CA9

Gene Summary

Gene:CA9; carbonic anhydrase IX
Aliases: MN, CAIX
Location:9p13.3
Summary:Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide. They participate in a variety of biological processes, including respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show extensive diversity in tissue distribution and in their subcellular localization. CA IX is a transmembrane protein and is one of only two tumor-associated carbonic anhydrase isoenzymes known. It is expressed in all clear-cell renal cell carcinoma, but is not detected in normal kidney or most other normal tissues. It may be involved in cell proliferation and transformation. This gene was mapped to 17q21.2 by fluorescence in situ hybridization, however, radiation hybrid mapping localized it to 9p13-p12. [provided by RefSeq, Jun 2014]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:carbonic anhydrase 9
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 07 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CA9 (cancer-related)

Cabrera-López C, Bullich G, Martí T, et al.
Insight into response to mTOR inhibition when PKD1 and TSC2 are mutated.
BMC Med Genet. 2015; 16:39 [PubMed] Related Publications
BACKGROUND: Mutations in TSC1 or TSC2 cause the tuberous sclerosis complex (TSC), while mutations in PKD1 or PKD2 cause autosomal dominant polycystic kidney disease (ADPKD). PKD1 lays immediately adjacent to TSC2 and deletions involving both genes, the PKD1/TSC2 contiguous gene syndrome (CGS), are characterized by severe ADPKD, plus TSC. mTOR inhibitors have proven effective in reducing angiomyolipoma (AML) in TSC and total kidney volume in ADPKD but without a positive effect on renal function.
METHODS AND RESULTS: We describe a patient with independent truncating PKD1 and TSC2 mutations who has the expected phenotype for both diseases independently instead of the severe one described in PKD1/TSC2-CGS. Treatment with mTOR inhibitors reduced the AML and kidney volume for 2 years but thereafter they resumed growth; no positive effect on renal function was seen throughout. This is the first case addressing the response to mTOR treatment when independent truncating mutations in PKD1 and TSC2 are present.
CONCLUSIONS: This case reveals that although PKD1 and TSC2 are adjacent genes and there is likely cross-talk between the PKD1 and TSC2 signalling pathways regulating mTOR, having independent TSC2 and PKD1 mutations can give rise to a milder kidney phenotype than is typical in PKD1/TSC2-CGS cases. A short-term beneficial effect of mTOR inhibition on AML and total kidney volume was not reflected in improved renal function.

Eckel-Passow JE, Lachance DH, Molinaro AM, et al.
Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors.
N Engl J Med. 2015; 372(26):2499-508 [PubMed] Article available free on PMC after 25/12/2015 Related Publications
BACKGROUND: The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants.
METHODS: We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants.
RESULTS: Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triple-positive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants.
CONCLUSIONS: Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. (Funded by the National Institutes of Health and others.).

Gleeson FC, Kipp BR, Voss JS, et al.
Endoscopic ultrasound fine-needle aspiration cytology mutation profiling using targeted next-generation sequencing: personalized care for rectal cancer.
Am J Clin Pathol. 2015; 143(6):879-88 [PubMed] Related Publications
OBJECTIVES: In an era of precision medicine, our aim was to determine the frequency and theranostic potential of mutations identified in malignant lymph nodes (LNs) sampled by endoscopic ultrasound fine-needle aspiration (EUS FNA) of patients with rectal cancer by targeted next-generation sequencing (NGS).
METHODS: The NGS Ion AmpliSeq Cancer Hotspot Panel v2 (Life Technologies, Carlsbad, CA) and MiSeq (Illumina, San Diego, CA) sequencers were used to sequence and assess for 2,800 or more possible mutations in 50 established cancer-associated genes.
RESULTS: Among 102 patients, 89% had 194 pathogenic alterations identified in 19 genes. The identification of KRAS, NRAS, or BRAF mutations suggests that 42% are likely nonresponders to anti-epidermal growth factor receptor therapy. Among KRAS, NRAS, or BRAF wild-type patients, alterations in eight genes linked to alternative therapies were identified in 44%.
CONCLUSIONS: Our data demonstrate the successful ability to apply a single multiplex test to allow multigene mutation detection from malignant LN cytology specimen DNA collected by EUS FNA.

Menendez JA, Schroeder B, Peirce SK, et al.
Blockade of a key region in the extracellular domain inhibits HER2 dimerization and signaling.
J Natl Cancer Inst. 2015; 107(6):djv090 [PubMed] Related Publications
BACKGROUND: Several treatment strategies target the human epidermal growth factor receptor 2 (HER2) in breast carcinomas, including monoclonal antibodies directed against HER2's extracellular domain (ECD) and small molecule inhibitors of its tyrosine kinase activity. Yet, novel therapies are needed that prevent HER2 dimerization with other HER family members, because current treatments are only partially effective.
METHODS: To test the hypothesis that HER2 activation requires a protein sequence in the HER2-ECD that mediates HER2 homo- and heterodimerization, we introduced a series of deletion mutations in the third subdomain of HER2-ECD. These deletion mutants were retrovirally expressed in breast cancer (BC) cells that naturally overexpress HER2 and in noncancerous, HER2-negative breast epithelial cells. One-factor analysis of variance or Student's t test were used to analyze differences. All statistical tests were two-sided.
RESULTS: The smallest deletion in the ECD domain of HER2, which removed only 16 amino acids (HER2-ECDΔ451-466), completely disrupted the oncogenic potential of HER2. In contrast to wild-type HER2, the mutant-inhibited anchorage-independent growth (mean number of colonies: mutant, 70, 95% confidence interval [CI] = 55 to 85; wild-type, 400, 95% CI = 320 to 480, P < .001) increased sensitivity to paclitaxel treatment in both transformed and nontransformed cells. Overexpression of HER2Δ451-466 efficiently inhibited activation of HER1, HER2, and HER3 in all cell lines tested.
CONCLUSIONS: These findings reveal that an essential "activating" sequence exists in the extracellular domain of HER2. Disruption of this sequence disables the HER2 dimerization loop, blocks subsequent activation of HER2-driven oncogenic signaling, and generates a dominant-negative form of HER2. Reagents specifically against this molecular activation switch may represent a novel targeted approach for the management of HER2-overexpressing carcinomas.

Mavaddat N, Pharoah PD, Michailidou K, et al.
Prediction of breast cancer risk based on profiling with common genetic variants.
J Natl Cancer Inst. 2015; 107(5) [PubMed] Related Publications
BACKGROUND: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking.
METHODS: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates.
RESULTS: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer.
CONCLUSIONS: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.

Galliani CA, Sanchez IC, D'Errico MM, Bisceglia M
Selected case from the Arkadi M. Rywlin International Pathology Slide Club: carcinoma of the transverse colon in a young girl.
Adv Anat Pathol. 2015; 22(3):217-24 [PubMed] Related Publications
We report a case of a 14-year-old female with primary adenocarcinoma of the transverse colon. She was hospitalized after presenting with abdominal pain and signs of intestinal obstruction. There was no health antecedent or family history of neoplasia. Physical examination revealed a distended abdomen. Tenderness was elicited to palpation of the right lower quadrant. Magnetic resonance imaging of the abdomen revealed obstructive signs, with a constricting lesion in the mid-transverse colon of probable neoplastic nature. Laparoscopic segmental resection of the colon was followed by standard right hemicolectomy. A circumferential mid-transverse tumor was diagnosed as primary colorectal carcinoma (CRC) of signet-ring cell type, AJCC stage IIIC, Dukes' C stage. On the basis of immunohistochemistry and clinical data, hereditary nonpolyposis and hamartomatous colorectal cancer syndromes were excluded. Involvement of either the p53, BRAF, or K-RAS genes was ruled out by immunohistochemistry profiling and genetic testing. The neoplasm was categorized as sporadic. The possibility of activation of the Wnt signaling pathway was suspected, because of a defective turnover of the β-catenin protein. Postoperatively, the patient was treated with both systemic and intra-abdominal adjuvant chemotherapy, including oxaliplatin. Between 18 and 24 months after diagnosis, intra-abdominal tumor recurrences were detected. The patient underwent bilateral oophorectomies for Krukenberg tumors and received salvage chemotherapy. Recently, additional recurrent metastatic retroperitoneal disease caused hydronephrosis. The retroperitoneal mass was debulked and a ureteric stent was placed. At the time of this writing, 43 months after diagnosis, the patient is receiving FOLFOX chemotherapy combined with panitumumab. CRC of childhood is exceedingly rare, generally develops in the setting of unrecognized genetic predisposing factors to cancer, presents with advanced disease, is high grade, and tends to have dismal prognosis.

Deyle DR, Escobar DZ, Peng KW, Babovic-Vuksanovic D
Oncolytic measles virus as a novel therapy for malignant peripheral nerve sheath tumors.
Gene. 2015; 565(1):140-5 [PubMed] Related Publications
Malignant peripheral nerve sheath tumors (MPNSTs) are devastating soft tissue sarcomas that can arise sporadically or in association with neurofibromatosis type I, have a poor prognosis, and have limited treatment options. Oncolytic measles virus therapy has been demonstrated to have significant antitumor properties in a number of different cancers, but the oncolytic potential of a MV Edmonston (MVEdm) vaccine strain engineered to express the human sodium iodide symporter (MV-NIS) on MPNST has not previously been evaluated. MPNST cell lines were found to highly express CD46, a cellular receptor required for measles viral entry, on their cell surface. After in vitro MV-NIS infection, MPNST cell lines showed significant cytopathic effect (CPE), while normal Schwann cells were less susceptible to CPE. Virus localization and distribution could be monitored by imaging of I-125 uptake. Local administration of MV-NIS into MPNST-derived tumors resulted in significant regression of tumor and improved survival. These results demonstrate feasibility of oncolytic measles virus therapy for MPNST patients and the possibility of a novel treatment for patients with NF1 tumors.

Boddicker RL, Kip NS, Xing X, et al.
The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-κB positive feedback loop in peripheral T-cell lymphoma.
Blood. 2015; 125(20):3118-27 [PubMed] Article available free on PMC after 14/05/2016 Related Publications
Peripheral T-cell lymphomas (PTCLs) are generally aggressive non-Hodgkin lymphomas with poor overall survival rates following standard therapy. One-third of PTCLs express interferon regulatory factor-4 (IRF4), a tightly regulated transcription factor involved in lymphocyte growth and differentiation. IRF4 drives tumor growth in several lymphoid malignancies and has been proposed as a candidate therapeutic target. Because direct IRF4 inhibitors are not clinically available, we sought to characterize the mechanism by which IRF4 expression is regulated in PTCLs. We demonstrated that IRF4 is constitutively expressed in PTCL cells and drives Myc expression and proliferation. Using an inhibitor screen, we identified nuclear factor κB (NF-κB) as a candidate regulator of IRF4 expression and cell proliferation. We then demonstrated that the NF-κB subunits p52 and RelB were transcriptional activators of IRF4. Further analysis showed that activation of CD30 promotes p52 and RelB activity and subsequent IRF4 expression. Finally, we showed that IRF4 transcriptionally regulates CD30 expression. Taken together, these data demonstrate a novel positive feedback loop involving CD30, NF-κB, and IRF4; further evidence for this mechanism was demonstrated in human PTCL tissue samples. Accordingly, NF-κB inhibitors may represent a clinical means to disrupt this feedback loop in IRF4-positive PTCLs.

Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL
Tumor-infiltrating dendritic cells in cancer pathogenesis.
J Immunol. 2015; 194(7):2985-91 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
Dendritic cells (DCs) play a pivotal role in the tumor microenvironment, which is known to affect disease progression in many human malignancies. Infiltration by mature, active DCs into the tumors confers an increase in immune activation and recruitment of disease-fighting immune effector cells and pathways. DCs are the preferential target of infiltrating T cells. However, tumor cells have means of suppressing DC function or of altering the tumor microenvironment in such a way that immune-suppressive DCs are recruited. Advances in understanding these changes have led to promising developments in cancer-therapeutic strategies targeting tumor-infiltrating DCs to subdue their immunosuppressive functions and enhance their immune-stimulatory capacity.

Xie Y, Tu W, Zhang J, et al.
SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation.
Mutat Res. 2015; 772:23-9 [PubMed] Related Publications
Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved.

Machiela MJ, Zhou W, Sampson JN, et al.
Characterization of large structural genetic mosaicism in human autosomes.
Am J Hum Genet. 2015; 96(3):487-97 [PubMed] Article available free on PMC after 05/09/2015 Related Publications
Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.

Leng S, Liu Y, Weissfeld JL, et al.
15q12 variants, sputum gene promoter hypermethylation, and lung cancer risk: a GWAS in smokers.
J Natl Cancer Inst. 2015; 107(5) [PubMed] Related Publications
BACKGROUND: Lung cancer is the leading cause of cancer-related mortality worldwide. Detection of promoter hypermethylation of tumor suppressor genes in exfoliated cells from the lung provides an assessment of field cancerization that in turn predicts lung cancer. The identification of genetic determinants for this validated cancer biomarker should provide novel insights into mechanisms underlying epigenetic reprogramming during lung carcinogenesis.
METHODS: A genome-wide association study using generalized estimating equations and logistic regression models was conducted in two geographically independent smoker cohorts to identify loci affecting the propensity for cancer-related gene methylation that was assessed by a 12-gene panel interrogated in sputum. All statistical tests were two-sided.
RESULTS: Two single nucleotide polymorphisms (SNPs) at 15q12 (rs73371737 and rs7179575) that drove gene methylation were discovered and replicated with rs73371737 reaching genome-wide significance (P = 3.3×10(-8)). A haplotype carrying risk alleles from the two 15q12 SNPs conferred 57% increased risk for gene methylation (P = 2.5×10(-9)). Rs73371737 reduced GABRB3 expression in lung cells and increased risk for smoking-induced chronic mucous hypersecretion. Furthermore, subjects with variant homozygote of rs73371737 had a two-fold increase in risk for lung cancer (P = .0043). Pathway analysis identified DNA double-strand break repair by homologous recombination (DSBR-HR) as a major pathway affecting susceptibility for gene methylation that was validated by measuring chromatid breaks in lymphocytes challenged by bleomycin.
CONCLUSIONS: A functional 15q12 variant was identified as a risk factor for gene methylation and lung cancer. The associations could be mediated by GABAergic signaling that drives the smoking-induced mucous cell metaplasia. Our findings also substantiate DSBR-HR as a critical pathway driving epigenetic gene silencing.

Pfaller CK, Cattaneo R, Schnell MJ
Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics.
Virology. 2015; 479-480:331-44 [PubMed] Related Publications
The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the interactions with cellular proteins governing the innate immune responses. Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as cancer therapeutics.

Jatkoe TA, Karnes RJ, Freedland SJ, et al.
A urine-based methylation signature for risk stratification within low-risk prostate cancer.
Br J Cancer. 2015; 112(5):802-8 [PubMed] Article available free on PMC after 03/03/2016 Related Publications
BACKGROUND: Prostate cancer overdiagnosis and overtreatment represents a major problem. Many men with low-grade disease on biopsy are undergraded and they harbour high-grade disease at prostatectomy with no reliable way to identify these men. We used a novel urine-based 2-gene methylation test to identify prostate cancers with aggressive features.
METHODS: Following a proof of concept study in 100 post-radical prostatectomy tissue samples, urine samples were tested from 665 men at multiple U.S. centers undergoing prostate needle biopsy for elevated prostate-specific antigen (2-10 ng ml(-1)). A prediction model was then developed from a combination of clinical factors and the urine-based markers. It was then prospectively tested for accurate prediction of adverse disease (surgical Gleason score ⩾7 and/or a pathological stage ⩾T3a) using urine from a separate cohort of 96 men before radical prostatectomy.
RESULTS: Among pre-prostatectomy men with a biopsy Gleason score <7, 41% had adverse disease of which 100% were correctly identified by the test with a negative predictive value of 100% (95% confidence interval, 86-100%).
CONCLUSIONS: This urine-based test accurately identifies men with clinical low-risk disease who do not have adverse pathology in their prostates and would be excellent candidates for active surveillance.

Bakkum-Gamez JN, Wentzensen N, Maurer MJ, et al.
Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons.
Gynecol Oncol. 2015; 137(1):14-22 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
OBJECTIVE: We demonstrate the feasibility of detecting EC by combining minimally-invasive specimen collection techniques with sensitive molecular testing.
METHODS: Prior to hysterectomy for EC or benign indications, women collected vaginal pool samples with intravaginal tampons and underwent endometrial brushing. Specimens underwent pyrosequencing for DNA methylation of genes reported to be hypermethylated in gynecologic cancers and recently identified markers discovered by profiling over 200 ECs. Methylation was evaluated individually across CpGs and averaged across genes. Differences between EC and benign endometrium (BE) were assessed using two-sample t-tests and area under the curve (AUC).
RESULTS: Thirty-eight ECs and 28 BEs were included. We evaluated 97 CpGs within 12 genes, including previously reported markers (RASSF1, HSP2A, HOXA9, CDH13, HAAO, and GTF2A1) and those identified in discovery work (ASCL2, HTR1B, NPY, HS3ST2, MME, ADCYAP1, and additional CDH13 CpG sites). Mean methylation was higher in tampon specimens from EC v. BE for 9 of 12 genes (ADCYAP1, ASCL2, CDH13, HS3ST2, HTR1B, MME, HAAO, HOXA9, and RASSF1) (all p<0.05). Among these genes, relative hypermethylation was observed in EC v. BE across CpGs. Endometrial brush and tampon results were similar. Within tampon specimens, AUC was highest for HTR1B (0.82), RASSF1 (0.75), and HOXA9 (0.74). This is the first report of HOXA9 hypermethylation in EC.
CONCLUSION: DNA hypermethylation in EC tissues can also be identified in vaginal pool DNA collected via intravaginal tampon. Identification of additional EC biomarkers and refined collection methods are needed to develop an early detection tool for EC.

Lu J, Van der Steen T, Tindall DJ
Are androgen receptor variants a substitute for the full-length receptor?
Nat Rev Urol. 2015; 12(3):137-44 [PubMed] Related Publications
Androgen receptor splice variants (AR-Vs)--which are expressed in castration-resistant prostate cancer (CRPC) cell lines and clinical samples--lack the C-terminal ligand-binding domain and are constitutively active. AR-Vs are, therefore, resistant to traditional androgen deprivation therapy (ADT). AR-Vs are induced by several mechanisms, including ADT, and might contribute to the progression of CRPC and resistance to ADT. AR-Vs could represent a novel therapeutic target for prostate cancer, especially in CRPC.

Galliani CA, Gomez AM, Panniello G, Bisceglia M
Selected case from the Arkadi M. Rywlin International Pathology Slide Series: Asymmetric, segmental glomerulocystic kidney in an infant with tuberous sclerosis complex.
Adv Anat Pathol. 2015; 22(2):135-43 [PubMed] Related Publications
A Hispanic newborn male, the product of nonconsanguineous parents, exhibited major and minor signs of tuberous sclerosis complex (TSC). MRI of the abdomen disclosed a discrete unilateral, cystic, right upper pole renal mass that prompted a nephrectomy. Histologic examination showed a polycystic renal mass that involved all segments of the nephron, with a preponderantly glomerulocystic pattern. The cysts were rounded, uniform, and small, most measuring 2 to 3 mm in diameter. The lining of the cysts was hyperplastic, made up of tall epithelial cells with eosinophilic granular cytoplasm and large nuclei, and focally formed mounds and papillary tufts. DNA analysis detected a constitutional deletion of exon 1 in the TSC2 gene on chromosome 16p13.3. Cystogenesis in TSC2 is manifested because of alteration or dysfunction of the primary cilium, where polycystin, the gene product of PKD1 gene, is localized. Renal cysts are often seen in TSC, varying in number from a few to innumerable, involving all segments of the nephron, including Bowman spaces, and are currently considered as one of the minor diagnostic features. A glomerulocystic pattern is a rare form of kidney involvement in TSC that aptly describes the innumerable cystically dilated Bowman spaces. Glomerulocystic kidney associated with the aforementioned hyperplastic epithelial lining (TSC epithelium) is sufficiently characteristic that could conceivably serve as a major TSC feature in the future.

Wang X, Zhang J, Fu J, et al.
Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells.
Int J Radiat Biol. 2015; 91(5):452-8 [PubMed] Related Publications
PURPOSE: Autophagy plays a crucial role in cellular response to ionizing radiation, but it is unclear whether autophagy can modulate radiation-induced bystander effect (RIBE). Here, we investigated the relationship between bystander damage and autophagy in human hepatoma cells of HepG2.
MATERIALS AND METHODS: HepG2 cells were treated with conditioned medium (CM) collected from 3 Gy γ-rays irradiated hepatoma HepG2 cells for 4, 12, or 24 h, followed by the measurement of micronuclei (MN), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 in the bystander HepG2 cells. In some experiments, the bystander HepG2 cells were respectively transfected with LC3 small interfering RNA (siRNA), Beclin-1 siRNA or treated with 1% dimethyl sulfoxide (DMSO).
RESULTS: Additional MN and mitochondrial dysfunction coupled with ROS were induced in the bystander cells. The expressions of protein markers of autophagy, LC3-II/LC3-I and Beclin-1, increased in the bystander cells. The inductions of bystander MN and overexpressions of LC3 and Beclin-1 were significantly diminished by DMSO. However, when the bystander cells were transfected with LC3 siRNA or Beclin-1 siRNA, the yield of bystander MN was significantly enhanced.
CONCLUSION: The elevated ROS have bi-functions in balancing the bystander effects. One is to cause MN and the other is to induce protective autophagy.

Xiong D, Wang Y, Kupert E, et al.
A recurrent mutation in PARK2 is associated with familial lung cancer.
Am J Hum Genet. 2015; 96(2):301-8 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation.

Baliakas P, Agathangelidis A, Hadzidimitriou A, et al.
Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations.
Blood. 2015; 125(5):856-9 [PubMed] Article available free on PMC after 29/01/2016 Related Publications
An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.

Perez EA, Thompson EA, Ballman KV, et al.
Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial.
J Clin Oncol. 2015; 33(7):701-8 [PubMed] Article available free on PMC after 01/03/2016 Related Publications
PURPOSE: To develop a genomic signature that predicts benefit from trastuzumab in human epidermal growth factor receptor 2-positive breast cancer.
PATIENTS AND METHODS: DASL technology was used to quantify mRNA in samples from 1,282 patients enrolled onto the Combination Chemotherapy With or Without Trastuzumab in Treating Women With Breast Cancer (North Central Cancer Treatment Group N9831 [NCCTG-N9831]) adjuvant trastuzumab trial. Cox proportional hazard ratios (HRs), adjusted for significant clinicopathologic risk factors, were used to determine the association of each gene with relapse-free survival (RFS) for 433 patients who received chemotherapy alone (arm A) and 849 patients who received chemotherapy plus trastuzumab (arms B and C). Network and pathway analyses were used to identify key biologic processes linked to RFS. The signature was built by using a voting scheme.
RESULTS: Network and functional ontology analyses suggested that increased RFS was linked to a subset of immune function genes. A voting scheme model was used to define immune gene enrichment based on the expression of any nine or more of 14 immune function genes at or above the 0.40 quantile for the population. This model was used to identify immune gene-enriched tumors in arm A and arms B and C. Immune gene enrichment was linked to increased RFS in arms B and C (HR, 0.35; 95% CI, 0.22 to 0.55; P < .001), whereas arm B and C patients who did not exhibit immune gene enrichment did not benefit from trastuzumab (HR, 0.89; 95% CI, 0.62 to 1.28; P = .53). Enriched immune function gene expression as defined by our predictive signature was not associated with increased RFS in arm A (HR, 0.90; 95% CI, 0.60 to 1.37; P = .64).
CONCLUSION: Increased expression of a subset of immune function genes may provide a means of predicting benefit from adjuvant trastuzumab.

Gao G, Smith DI
WWOX, large common fragile site genes, and cancer.
Exp Biol Med (Maywood). 2015; 240(3):285-95 [PubMed] Related Publications
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.

Kabisch M, Lorenzo Bermejo J, Dünnebier T, et al.
Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer.
Carcinogenesis. 2015; 36(2):256-71 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3' untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated.

Chen K, Yang D, Li X, et al.
Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy.
Proc Natl Acad Sci U S A. 2015; 112(4):1107-12 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Gastric cancer (GC) is a highly heterogeneous disease. To identify potential clinically actionable therapeutic targets that may inform individualized treatment strategies, we performed whole-exome sequencing on 78 GCs of differing histologies and anatomic locations, as well as whole-genome sequencing on two GC cases, each with three primary tumors and two matching lymph node metastases. The data showed two distinct GC subtypes with either high-clonality (HiC) or low-clonality (LoC). The HiC subtype of intratumoral heterogeneity was associated with older age, TP53 (tumor protein P53) mutation, enriched C > G transition, and significantly shorter survival, whereas the LoC subtype was associated with younger age, ARID1A (AT rich interactive domain 1A) mutation, and significantly longer survival. Phylogenetic tree analysis of whole-genome sequencing data from multiple samples of two patients supported the clonal evolution of GC metastasis and revealed the accumulation of genetic defects that necessitate combination therapeutics. The most recurrently mutated genes, which were validated in a separate cohort of 216 cases by targeted sequencing, were members of the homologous recombination DNA repair, Wnt, and PI3K-ERBB pathways. Notably, the drugable NRG1 (neuregulin-1) and ERBB4 (V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 4) ligand-receptor pair were mutated in 10% of GC cases. Mutations of the BRCA2 (breast cancer 2, early onset) gene, found in 8% of our cohort and validated in The Cancer Genome Atlas GC cohort, were associated with significantly longer survivals. These data define distinct clinicogenetic forms of GC in the Chinese population that are characterized by specific mutation sets that can be investigated for efficacy of single and combination therapies.

Yamada D, Rizvi S, Razumilava N, et al.
IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism.
Hepatology. 2015; 61(5):1627-42 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
UNLABELLED: Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified interleukin (IL)-1 family member, IL-33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr-AKT) and Yes-associated protein. Intrabiliary instillation of the transposon-transposase complex was coupled with lobar bile duct ligation in C57BL/6 mice, followed by administration of IL-33 for 3 consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL-33 by 10 weeks but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (features of CCA) but were negative for HepPar1 (a marker of hepatocellular carcinoma). Substantive overlap with human CCA specimens was revealed by RNA profiling. Not only did IL-33 induce IL-6 expression by human cholangiocytes but it likely facilitated tumor development in vivo by an IL-6-sensitive process as tumor development was significantly attenuated in Il-6(-/-) male animals. Furthermore, tumor formation occurred at a similar rate when IL-6 was substituted for IL-33 in this model.
CONCLUSION: The transposase-mediated transduction of constitutively active AKT and Yes-associated protein in the biliary epithelium coupled with lobar obstruction and IL-33 administration results in the development of CCA with morphological and biochemical features of the human disease; this model highlights the role of inflammatory cytokines in CCA oncogenesis.

García JJ, Jin L, Jackson SB, et al.
Primary pulmonary hyalinizing clear cell carcinoma of bronchial submucosal gland origin.
Hum Pathol. 2015; 46(3):471-5 [PubMed] Related Publications
Hyalinizing clear cell carcinoma (HCCC) has only been described in salivary glands of the head and neck. We report a 38-year-old man with a 2.6-cm lung tumor that was growing in a peribronchial location and had morphologic features of HCCC. The tumor cells expressed cytokeratin 7 and keratin AE1/AE3, and the vast majority of tumor cells marked also with p63 and p40. They were negative for cytokeratin 20, S-100, smooth muscle actin, napsin A, and thyroid transcription factor-1. Fluorescence in situ hybridization revealed Ewing Sarcoma Breakpoint Region 1 (EWSR1) rearrangement, and reverse-transcription polymerase chain reaction confirmed the presence of the EWSR1-Activating Transcription Factor 1 (ATF1) fusion transcript, which was subsequently sequenced. The morphologic, immunophenotypic, cytogenetic, and molecular findings together with the patient's history and location of the tumor support a diagnosis of primary pulmonary HCCC of bronchial submucosal gland origin. It is our understanding that this is the first report of HCCC arising as a primary tumor outside the head and neck region.

Glubb DM, Maranian MJ, Michailidou K, et al.
Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1.
Am J Hum Genet. 2015; 96(1):5-20 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.

Lee AW, Tyrer JP, Doherty JA, et al.
Evaluating the ovarian cancer gonadotropin hypothesis: a candidate gene study.
Gynecol Oncol. 2015; 136(3):542-8 [PubMed] Related Publications
OBJECTIVE: Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of how variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted.
METHODS: Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations.
RESULTS: We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive).
CONCLUSIONS: Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available.

Schoolmeester JK, Dao LN, Sukov WR, et al.
TFE3 translocation-associated perivascular epithelioid cell neoplasm (PEComa) of the gynecologic tract: morphology, immunophenotype, differential diagnosis.
Am J Surg Pathol. 2015; 39(3):394-404 [PubMed] Related Publications
TFE3 translocation-associated PEComa is a distinct form of perivascular epithelioid cell neoplasm, the features of which are poorly defined owing to their general infrequency and limited prior reports with confirmed rearrangement or fusion. Recent investigation has found a lack of TSC gene mutation in these tumors compared with their nonrearranged counterparts, which underscores the importance of recognizing the translocated variant because of hypothetical ineffectiveness of targeted mTOR inhibitor therapy. Six cases were identified, and TFE3 rearrangement was confirmed by fluorescence in situ hybridization. Patient age ranged from 46 to 66 years (median 50 y), and none had a history of a tuberous sclerosis complex. Three cases arose in the uterine corpus, 1 in the vagina, 1 pelvic tumor, and 1 pulmonary tumor that was likely a recurrence/metastasis from a probable uterine primary. Five cases had clear cell epithelioid morphology that showed a spectrum of atypia, while 1 case had a mixture of clear cell epithelioid and spindle cells. A mostly consistent immunophenotype was observed in the clear cell epithelioid cases: each demonstrated diffuse TFE3, HMB45, cathepsinK labeling, either focal or no melanA staining, and variably weak reactivity to smooth muscle markers. The mixed clear cell epithelioid and spindle cell case had a similar expression pattern in its epithelioid component but strong muscle marker positivity in its spindle cell component. Follow-up ranged from 1 to 57 months. Three cases demonstrated aggressive behavior, and 3 cases had no evidence of recurrence. Both GYN-specific and traditional sets of criteria for malignancy were evaluated. The GYN model showed improved inclusion and specificity in comparison to the traditional model.

Garzon R, Volinia S, Papaioannou D, et al.
Expression and prognostic impact of lncRNAs in acute myeloid leukemia.
Proc Natl Acad Sci U S A. 2014; 111(52):18679-84 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides, located within the intergenic stretches or overlapping antisense transcripts of protein coding genes. LncRNAs are involved in numerous biological roles including imprinting, epigenetic regulation, apoptosis, and cell cycle. To determine whether lncRNAs are associated with clinical features and recurrent mutations in older patients (aged ≥60 y) with cytogenetically normal (CN) acute myeloid leukemia (AML), we evaluated lncRNA expression in 148 untreated older CN-AML cases using a custom microarray platform. An independent set of 71 untreated older patients with CN-AML was used to validate the outcome scores using RNA sequencing. Distinctive lncRNA profiles were found associated with selected mutations, such as internal tandem duplications in the FLT3 gene (FLT3-ITD) and mutations in the NPM1, CEBPA, IDH2, ASXL1, and RUNX1 genes. Using the lncRNAs most associated with event-free survival in a training cohort of 148 older patients with CN-AML, we derived a lncRNA score composed of 48 lncRNAs. Patients with an unfavorable compared with favorable lncRNA score had a lower complete response (CR) rate [P < 0.001, odds ratio = 0.14, 54% vs. 89%], shorter disease-free survival (DFS) [P < 0.001, hazard ratio (HR) = 2.88] and overall survival (OS) (P < 0.001, HR = 2.95). The validation set analyses confirmed these results (CR, P = 0.03; DFS, P = 0.009; OS, P = 0.009). Multivariable analyses for CR, DFS, and OS identified the lncRNA score as an independent marker for outcome. In conclusion, lncRNA expression in AML is closely associated with recurrent mutations. A small subset of lncRNAs is correlated strongly with treatment response and survival.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CA9, Cancer Genetics Web: http://www.cancer-genetics.org/CA9.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999