differentiation of cell lines. The expression of CCR6 and CrkL was also significantly associated with metastasis, stage, and poor prognosis of gastric cancer. In addition, we validated CCL20 activated the expression of p-CrkL, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 in MGC803 cells in a dose-dependent manner. However, si-CrkL abrogated the CCL20-induced p-Erk1/2, vimentin, N-cadherin and MMP2 expression. Most importantly, the knockdown of CrkL decreased migration and invasion of MGC803 cells.
CONCLUSIONS: CrkL mediates CCL20/CCR6-induced EMT via Akt pathway, instead of Erk1/2 pathway in development of gastric cancer, which indicated CCL20/CCR6-CrkL-Erk1/2-EMT pathway may be targeted to antagonize the progression of gastric cancer.

Wang GZ, Cheng X, Li XC, et al.
Tobacco smoke induces production of chemokine CCL20 to promote lung cancer.
Cancer Lett. 2015; 363(1):60-70 [PubMed] Related Publications
Tobacco kills nearly 6 million people each year, and 90% of the annual 1.59 million lung cancer deaths worldwide are caused by cigarette smoke. Clinically, a long latency is required for individuals to develop lung cancer since they were first exposed to smoking. In this study, we aimed to identify clinical relevant inflammatory factors that are critical for carcinogenesis by treating normal human lung epithelial cells with tobacco carcinogen nicotine-derived nitrosaminoketone (NNK) for a long period (60 days) and systematic screening in 84 cytokines/chemokines. We found that a chemokine CCL20 was significantly up-regulated by NNK, and in 78/173 (45.1%) patients the expression of CCL20 was higher in tumor samples than their adjacent normal lung tissues. Interestingly, CCL20 was up-regulated in 48/92 (52.2%) smoker and 29/78 (37.2%) nonsmoker patients (p = 0.05), and high CCL20 was associated with poor prognosis. NNK induced the production of CCL20, which promoted lung cancer cell proliferation and migration. In addition, an anti-inflammation drug, dexamethasone, inhibited NNK-induced CCL20 production and suppressed lung cancer in vitro and in vivo. These results indicate that CCL20 is crucial for tobacco smoke-caused lung cancer, and anti-CCL20 could be a rational approach to fight against this deadly disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCR6, Cancer Genetics Web: http://www.cancer-genetics.org/CCR6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999