ARNTL

Gene Summary

Gene:ARNTL; aryl hydrocarbon receptor nuclear translocator-like
Aliases: TIC, JAP3, MOP3, BMAL1, PASD3, BMAL1c, bHLHe5
Location:11p15
Summary:The protein encoded by this gene is a basic helix-loop-helix protein that forms a heterodimer with CLOCK. This heterodimer binds E-box enhancer elements upstream of Period (PER1, PER2, PER3) and Cryptochrome (CRY1, CRY2) genes and activates transcription of these genes. PER and CRY proteins heterodimerize and repress their own transcription by interacting in a feedback loop with CLOCK/ARNTL complexes. Defects in this gene have been linked to infertility, problems with gluconeogenesis and lipogenesis, and altered sleep patterns. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2014]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:aryl hydrocarbon receptor nuclear translocator-like protein 1
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • siRNA
  • DNA Methylation
  • Stomach Cancer
  • Young Adult
  • Transcriptional Activation
  • p53 Protein
  • ARNTL Transcription Factors
  • Nuclear Proteins
  • Gene Expression Profiling
  • Cell Proliferation
  • Transcription Factors
  • Gene Expression Regulation
  • Skin
  • Tumor Markers
  • Promoter Regions
  • Basic Helix-Loop-Helix Transcription Factors
  • Breast Cancer
  • Cancer Gene Expression Regulation
  • Melanoma
  • Apoptosis
  • Polymerase Chain Reaction
  • CLOCK Proteins
  • DNA-Binding Proteins
  • Period Circadian Proteins
  • Western Blotting
  • Cryptochromes
  • Circadian Clocks
  • Chromosome 11
  • Circadian Rhythm
  • Gene Expression
  • Colorectal Cancer
  • ARNTL
  • Case-Control Studies
  • Genotype
  • Adenocarcinoma
  • Immunohistochemistry
  • RTPCR
  • Biological Models
  • Single Nucleotide Polymorphism
  • Melatonin
  • Prostate Cancer
  • Flavoproteins
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ARNTL (cancer-related)

Liu C, Liu Y, Xu XX, et al.
Potential effect of matrix stiffness on the enrichment of tumor initiating cells under three-dimensional culture conditions.
Exp Cell Res. 2015; 330(1):123-34 [PubMed] Related Publications
Cancer stem cell (CSC) or tumor initiating cell (TIC) plays an important role in tumor progression and metastasis. Biophysical forces in tumor microenvironment have an important effect on tumor formation and development. In this study, the potential effect of matrix stiffness on the biological characteristics of human head and neck squamous cell carcinoma (HNSCC) TICs, especially the enrichment of HNSCC TICs, was investigated under three-dimensional (3D) culture conditions by means of alginate gel (ALG) beads with different matrix stiffnesses. ALG beads with soft (21 kPa), moderate (70 kPa) and hard (105 kPa) stiffness were generated by changing alginate concentration. It was found that significant HNSCC TIC enrichment was achieved in the ALG beads with moderate matrix stiffness (70 kPa). The gene expression of stemness markers Oct3/4 and Nanog, TIC markers CD44 and ABCG2 was enhanced in cells under this moderate (70 kPa) stiffness. HNSCC TIC proportion was also highly enriched under moderate matrix stiffness, accompanying with higher tumorigenicity, metastatic ability and drug resistance. And it was also found that the possible molecular mechanism underlying the regulated TIC properties by matrix stiffness under 3D culture conditions was significantly different from 2D culture condition. Therefore, the results achieved in this study indicated that 3D biophysical microenvironment had an important effect on TIC characteristics and alginate-based biomimetic scaffolds could be utilized as a proper platform to investigate the interaction between tumor cells and 3D microenvironment.

Mannoor K, Shen J, Liao J, et al.
Small nucleolar RNA signatures of lung tumor-initiating cells.
Mol Cancer. 2014; 13:104 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Non-small cell lung cancer (NSCLC) is the number one cancer killer. Tumor-initiating cells (TICs) are responsible for tumor progression and recurrence. Emerging evidences suggest that small nucleolar RNAs (snoRNAs) play malfunctioning roles in lung tumorigenesis. This study aims to determine if snoRNAs have important function in lung TICs by: 1) profiling and comparing snoRNA expression patterns in lung ALDH1+/- cells of 28 primary NSCLC tissues to identify new signatures of TICs; 2) determining prognostic significance of the snoRNA signatures by analyzing the expression in 82 NSCLC tissues with different stages and histological types using quantitative PCR; 3) functionally investigating if the snoRNAs contribute to stemness of lung TICs using in vitro and in vivo assays.
RESULTS: Twenty-two snoRNAs were identified whose changes were specific to the TICs. The expression of two snoRNAs (snoRA3 and snoRA42) was inversely associated with survival of NSCLC patients (P = 0.002, p = 0.001, respectively). Functional analysis indicated that snoRA42 was upregulated in CD133+ cells isolated from NSCLC cell lines compared with the CD133- counterparts. snoRA42 knockdown reduced the proliferation and self-renewal of TICs in vitro. However, ectopic expression of snoRA42 in non-TICs enhanced the potentials of cell proliferation and self-renewal. snoRA42 expression was associated with expression of stem cell-core transcription factors in lung TICs. Blocking snoRA42 expression in TIC xenografts decreased tumorigenesis in mice.
CONCLUSIONS: The snoRNA signatures of lung TICs provide potential biomarkers for predicting outcome of NSCLC. snoRA42 is one of the important snoRNAs in regulating features of lung TICs, and thus contributes to lung tumorigenesis.

Relógio A, Thomas P, Medina-Pérez P, et al.
Ras-mediated deregulation of the circadian clock in cancer.
PLoS Genet. 2014; 10(5):e1004338 [PubMed] Free Access to Full Article Related Publications
Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

Kim SW, Yang HG, Kang MC, et al.
KIAA1114, a full-length protein encoded by the trophinin gene, is a novel surface marker for isolating tumor-initiating cells of multiple hepatocellular carcinoma subtypes.
Oncotarget. 2014; 5(5):1226-40 [PubMed] Free Access to Full Article Related Publications
Identification of novel biomarkers for tumor-initiating cells (TICs) is of critical importance for developing diagnostic and therapeutic strategies against cancers. Here we identified the role of KIAA1114, a full-length translational product of the trophinin gene, as a distinctive marker for TICs in human liver cancer by developing a DNA vaccine-induced monoclonal antibody targeting the putative extracellular domain of KIAA1114. Compared with other established markers of liver TICs, KIAA1114 was unique in that its expression was detected in both alpha fetoprotein (AFP)-positive and AFP-negative hepatocellular carcinoma (HCC) cell lines with the expression levels of KIAA1114 being positively correlated to their tumorigenic potentials. Notably, KIAA1114 expression was strongly detected in primary hepatic tumor, but neither in the adjacent non-tumorous tissue from the same patient nor normal liver tissue. KIAA1114high cells isolated from HCC cell lines displayed TIC-like features with superior functional and phenotypic traits compared to their KIAA1114low counterparts, including tumorigenic abilities in xenotransplantation model, in vitro colony- and spheroid-forming capabilities, expression of stemness-associated genes, and migratory capacity. Our findings not only address the value of a novel antigen, KIAA1114, as a potential diagnostic factor of human liver cancer, but also as an independent biomarker for identifying TIC populations that could be broadly applied to the heterogeneous HCC subtypes.

Hu ML, Yeh KT, Lin PM, et al.
Deregulated expression of circadian clock genes in gastric cancer.
BMC Gastroenterol. 2014; 14:67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer (GC), an aggressive malignant tumor of the alimentary tract, is a leading cause of cancer-related death. Circadian rhythm exhibits a 24-hour variation in physiological processes and behavior, such as hormone levels, metabolism, gene expression, sleep and wakefulness, and appetite. Disruption of circadian rhythm has been associated with various cancers, including chronic myeloid leukemia, head and neck squamous cell carcinoma, hepatocellular carcinoma, endometrial carcinoma, and breast cancer. However, the expression of circadian clock genes in GC remains unexplored.
METHODS: In this study, the expression profiles of eight circadian clock genes (PER1, PER2, PER3, CRY1, CRY2, CKIϵ, CLOCK, and BMAL1) of cancerous and noncancerous tissues from 29 GC patients were investigated using real-time quantitative reverse-transcriptase polymerase chain reaction and validated through immunohistochemical analysis.
RESULTS: We found that PER2 was significantly up-regulated in cancer tissues (p < 0.005). Up-regulated CRY1 expression was significantly correlated with more advanced stages (stage III and IV) (p < 0.05).
CONCLUSIONS: Our results suggest deregulated expressions of circadian clock genes exist in GC and circadian rhythm disturbance may be associated with the development of GC.

Slominski AT, Kim TK, Takeda Y, et al.
RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D.
FASEB J. 2014; 28(7):2775-89 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
RORα and RORγ are expressed in human skin cells that produce the noncalcemic 20-hydroxyvitamin D3 [20(OH)D3] and 20,23-dihydroxyvitamin D3 [20,23(OH)2D3]. Chinese hamster ovary (CHO) cells stably expressing a Tet-on RORα or RORγ expression vector and a ROR-responsive element (RORE)-LUC reporter, and a mammalian 2-hybrid model examining the interaction between the ligand binding domain (LBD) of RORα or RORγ with an LBD-interacting LXXLL-peptide, were used to study ROR-antagonist activities. These assays revealed that 20(OH)D3 and 20,23(OH)2D3 function as antagonists of RORα and RORγ. Moreover, 20(OH)D3 inhibited the activation of the promoter of the Bmal1 and G6pase genes, targets of RORα, and 20(OH)D3 and 20,23(OH)2D3 inhibited Il17 promoter activity in Jurkat cells overexpressing RORα or RORγ. Molecular modeling using crystal structures of the LBDs of RORα and RORγ revealed docking scores for 20(OH)D3, 20,23(OH)2D3 and 1,25(OH)2D3 similar to those of the natural ligands, predicting good binding to the receptor. Notably, 20(OH)D3, 20,23(OH)2D3, and 1,25(OH)2D3 inhibited RORE-mediated activation of a reporter in keratinocytes and melanoma cells and inhibited IL-17 production by immune cells. Our study identifies a novel signaling pathway, in which 20(OH)D3 and 20,23(OH)2D3 act as antagonists or inverse agonists of RORα and RORγ, that opens new possibilities for local (skin) or systemic regulation.-Slominski, A. T., Kim, T.-K., Takeda, Y., Janjetovic, Z., Broz˙yna, A. A., Skobowiat, C., Wang, J., Postlethwaite, A., Li, W., Tuckey, R. C., Jetten, A. M. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D.

Deng T, Liu JC, Chung PE, et al.
shRNA kinome screen identifies TBK1 as a therapeutic target for HER2+ breast cancer.
Cancer Res. 2014; 74(7):2119-30 [PubMed] Related Publications
HER2(+) breast cancer is currently treated with chemotherapy plus anti-HER2 inhibitors. Many patients do not respond or relapse with aggressive metastatic disease. Therefore, there is an urgent need for new therapeutics that can target HER2(+) breast cancer and potentiate the effect of anti-HER2 inhibitors, in particular those that can target tumor-initiating cells (TIC). Here, we show that MMTV-Her2/Neu mammary tumor cells cultured as nonadherent spheres or as adherent monolayer cells select for stabilizing mutations in p53 that "immortalize" the cultures and that, after serial passages, sphere conditions maintain TICs, whereas monolayer cells gradually lose these tumorigenic cells. Using tumorsphere formation as surrogate for TICs, we screened p53-mutant Her2/Neu(+) tumorsphere versus monolayer cells with a lentivirus short hairpin RNA kinome library. We identified kinases such as the mitogen-activated protein kinase and the TGFβR protein family, previously implicated in HER2(+) breast cancer, as well as autophagy factor ATG1/ULK1 and the noncanonical IκB kinase (IKK), TANK-binding kinase 1 (TBK1), which have not been previously linked to HER2(+) breast cancer. Knockdown of TBK1 or pharmacologic inhibition of TBK1 and the related protein, IKKε, suppressed growth of both mouse and human HER2(+) breast cancer cells. TBK1/IKKε inhibition promoted cellular senescence by suppressing p65-NF-κB and inducing p16(Ink4a). In addition, TBK1/IKKε inhibition cooperated with lapatinib, a HER2/EGFR1-targeted drug, to accelerate apoptosis and kill HER2(+) breast cancer cells both in culture and in xenografts. Our results suggest that patients with HER2(+) breast cancer may benefit from anti-TBK1/IKKε plus anti-HER2 combination therapies and establish conditions that can be used to screen for additional TIC-specific inhibitors of HER2(+) breast cancer.

Chudnovsky Y, Kim D, Zheng S, et al.
ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state.
Cell Rep. 2014; 6(2):313-24 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Glioblastoma (GBM) harbors subpopulations of therapy-resistant tumor-initiating cells (TICs) that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397 kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the nucleosome remodeling and deacetylase (NuRD) complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin-remodeling NuRD complex and the GBM TIC state.

Zhou B, Damrauer JS, Bailey ST, et al.
Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal.
J Clin Invest. 2014; 124(2):553-63 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Erythropoietin (EPO) is a hormone that induces red blood cell production. In its recombinant form, EPO is the one of most prescribed drugs to treat anemia, including that arising in cancer patients. In randomized trials, EPO administration to cancer patients has been associated with decreased survival. Here, we investigated the impact of EPO modulation on tumorigenesis. Using genetically engineered mouse models of breast cancer, we found that EPO promoted tumorigenesis by activating JAK/STAT signaling in breast tumor-initiating cells (TICs) and promoted TIC self renewal. We determined that EPO was induced by hypoxia in breast cancer cell lines, but not in human mammary epithelial cells. Additionally, we demonstrated that high levels of endogenous EPO gene expression correlated with shortened relapse-free survival and that pharmacologic JAK2 inhibition was synergistic with chemotherapy for tumor growth inhibition in vivo. These data define an active role for endogenous EPO in breast cancer progression and breast TIC self-renewal and reveal a potential application of EPO pathway inhibition in breast cancer therapy.

Li L, Hao X, Qin J, et al.
Antibody against CD44s inhibits pancreatic tumor initiation and postradiation recurrence in mice.
Gastroenterology. 2014; 146(4):1108-18 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
BACKGROUND & AIMS: CD44s is a surface marker of tumor-initiating cells (TICs); high tumor levels correlate with metastasis and recurrence, as well as poor outcomes for patients. Monoclonal antibodies against CD44s might eliminate TICs with minimal toxicity. This strategy is unclear for treatment of pancreatic cancer, and little is known about how anti-CD44s affect pancreatic cancer initiation or recurrence after radiotherapy.
METHODS: One hundred ninety-two pairs of human pancreatic adenocarcinoma and adjacent nontumor pancreatic tissues were collected from patients undergoing surgery. We measured CD44s levels in tissue samples and pancreatic cancer cell lines by immunohistochemistry, real-time polymerase chain reaction, and immunoblot; levels were correlated with patient survival times. We studied the effects of anti-CD44s in mice with human pancreatic tumor xenografts and used flow cytometry to determine the effects on TICs. Changes in CD44s signaling were examined by real-time polymerase chain reaction, immunoblot, reporter assay, and in vitro tumorsphere formation assays.
RESULTS: Levels of CD44s were significantly higher in pancreatic cancer than adjacent nontumor tissues. Patients whose tumors expressed high levels of CD44s had a median survival of 10 months compared with >43 months for those with low levels. Anti-CD44s reduced growth, metastasis, and postradiation recurrence of pancreatic xenograft tumors in mice. The antibody reduced the number of TICs in cultured pancreatic cancer cells and xenograft tumors, as well as their tumorigenicity. In cultured pancreatic cancer cell lines, anti-CD44s down-regulated the stem cell self-renewal genes Nanog, Sox-2, and Rex-1 and inhibited signal transducer and activator of transcription 3-mediated cell proliferation and survival signaling.
CONCLUSIONS: The TIC marker CD44s is up-regulated in human pancreatic tumors and associated with patient survival time. CD44s is required for initiation, growth, metastasis, and postradiation recurrence of xenograft tumors in mice. Anti-CD44s eliminated bulk tumor cells as well as TICs from the tumors. Strategies to target CD44s cab be developed to block pancreatic tumor formation and post-radiotherapy recurrence in patients.

Zhu P, Davis M, Blackwelder AJ, et al.
Metformin selectively targets tumor-initiating cells in ErbB2-overexpressing breast cancer models.
Cancer Prev Res (Phila). 2014; 7(2):199-210 [PubMed] Related Publications
Metformin is an oral biguanide used for type II diabetes. Epidemiologic studies suggest a link between metformin use and reduced risk of breast and other types of cancers. ErbB2-expressing breast cancer is a subgroup of tumors with poor prognosis. Previous studies demonstrated that metformin is a potent inhibitor of ErbB2-overexpressing breast cancer cells; metformin treatment extends the life span and impedes mammary tumor development in ErbB2 transgenic mice in vivo. However, the mechanisms of metformin associated antitumor activity, especially in prevention models, remain unclear. We report here for the first time that systemic administration of metformin selectively inhibits CD61(high)/CD49f(high) subpopulation, a group of tumor-initiating cells (TIC) of mouse mammary tumor virus (MMTV)-ErbB2 mammary tumors, in preneoplastic mammary glands. Metformin also inhibited CD61(high)/CD49f(high) subpopulation in MMTV-ErbB2 tumor-derived cells, which was correlated with their compromised tumor initiation/development in a syngeneic tumor graft model. Molecular analysis indicated that metformin induced downregulation of ErbB2 and EGFR expression and inhibited the phosphorylation of ErbB family members, insulin-like growth factor-1R, AKT, mTOR, and STAT3 in vivo. In vitro data indicate that low doses of metformin inhibited the self-renewal/proliferation of cancer stem cells (CSC)/TICs in ErbB2-overexpressing breast cancer cells. We further demonstrated that the expression and activation of ErbB2 were preferentially increased in CSC/TIC-enriched tumorsphere cells, which promoted their self-renewal/proliferation and rendered them more sensitive to metformin. Our results, especially the in vivo data, provide fundamental support for developing metformin-mediated preventive strategies targeting ErbB2-associated carcinogenesis.

Zeng ZL, Luo HY, Yang J, et al.
Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer.
Clin Cancer Res. 2014; 20(4):1042-52 [PubMed] Related Publications
PURPOSE: The circadian clock gene Bmal1 is involved in cancer cell proliferation and DNA damage sensitivity. The aim of this study was to explore the effect of Bmal1 on oxaliplatin sensitivity and to determine its clinical significance in colorectal cancer.
EXPERIMENTAL DESIGN: Three colorectal cancer cell lines, HCT116, THC8307 and HT29, were used. The Bmal1-mediated control of colorectal cancer cell proliferation was tested in vitro and in vivo. MTT and colony formation assays were performed to determine the sensitivity of colorectal cancer cells to oxaliplatin. Flow cytometry was used to examine changes in the cell-cycle distribution and apoptosis rate. Proteins expressed downstream of Bmal1 upon its overexpression were determined by Western blotting. Immunohistochemistry was used to analyze Bmal1 expression in 82 archived colorectal cancer tumors from patients treated with oxaliplatin-based regimens.
RESULTS: Bmal1 overexpression inhibited colorectal cancer cell proliferation and increased colorectal cancer sensitivity to oxaliplatin in three colorectal cancer cell lines and HCT116 cells model in vivo. Furthermore, the overall survival of patients with colorectal cancer with high Bmal1 levels in their primary tumors was significantly longer than that of patients with low Bmal1 levels (27 vs. 19 months; P = 0.043). The progression-free survival of patients with high Bmal1 expression was also significantly longer than that of patients with low Bmal1 expression (11 vs. 5 months; P = 0.015). Mechanistically, the effect of Bmal1 was associated with its ability to regulate G2-M arrest by activating the ATM pathway.
CONCLUSION: Bmal1 shows the potential as a novel prognostic biomarker and may represent a new therapeutic target in colorectal cancer.

Rana S, Munawar M, Shahid A, et al.
Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia.
Mol Biol Rep. 2014; 41(1):95-103 [PubMed] Related Publications
Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.

Wang Y, Hill KS, Fields AP
PKCι maintains a tumor-initiating cell phenotype that is required for ovarian tumorigenesis.
Mol Cancer Res. 2013; 11(12):1624-35 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
UNLABELLED: Protein kinase Cι (PKCι) has oncogenic potential and is an attractive therapeutic target for treatment of lung cancer, particularly those tumors that express elevated PKCι. However, whether PKCι is a viable target in ovarian cancer is unknown, and virtually nothing is known about the mechanism by which PKCι drives ovarian tumorigenesis. Here, it is demonstrated that PKCι maintains a tumor-initiating cell (TIC) phenotype that drives ovarian tumorigenesis. A highly tumorigenic population of cells from human ovarian cancer cell lines exhibit cancer stem-like TIC properties, including self-renewal, clonal expansion, expression of stem-related genes, enhanced transformed growth in vitro, and aggressive tumor-initiating activity in vivo. Genetic disruption of PKCι inhibits the proliferation, clonal expansion, anchorage-independent growth, and enhanced tumorigenic properties of ovarian TICs. Biochemical analysis demonstrates that PKCι acts through its oncogenic partner Ect2 to activate a MEK/ERK signaling axis that drives the ovarian TIC phenotype. Genomic analysis reveals that PKCι and Ect2 are coordinately amplified and overexpressed in the majority of primary ovarian serous tumors, and these tumors exhibit evidence of an active PKCι-Ect2 signaling axis in vivo. Finally, this study reveals that auranofin, a potent and selective inhibitor of oncogenic PKCι signaling, inhibits the tumorigenic properties of ovarian TIC cells in vitro and in vivo. These data demonstrate that PKCι is required for a TIC phenotype in ovarian cancer, and that auranofin is an attractive therapeutic option to target deadly ovarian TICs in ovarian cancer patients.
IMPLICATIONS: PKCι drives a tumor-initiating cell phenotype in ovarian cancer cells that can be therapeutically targeted with auranofin, a small molecule inhibitor of PKCι signaling.

Madden MH, Anic GM, Thompson RC, et al.
Circadian pathway genes in relation to glioma risk and outcome.
Cancer Causes Control. 2014; 25(1):25-32 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
PURPOSE: There is growing evidence that circadian disruption may alter risk and aggressiveness of cancer. We evaluated common genetic variants in the circadian gene pathway for associations with glioma risk and patient outcome in a US clinic-based case-control study.
METHODS: Subjects were genotyped for 17 candidate single nucleotide polymorphisms in ARNTL, CRY1, CRY2, CSNK1E, KLHL30, NPAS2, PER1, PER3, CLOCK, and MYRIP. Unconditional logistic regression was used to estimate age and gender-adjusted odds ratios (OR) and 95 % confidence intervals (CI) for glioma risk under three inheritance models (additive, dominant, and recessive). Proportional hazards regression was used to estimate hazard ratios for glioma-related death among 441 patients with high-grade tumors. Survival associations were validated using The Cancer Genome Atlas (TCGA) dataset.
RESULTS: A variant in PER1 (rs2289591) was significantly associated with overall glioma risk (per variant allele OR 0.80; 95 % CI 0.66-0.97; p trend = 0.027). The variant allele for CLOCK rs11133391 under a recessive model increased risk of oligodendroglioma (OR 2.41; 95 % CI 1.31-4.42; p = 0.005), though not other glioma subtypes (p for heterogeneity = 0.0033). The association remained significant after false discovery rate adjustment (p = 0.008). Differential associations by gender were observed for MYRIP rs6599077 and CSNK1E rs1534891 though differences were not significant after adjustment for multiple testing. No consistent mortality associations were identified. Several of the examined genes exhibited differential expression in glioblastoma multiforme versus normal brain in TCGA data (MYRIP, ARNTL, CRY1, KLHL30, PER1, CLOCK, and PER3), and expression of NPAS2 was significantly associated with a poor patient outcome in TCGA patients.
CONCLUSION: This exploratory analysis provides some evidence supporting a role for circadian genes in the onset of glioma and possibly the outcome of glioma.

Kelleher FC, Rao A, Maguire A
Circadian molecular clocks and cancer.
Cancer Lett. 2014; 342(1):9-18 [PubMed] Related Publications
Physiological processes such as the sleep-wake cycle, metabolism and hormone secretion are controlled by a circadian rhythm adapted to 24h day-night periodicity. This circadian synchronisation is in part controlled by ambient light decreasing melatonin secretion by the pineal gland and co-ordinated by the suprachiasmatic nucleus of the hypothalamus. Peripheral cell autonomous circadian clocks controlled by the suprachiasmatic nucleus, the master regulator, exist within every cell of the body and are comprised of at least twelve genes. These include the basic helix-loop-helix/PAS domain containing transcription factors; Clock, BMal1 and Npas2 which activate transcription of the periodic genes (Per1 and Per2) and cryptochrome genes (Cry1 and Cry2). Points of coupling exist between the cellular clock and the cell cycle. Cell cycle genes which are affected by the molecular circadian clock include c-Myc, Wee1, cyclin D and p21. Therefore the rhythm of the circadian clock and cancer are interlinked. Molecular examples exist including activation of Per2 leads to c-myc overexpression and an increased tumor incidence. Mice with mutations in Cryptochrome 1 and 2 are arrhythmic (lack a circadian rhythm) and arrhythmic mice have a faster rate of growth of implanted tumors. Epidemiological finding of relevance include 'The Nurses' Health Study' where it was established that women working rotational night shifts have an increased incidence of breast cancer. Compounds that affect circadian rhythm exist with attendant future therapeutic possibilities. These include casein kinase I inhibitors and a candidate small molecule KL001 that affects the degradation of cryptochrome. Theoretically the cell cycle and malignant disease may be targeted vicariously by selective alteration of the cellular molecular clock.

Liu J, Xiao Z, Wong SK, et al.
Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.
Oncotarget. 2013; 4(10):1698-1711 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

Roll JD, Rivenbark AG, Sandhu R, et al.
Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation.
Exp Mol Pathol. 2013; 95(3):276-87 [PubMed] Related Publications
A subset of human breast cancer cell lines exhibits aberrant DNA hypermethylation that is characterized by hyperactivity of the DNA methyltransferase enzymes, overexpression of DNMT3b, and concurrent methylation-dependent silencing of numerous epigenetic biomarker genes. The objective of this study was to determine if this aberrant DNA hypermethylation (i) is found in primary breast cancers, (ii) is associated with specific breast cancer molecular subtypes, and (iii) influences patient outcomes. Analysis of epigenetic biomarker genes (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3) identified a gene expression signature characterized by reduced expression levels or loss of expression among a cohort of primary breast cancers. The breast cancers that express this gene expression signature are enriched for triple-negative subtypes - basal-like and claudin-low breast cancers. Methylation analysis of primary breast cancers showed extensive promoter hypermethylation of epigenetic biomarker genes among triple-negative breast cancers, compared to other breast cancer subclasses where promoter hypermethylation events were less frequent. Furthermore, triple-negative breast cancers either did not express or expressed significantly reduced levels of protein corresponding to methylation-sensitive biomarker gene products. Together, these findings suggest strongly that loss of epigenetic biomarker gene expression is frequently associated with gene promoter hypermethylation events. We propose that aberrant DNA hypermethylation is a common characteristic of triple-negative breast cancers and may represent a fundamental biological property of basal-like and claudin-low breast cancers. Kaplan-Meier analysis of relapse-free survival revealed a survival disadvantage for patients with breast cancers that exhibit aberrant DNA hypermethylation. Identification of this distinguishing trait among triple-negative breast cancers forms the basis for development of new rational therapies that target the epigenome in patients with basal-like and claudin-low breast cancers.

Liu L, Yang Z, Xu Y, et al.
Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.
PLoS One. 2013; 8(8):e73038 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Emerging evidence suggests that tumor-initiating cells (TICs) are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC) cells. Reactive oxygen species (ROS) initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

Mannic T, Meyer P, Triponez F, et al.
Circadian clock characteristics are altered in human thyroid malignant nodules.
J Clin Endocrinol Metab. 2013; 98(11):4446-56 [PubMed] Related Publications
CONTEXT: The circadian clock represents the body's molecular time-keeping system. Recent findings revealed strong changes of clock gene expression in various types of human cancers.
OBJECTIVE: Due to emerging evidence on the connection between the circadian oscillator, cell cycle, and oncogenic transformation, we aimed to characterize the circadian clockwork in human benign and malignant thyroid nodules.
DESIGN: Clock transcript levels were assessed by quantitative RT-PCR in thyroid tissues. To provide molecular characteristics of human thyroid clockwork, primary thyrocytes established from normal or nodular thyroid tissue biopsies were subjected to in vitro synchronization with subsequent clock gene expression analysis by circadian bioluminescence reporter assay and by quantitative RT-PCR.
RESULTS: The expression levels of the Bmal1 were up-regulated in tissue samples of follicular thyroid carcinoma (FTC), and in papillary thyroid carcinoma (PTC), as compared with normal thyroid and benign nodules, whereas Cry2 was down-regulated in FTC and PTC. Human thyrocytes derived from normal thyroid tissue exhibited high-amplitude circadian oscillations of Bmal1-luciferase reporter expression and endogenous clock transcripts. Thyrocytes established from FTC and PTC exhibited clock transcript oscillations similar to those of normal thyroid tissue and benign nodules (except for Per2 altered in PTC), whereas cells derived from poorly differentiated thyroid carcinoma exhibited altered circadian oscillations.
CONCLUSIONS: This is the first study demonstrating a molecular makeup of the human thyroid circadian clock. Characterization of the thyroid clock machinery alterations upon thyroid nodule malignant transformation contributes to understanding the connections between circadian clocks and oncogenic transformation. Moreover, it might help in improving the thyroid nodule preoperative diagnostics.

Liu JC, Egan SE, Zacksenhaus E
A Tumor initiating cell-enriched prognostic signature for HER2+:ERα- breast cancer; rationale, new features, controversies and future directions.
Oncotarget. 2013; 4(8):1317-28 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
The high intra- and inter-tumor heterogeneity of many types of cancers, including breast cancer (BC), poses great challenge to development of subtype-specific prognosis. In BC, the classification of tumors as either ERα+ (Luminal A and Luminal B), HER2+ (ERα+ or ERα-) or triple-negative (TNBC)(Basal-like, claudin-low) guides both prognostication and therapy. Indeed, prognostic signatures for ERα+ BC are being incorporated into clinical use. However, these signatures distinguish between luminal A (low risk) and Luminal B (high risk) BC; signatures that identify low/high risk patients with luminal B BC are yet to be developed. Likewise, no signature is in clinical use for HER2+ or TNBC. The major obstacles to development of robust signatures stem from diversity of BC, clonal evolution and heterogeneity within each subtype. We have recently generated a prognostic signature for HER2+:ERα- BC based on the identification of genes that were differentially expressed in a tumor-initiating cell (TIC)-enriched fraction versus non-TIC fraction from a mouse model of HER2+ BC (MMTV-Hers/Neu). Here we describe the rationale behind development of this prognosticator, and present new features of the signature, including elevated PI3K pathway activity and low TNFalpha and IFNgamma signaling in high-risk tumors. In addition, we address controversies in the field such as whether random gene expression signatures significantly associate with cancer outcome. Finally, we suggest a guideline for development of prognostic signatures and discuss future directions.

Chen CL, Tsukamoto H, Liu JC, et al.
Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells.
J Clin Invest. 2013; 123(7):2832-49 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Tumor-initiating stem-like cells (TICs) are resistant to chemotherapy and associated with hepatocellular carcinoma (HCC) caused by HCV and/or alcohol-related chronic liver injury. Using HCV Tg mouse models and patients with HCC, we isolated CD133(+) TICs and identified the pluripotency marker NANOG as a direct target of TLR4, which drives the tumor-initiating activity of TICs. These TLR4/NANOG-dependent TICs were defective in the TGF-β tumor suppressor pathway. Functional oncogene screening of a TIC cDNA library identified Yap1 and Igf2bp3 as NANOG-dependent genes that inactivate TGF-β signaling. Mechanistically, we determined that YAP1 mediates cytoplasmic retention of phosphorylated SMAD3 and suppresses SMAD3 phosphorylation/activation by the IGF2BP3/AKT/mTOR pathway. Silencing of both YAP1 and IGF2BP3 restored TGF-β signaling, inhibited pluripotency genes and tumorigenesis, and abrogated chemoresistance of TICs. Mice with defective TGF-β signaling (Spnb2(+/-) mice) exhibited enhanced liver TLR4 expression and developed HCC in a TLR4-dependent manner. Taken together, these results suggest that the activated TLR4/NANOG oncogenic pathway is linked to suppression of cytostatic TGF-β signaling and could potentially serve as a therapeutic target for HCV-related HCC.

Torigoe T, Hirohashi Y, Yasuda K, Sato N
Constitutive expression and activation of stress response genes in cancer stem-like cells/tumour initiating cells: potent targets for cancer stem cell therapy.
Int J Hyperthermia. 2013; 29(5):436-41 [PubMed] Related Publications
Cancer stem-like cells (CSCs)/tumour-initiating cells (TICs) are defined as the small population of cancer cells that have stem cell-like phenotypes and high capacity for tumour initiation. These cells may have a huge impact in the field of cancer therapy since they are extremely resistant to standard chemoradiotherapy and thus are likely to be responsible for disease recurrence after therapy. Therefore, extensive efforts are being made to elucidate the pathological and molecular properties of CSCs/TICs and, with this information, to establish efficient anti-CSC/TIC targeting therapies. This review considers recent findings on stress response genes that are preferentially expressed in CSCs/TICs and their roles in tumour-promoting properties. Implications for a novel therapeutic strategy targeting CSCs/TICs are also discussed.

Crea F, Clermont PL, Mai A, Helgason CD
Histone modifications, stem cells and prostate cancer.
Curr Pharm Des. 2014; 20(11):1687-97 [PubMed] Related Publications
Prostate cancer (PCa) is a very common neoplasm, which is generally treated by chemo-, radio-, and/or hormonal-therapy. After a variable time, PCa becomes resistant to conventional treatment, leading to patient death. Prostate tumor-initiating cells (TICs) and cancer repopulating cells (CRCs) are stem-like populations, driving respectively cancer initiation and progression. Histone modifiers (HMs) control gene expression in normal and cancer cells, thereby orchestrating key physiological and pathological processes. In particular, Polycomb group genes (PcGs) are a set of HMs crucial for lineage-specific gene silencing and stem cell self renewal. PcG products are organized into two main Polycomb Repressive Complexes (PRCs). At specific loci, PRC2 catalyzes histone H3 Lys27 trimethylation, which triggers gene silencing by recruiting PRC1, histone deacetylases and DNA methyl transferases. PRC1 catalyzes addition of the repressive mark histone H2A ubiquitination. Recently, the catalytic component of PRC1 (BMI1) was shown to play critical roles in prostate CRC self-renewal and resistance to chemotherapy, resulting in poorer prognosis. Similarly, pharmacological disruption of PRC2 by a small molecule inhibitor reduced the tumorigenicity and metastatic potential of prostate CRCs. Along with PcGs, some histone lysine demethylases (KDMs) are emerging as critical regulators of TIC/CRC biology. KDMs may be inhibited by specific small molecules, some of which display antitumor activity in PCa cells at micromolar concentrations. Since epigenetic gene regulation is crucial for stem cell biology, exploring the role of HMs in prostate cancer is a promising path that may lead to novel treatments.

Zienolddiny S, Haugen A, Lie JA, et al.
Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts.
Breast Cancer Res. 2013; 15(4):R53 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
INTRODUCTION: Some studies have suggested that night work may be associated with an increased risk of breast cancer in nurses. We aimed to explore the role of circadian gene polymorphisms in the susceptibility to night work-related breast cancer risk.
METHODS: We conducted a nested case-control study of Norwegian nurses comprising 563 breast cancer cases and 619 controls within a cohort of 49,402 Norwegian nurses ages 35 to 74 years. We studied 60 single-nucleotide polymorphisms (SNPs) in 17 genes involved in the regulation of the circadian rhythm in cases and controls. The data were analyzed in relation to the two exposure variables "maximum number of consecutive night shifts ever worked" and "maximum number of consecutive night shifts worked for at least 5 years." The odds of breast cancer associated with each SNP was calculated in the main effects analysis and in relation to night shift work. The statistically significant odds ratios were tested for noteworthiness using two Bayesian tests: false positive report probability (FPRP) and Bayesian false discovery probability (BFDP).
RESULTS: In the main effects analysis, CC carriers of rs4238989 and GG carriers of rs3760138 in the AANAT gene had increased risk of breast cancer, whereas TT carriers of BMAL1 rs2278749 and TT carriers of CLOCK rs3749474 had reduced risk. The associations were found to be noteworthy using both the FPRP and BFDP tests. With regard to the effect of polymorphisms and night work, several significant associations were observed. After applying FPRP and BFDP in women with at least four night shifts, an increased risk of breast cancer was associated with variant alleles of SNPs in the genes AANAT (rs3760138, rs4238989), BMAL1 (rs2290035, rs2278749, rs969485) and ROR-b (rs3750420). In women with three consecutive night shifts, a reduced risk of breast cancer was associated with carriage of variant alleles of SNPs in CLOCK (rs3749474), BMAL1 (rs2278749), BMAL2 (rs2306074), CSNK1E (rs5757037), NPAS2 (rs17024926), ROR-b (rs3903529, rs3750420), MTNR1A (rs131113549) and PER3 (rs1012477).
CONCLUSIONS: Significant and noteworthy associations between several polymorphisms in circadian genes, night work and breast cancer risk were found among nurses who had worked at least three consecutive night shifts.

Grundy A, Schuetz JM, Lai AS, et al.
Shift work, circadian gene variants and risk of breast cancer.
Cancer Epidemiol. 2013; 37(5):606-12 [PubMed] Related Publications
Circadian (clock) genes have been linked with several functions relevant to cancer, and epidemiologic research has suggested relationships with breast cancer risk for variants in NPAS2, CLOCK, CRY2 and TIMELESS. Increased breast cancer risk has also been observed among shift workers, suggesting potential interactions in relationships of circadian genes with breast cancer. Relationships with breast cancer of 100 SNPs in 14 clock-related genes, as well as potential interactions with shift work history, were investigated in a case-control study (1042 cases, 1051 controls). Odds ratios in an additive genetic model for European-ancestry participants (645 cases, 806 controls) were calculated, using a two-step correction for multiple testing: within each gene through permutation testing (10,000 permutations), and correcting for the false discovery rate across genes. Interactions of genotypes with ethnicity and shift work (<2 years vs ≥2 years) were evaluated individually. Following permutation analysis, two SNPs (rs3816360 in ARNTL and rs11113179 in CRY1) displayed significant associations with breast cancer and one SNP (rs3027188 in PER1) was marginally significant; however, none were significant following adjustment for the false discovery rate. No significant interaction with shift work history was detected. If shift work causes circadian disruption, this was not reflected in associations between clock gene variants and breast cancer risk in this study. Larger studies are needed to assess interactions with longer durations (>30 years) of shift work that have been associated with breast cancer.

Sahar S, Sassone-Corsi P
The epigenetic language of circadian clocks.
Handb Exp Pharmacol. 2013; (217):29-44 [PubMed] Related Publications
Epigenetic control, which includes DNA methylation and histone modifications, leads to chromatin remodeling and regulated gene expression. Remodeling of chromatin constitutes a critical interface of transducing signals, such as light or nutrient availability, and how these are interpreted by the cell to generate permissive or silenced states for transcription. CLOCK-BMAL1-mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Here we will discuss the evidence demonstrating that chromatin remodeling is at the crossroads of circadian rhythms and regulation of metabolism and cellular proliferation.

Chai LP, Wang ZF, Liang WY, et al.
In vitro and in vivo effect of 5-FC combined gene therapy with TNF-α and CD suicide gene on human laryngeal carcinoma cell line Hep-2.
PLoS One. 2013; 8(4):e61136 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
This study was aimed to investigate the effect of combined cancer gene therapy with exogenous tumor necrosis factor-alpha (TNF-α) and cytosine deaminase (CD) suicide gene on laryngeal carcinoma cell line Hep-2 in vitro and in vivo. Transfection of the recombinant eukaryotic vectors of pcDNA3.1 (+) containing TNF-α and/or CD into Hep-2 cells resulted in expression of TNF-α and/or CD gene in vitro. The significant increase in apoptotic Hep-2 cells and decrease of Hep-2 cell proliferation were observed using 5-FC treatment combined with TNF-a expression by CD/5-FC suicide system. Moreover, bystander effect was also observed in the TNF-α and CD gene co-expression group. Laryngeal squamous cell carcinoma (LSCC) mice model was established by using BALB/c mice which different transfected Hep-2 cells with pcDNA3.1 (+) containing TNF-α and/or CD were applied subcutaneously. So these mice are divided into four groups, namely, (1)Hep-2/TIC group; (2)Hep-2/CD group; (3)Hep-2/TNF-α group; (4)Hep-2/0 group. At day 29 after cell inoculation, volume of grafted tumor had significant difference between each two of them (P<0.05). These results showed that the products of combined CD and TNF-α genes inhibited the growth of transplanted LSCC in mice model. So by our observed parameters and many others results, we hypothesized that 5-FC combined gene therapy with TNF-αand CD suicide gene should be an effective treatment on Laryngeal carcinoma.

Jung CH, Kim EM, Park JK, et al.
Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway.
Oncol Rep. 2013; 29(6):2109-13 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Bmal1 is a core factor in the regulation of circadian rhythms. Previous studies have shown that Bmal1 suppresses tumor growth in cell culture and animal models and is downregulated in certain types of cancer. The aim of the present study was to investigated whether Bmal1 influences the invasiveness of cancer cells. We demonstrated that knockdown of Bmal1 by RNA interference promoted cancer cell invasion, whereas its overexpression reduced cellular invasiveness. These effects were observed in lung cancer and glioma cells, and occurred regardless of p53 status. Therefore, it appears that Bmal1 suppresses the invasion of multiple cancer types in a p53-independent manner. Bmal1 knockdown-induced cancer cell invasion was accompanied by activation of the PI3K-Akt-MMP-2 pathway, and was prevented by inhibitors of PI3K, Akt or MMP-2. This suggests that Bmal1 suppresses cell invasion by blocking the PI3K-Akt-MMP-2 pathway. Since this invasion pathway is activated by the oncogene Bcl-w, we investigated whether Bmal1 affects the activity of Bcl-w. As expected, Bmal1 attenuated the ability of Bcl-w to promote MMP-2 accumulation and cell invasion, supporting the idea that Bmal1 antagonizes Bcl-w activity. Collectively, our data suggest that Bmal1 is a tumor suppressor, capable of suppressing cancer cell growth and invasiveness, and support the recent proposal that there is a tight molecular link between circadian rhythms and tumor formation/progression.

Yu CC, Tsai LL, Wang ML, et al.
miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer.
Cancer Res. 2013; 73(11):3425-40 [PubMed] Related Publications
ALDH1(+)CD44(+) cells are putative tumor-initiating cells (TIC) in head and neck squamous cell carcinomas (HNC). miR-145 regulates tumorigenicity in various cancers but the breadth of its mechanistic contributions and potential therapeutic applications are not completely known. Here, we report that ALDH1(+)CD44(+)-HNC cells express reduced levels of miR145. SPONGE-mediated inhibition of miR-145 (Spg-miR145) was sufficient to drive tumor-initiating characteristics in non-TICs/ALDH1(-)CD44-negative HNC cells. Mechanistic analyses identified SOX9 and ADAM17 as two novel miR145 targets relevant to this process. miR-145 expression repressed TICs in HNC in a manner associated with SOX9 interaction with the ADAM17 promoter, thereby activating ADAM17 expression. Notably, the SOX9/ADAM17 axis dominated the TIC-inducing activity of miR-145. Either miR-145 suppression or ADAM17 overexpression in non-TICs/ALDH1(-)CD44(-)-HNC cells increased expression and secretion of interleukin (IL)-6 and soluble-IL-6 receptor (sIL-6R). Conversely, conditioned medium from Spg-miR145-transfected non-TICs/ALDH1(-)CD44(-)-HNC cells was sufficient to confer tumor-initiating properties in non-TICs/ALDH1(-)CD44(-)-HNC and this effect could be abrogated by an IL-6-neutralizing antibody. We found that curcumin administration increased miR-145 promoter activity, thereby decreasing SOX9/ADAM17 expression and eliminating TICs in HNC cell populations. Delivery of lentivral-miR145 or orally administered curcumin blocked tumor progression in HNC-TICs in murine xenotransplant assays. Finally, immunohistochemical analyses of patient specimens confirmed that an miR-145(low)/SOX9(high)/ADAM17(high) phenotype correlated with poor survival. Collectively, our results show how miR-145 targets the SOX9/ADAM17 axis to regulate TIC properties in HNC, and how altering this pathway may partly explain the anticancer effects of curcumin. By inhibiting IL-6 and sIL-6R as downstream effector cytokines in this pathway, miR-145 seems to suppress a paracrine signaling pathway in the tumor microenvironment that is vital to maintain TICs in HNC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ARNTL, Cancer Genetics Web: http://www.cancer-genetics.org/ARNTL.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999