MAP2K4

Gene Summary

Gene:MAP2K4; mitogen-activated protein kinase kinase 4
Aliases: JNKK, MEK4, MKK4, SEK1, SKK1, JNKK1, SERK1, MAPKK4, PRKMK4, SAPKK1, SAPKK-1
Location:17p12
Summary:This gene encodes a member of the mitogen-activated protein kinase (MAPK) family. Members of this family act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation, and development. They form a three-tiered signaling module composed of MAPKKKs, MAPKKs, and MAPKs. This protein is phosphorylated at serine and threonine residues by MAPKKKs and subsequently phosphorylates downstream MAPK targets at threonine and tyrosine residues. A similar protein in mouse has been reported to play a role in liver organogenesis. A pseudogene of this gene is located on the long arm of chromosome X. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:dual specificity mitogen-activated protein kinase kinase 4
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (20)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Latest Publications: MAP2K4 (cancer-related)

Lv C, Fu S, Dong Q, et al.
PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway.
J Exp Clin Cancer Res. 2019; 38(1):24 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer (PCa) is one of the most common cancers in male worldwide. Oxidative stress has been recognized as one of the driving signals pathologically linked to PCa progression. Nevertheless, the association of oxidative stress with PCa progression remains unclear.
METHODS: Western blot, q-RT-PCR and bioinformatics analyses were used to examine PAGE4 expression. Comet assay and Annexin V/ PI dual staining assay were performed to investigate DNA damage and cell death under oxidative stress. Mouse xenograft model of PCa cells was established to verify the role of PAGE4 in vivo. Transcriptomic analysis was performed to investigate the underlying mechanism for the function of PAGE4 under oxidative stress. Western blot assay was conducted to determine the status of MAPK pathway. Immunohistochemistry was used to identify protein expression of PAGE4 in tumor tissues.
RESULTS: In this study, we found that PAGE4 expression was increased in PCa cells under oxidative stress condition. PAGE4 overexpression protected PCa cells from oxidative stress-inducing cell death by reducing DNA damage. PAGE4 overexpression promoted PCa cells growth in vivo. Mechanistically, PAGE4 promoted the survival of prostate cancer cells through regulating MAPK pathway which reflected in decreasing the phosphorylation of MAP2K4, JNK and c-JUN but increasing phosphorylation of ERK1/2.
CONCLUSION: Our findings indicate that PAGE4 protects PCa cells from DNA damage and apoptosis under oxidative stress by modulating MAPK signalling pathway. PAGE4 expression may serve as a prognostic biomarker for clinical applications.

Hedrick E, Mohankumar K, Safe S
TGFβ-Induced Lung Cancer Cell Migration Is NR4A1-Dependent.
Mol Cancer Res. 2018; 16(12):1991-2002 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
TGFβ induces migration of lung cancer cells (A549, H460, and H1299), dependent on activation of c-Jun N-terminal kinase (JNK1), and is inhibited by the JNK1 inhibitor SP600125. Moreover, TGFβ-induced migration of the cells is also blocked by the nuclear export inhibitor leptomycin B (LMB) and the orphan nuclear receptor 4A1 (NR4A1) ligand 1,1-bis(3'-indolyl)-1-(

Marchiò C, Dell'Orto P, Annaratone L, et al.
The Dilemma of HER2 Double-equivocal Breast Carcinomas: Genomic Profiling and Implications for Treatment.
Am J Surg Pathol. 2018; 42(9):1190-1200 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
The American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) 2013 guidelines for HER2 assessment have increased the number of HER2 equivocal breast carcinomas following in situ hybridization reflex testing, that is, HER2 "double equivocal" (equivocal protein expression and equivocal gene copy number). Forty-five double-equivocal carcinomas were subjected to Prosigna analysis. Twenty-seven cases were investigated for the expression of genes found to be differentially expressed between estrogen receptor (ER)-positive/HER2-positive (N=22) and ER-positive/HER2-negative (N=22) control cases. Twenty-nine of the 45 cases were also analyzed by targeted sequencing using a panel of 14 genes. We then explored the pathologic complete response rates in an independent series of double-equivocal carcinoma patients treated with trastuzumab-containing chemotherapy. All cases were ER-positive, with a mean Ki67 of 28%. Double-equivocal carcinomas were predominantly luminal B (76%); 9 cases (20%) were luminal A, and 2 cases (4%) HER2-enriched. The majority (73%) showed a high risk of recurrence by Prosigna, even when the carcinomas were small (<2 cm), node-negative/micrometastatic, and/or grade 2. Double-equivocal carcinomas showed TP53 (6/29, 20%), PIK3CA (3/29, 10%), HER2 (1/29, 3%), and MAP2K4 (1/29, 3%) mutations. Compared with grade-matched ER-positive/HER2-negative breast carcinomas from METABRIC, double-equivocal carcinomas harbored more frequently TP53 mutations and less frequently PIK3CA mutations (P<0.05). No significant differences were observed with grade-matched ER-positive/HER2-positive carcinomas. Lower pathologic complete response rates were observed in double-equivocal compared with HER2-positive patients (10% vs. 60%, P=0.009). Double-equivocal carcinomas are preferentially luminal B and show a high risk of recurrence. A subset of these tumors can be labeled as HER2-enriched by transcriptomic analysis. HER2 mutations can be identified in HER2 double-equivocal cases.

Meng S, Wang G, Lu Y, Fan Z
Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.
Lung Cancer. 2018; 121:82-90 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
OBJECTIVE: Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.
MATERIALS AND METHODS: Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated.
RESULTS: Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib.
CONCLUSIONS: HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI treatment of NSCLC cells with activating mutation of EGFR deserves further investigation.

Lin M, Lee PL, Chiu L, et al.
Identification of novel fusion transcripts in multiple myeloma.
J Clin Pathol. 2018; 71(8):708-712 [PubMed] Related Publications
AIMS: Multiple myeloma (MM) is a heterogeneous disease characterised by genetically complex abnormalities. The classical mutational spectrum includes recurrent chromosomal aberrations and gene-level mutations. Recurrent translocations involving the
METHODS: Targeted RNA-sequencing was performed on 21 patient samples using the Illumina TruSight RNA Pan-Cancer Panel (comprising 1385 genes). Fusion calls were generated from the Illumina RNA-Sequencing Alignment software (V.1.0.0). These samples had conventional cytogenetic and fluorescence in situ hybridisation data for the common recurrent chromosomal abnormalities (t(11;14), t(4;14), t(14;16) and 17p13 deletion). The MMRF CoMMpass dataset was analysed using the TopHat-fusion pipeline.
RESULTS: A total of 10 novel fusions were identified by the TruSight RNA Pan-Cancer Panel. Two of these fusions,
CONCLUSIONS: The identification of novel fusions offers insights into the biology of MM and might have clinical relevance. Further functional studies are required to determine the biological and clinical relevance of these novel fusions.

Zhu Y, Shao S, Pan H, et al.
MicroRNA‑136 inhibits prostate cancer cell proliferation and invasion by directly targeting mitogen‑activated protein kinase kinase 4.
Mol Med Rep. 2018; 17(3):4803-4810 [PubMed] Related Publications
Prostate cancer (PCa) is the second most common type of cancer and the 6th leading cause of cancer‑associated mortality worldwide. Accumulated evidence suggests that PCa initiation and progression are controlled by microRNAs (miRNAs). Therefore, investigating PCa‑associated miRNAs may provide novel biomarkers for the diagnosis and treatment of patients with PCa. In the present study it was demonstrated that miRNA‑136 (miR‑136) expression was significantly downregulated in PCa tissues and cell lines. The resumption of miR‑136 expression suppressed cell proliferation and invasion in PCa cells. Bioinformatics analysis predicted that mitogen‑activated protein kinase kinase 4 (MAP2K4) was a direct target of miR‑136. This prediction was experimentally confirmed by a luciferase reporter assay, RT‑qPCR and western blot analysis. MAP2K4 was highly expressed in PCa tissues and inversely correlated with the miR‑136 expression level. Additionally, the restoration of MAP2K4 expression significantly blocked the inhibitory effects of miR‑136 on cell proliferation and invasion in PCa cells. Therefore, miR‑136 may suppress the proliferation and invasion of PCa cells by targeting MAP2K4 and may be a novel candidate target for cancer therapy against PCa.

Kim H, Hwang H, Lee H, Hong HJ
L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating
Mol Cells. 2017; 40(5):363-370 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The

Jiang B, Zhang J, Xia J, et al.
IDH1 Mutation Promotes Tumorigenesis by Inhibiting JNK Activation and Apoptosis Induced by Serum Starvation.
Cell Rep. 2017; 19(2):389-400 [PubMed] Related Publications
Two hallmarks of cancer cells are their resistance to apoptosis and ability to thrive despite reduced levels of vital serum components. c-jun N-terminal kinase (JNK) activation is crucial for apoptosis triggered by serum starvation (SS), and isocitrate dehydrogenase 1 (IDH1) mutations are tumorigenic, in part, because they produce the abnormal metabolite 2-hydroxyglutarate (2-HG). However, it is unknown whether 2-HG-induced tumorigenesis is partially due to JNK inhibition and thus defective SS-induced apoptosis. We show here, using IDH1-R132Q knockin mutant mouse cells, that 2-HG inhibits JNK activation induced only by SS and not by UV or doxorubicin, and thus can block apoptosis. Upon SS, Cdc42 normally disrupts mixed lineage kinase 3's (MLK3's) auto-inhibition, triggering the MLK3-MKK4/7-JNK-Bim apoptotic cascade. 2-HG binds to Cdc42 and abolishes its association with MLK3, inactivating MLK3 and apoptosis. Allograft tumor assays in mice demonstrate that this mechanism contributes to tumorigenesis driven by mutant IDH1, a result confirmed by detection of JNK inactivation in human gliomas harboring IDH1-R132H mutations.

Wu X, Gong Z, Sun L, et al.
MicroRNA-802 plays a tumour suppressive role in tongue squamous cell carcinoma through directly targeting MAP2K4.
Cell Prolif. 2017; 50(3) [PubMed] Related Publications
OBJECTIVES: Tongue squamous cell carcinoma (TSCC) is the most common oral tumours. MicroRNAs play crucial roles in many cell processes including cell viability, development, apoptosis, migration and invasion. The role of miR-802 in the TSCC is still unknown.
MATERIALS AND METHODS: The miR-802 expression in TSCC tissues and cell lines was determined by quantitative real-time polymerase chain reaction. CCK-8 assay was performed to measure the cell viability, while the cell invasion assay was used to determine the cell invasion. Dual-luciferase reporter and western blot were used to confirm the potential target gene of miR-802.
RESULTS: In our study, we demonstrated that miR-802 expression was downregulated in TSCC tissues and cell lines. Elevated expression of miR-802 suppressed the TSCC cell viability and invasion. Moreover, enforced expression of miR-802 increased the expression of E-cadherin, while suppressed the expression of N-cadherin, Snail and Vimentin in the TSCC cell. In addition, we identified the mitogen-activated protein kinase 4 (MAP2K4) as a direct target gene of miR-802 in the TSCC cell. We also demonstrated that the expression of MAP2K4 was higher in the TSCC tissues than that in the adjacent normal tissues. Furthermore, the expression level of MAP2K4 was inversely associated with the expression of miR-802 in TSCC tissues. We also demonstrated that the MAP2K4 expression was upregulated in TSCC cell lines. Elevated expression of miR-802 inhibited TSCC cell viability and invasion through inhibiting MAP2K4 expression.
CONCLUSIONS: Our data revealed that miR-802 played as a tumour suppressor gene and might act as a therapeutic target in TSCC patients.

Park JY, Juhnn YS
cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells.
Exp Mol Med. 2017; 49(2):e297 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
This study was performed to investigate the signaling pathway that mediates cyclic AMP (cAMP)-induced inhibition of histone deacetylase 8 (HDAC8) degradation, and the effect and underlying mechanisms of the resulting increase in HDAC8 expression on cisplatin-induced apoptosis in lung cancer cells. cAMP signaling increased HDAC8 expression via a protein kinase A (PKA)-independent pathway in H1299 non-small cell lung cancer cells. However, treatment with a selective activator of an exchange protein that was activated by cAMP (Epac) increased HDAC8 expression, and Epac2 inhibition abolished the isoproterenol (ISO)-induced increase in HDAC8 expression. ISO and the Epac activator activated Rap1, and Rap1A activation increased HDAC8 expression; moreover, inhibition of Rap1A with a dominant negative Rap1A or by shRNA-mediated knockdown abolished the ISO-induced increase in HDAC8 expression. Activation of cAMP signaling and Rap1A decreased the activating phosphorylation of Akt. Akt inhibition with a pharmacological inhibitor or expression of a dominant negative Akt inhibited the MKK4/JNK pathway and increased HDAC8 expression. The Akt inhibitor-induced increase in HDAC8 expression was abolished by pretreatment with proteasomal or lysosomal inhibitors. The ISO treatment increased cisplatin-induced apoptosis, which was abolished by HDAC8 knockdown. Exogenous HDAC8 expression increased cisplatin-induced apoptosis and decreased TIPRL expression, and the knockdown of TIPRL increased the apoptosis of cisplatin-treated cells. The ISO treatment decreased cisplatin-induced transcription of the TIPRL gene in a HDAC8-dependent manner. In conclusion, the Epac-Rap1-Akt pathway mediates cAMP signaling-induced inhibition of JNK-dependent HDAC8 degradation, and the resulting HDAC8 increase augments cisplatin-induced apoptosis by repressing TIPRL expression in H1299 lung cancer cells.

Lee SH, Jung SH, Kim TM, et al.
Whole-exome sequencing identified mutational profiles of high-grade colon adenomas.
Oncotarget. 2017; 8(4):6579-6588 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Although gene-to-gene analyses identified genetic alterations such as APC, KRAS and TP53 mutations in colon adenomas, it is largely unknown whether there are any others in them. Mutational profiling of high-grade colon adenoma (HGCA) that just precedes colon carcinoma might identify not only novel adenoma-specific genes but also critical genes for its progression to carcinoma. For this, we performed whole-exome sequencing (WES) of 12 HGCAs and identified 11 non-hypermutated and one hypermutated (POLE-mutated) cases. We identified 22 genes including APC, KRAS, TP53, GNAS, NRAS, SMAD4, ARID2, and PIK3CA with non-silent mutations in the cancer Census Genes. Bi-allelic and mono-allelic APC alterations were found in nine and one HGCAs, respectively, while the other two harbored wild-type APC. Five HGCAs harbored either mono-allelic (four HGCAs) or bi-allelic (one HGCA) SMAD4 mutation or 18q loss that had been known as early carcinoma-specific changes. We identified MTOR, ACVR1B, GNAQ, ATM, CNOT1, EP300, ARID2, RET and MAP2K4 mutations for the first time in colon adenomas. Our WES data is largely matched with the earlier 'adenoma-carcinoma model' (APC, KRAS, NRAS and GNAS mutations), but there are newly identified SMAD4, MTOR, ACVR1B, GNAQ, ATM, CNOT1, EP300, ARID2, RET and MAP2K4 mutations in this study. Our findings provide resource for understanding colon premalignant lesions and for identifying genomic clues for differential diagnosis and therapy options for colon adenomas and carcinomas.

Genovese G, Carugo A, Tepper J, et al.
Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer.
Nature. 2017; 542(7641):362-366 [PubMed] Related Publications
Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.

Groeger S, Jarzina F, Domann E, Meyle J
Porphyromonas gingivalis activates NFκB and MAPK pathways in human oral epithelial cells.
BMC Immunol. 2017; 18(1):1 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
BACKGROUND: The bacterial biofilm at the gingival margin induces a host immune reaction. In this local inflammation epithelial cells defend the host against bacterial challenge. Porphyromonas gingivalis (P. gingivalis), a keystone pathogen, infects epithelial cells. The aim of this study was to investigate the activation of signaling cascades in primary epithelial cells and oral cancer cell lines by a profiler PCR array.
RESULTS: After infection with P. gingivalis membranes the RNA of 16 to 33 of 84 key genes involved in the antibacterial immune response was up-regulated, amongst them were IKBKB (NF-κB signaling pathway), IRF5 (TLR signaling) and JUN, MAP2K4, MAPK14 and MAPK8 (MAPK pathway) in SCC-25 cells and IKBKB, IRF5, JUN, MAP2K4, MAPK14 and MAPK8 in PHGK. Statistically significant up-regulation of IKBKB (4.7 ×), MAP2K4 (4.6 ×), MAPK14 (4.2 ×) and IRF5 (9.8 ×) (p < 0.01) was demonstrated in SCC-25 cells and IKBKB (3.1 ×), MAP2K4 (4.0 ×) MAPK 14 (3.0 ×) (p < 0.05), IRF5 (3.0 ×) and JUN (7.7 ×) (p < 0.01) were up-regulated in PHGK.
CONCLUSIONS: P. gingivalis membrane up-regulates the expression of genes involved in downstream TLR, NFκB and MAPK signaling pathways involved in the pro-inflammatory immune response in primary and malignant oral epithelial cells.

Lefebvre C, Bachelot T, Filleron T, et al.
Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis.
PLoS Med. 2016; 13(12):e1002201 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
BACKGROUND: Major advances have been achieved in the characterization of early breast cancer (eBC) genomic profiles. Metastatic breast cancer (mBC) is associated with poor outcomes, yet limited information is available on the genomic profile of this disease. This study aims to decipher mutational profiles of mBC using next-generation sequencing.
METHODS AND FINDINGS: Whole-exome sequencing was performed on 216 tumor-blood pairs from mBC patients who underwent a biopsy in the context of the SAFIR01, SAFIR02, SHIVA, or Molecular Screening for Cancer Treatment Optimization (MOSCATO) prospective trials. Mutational profiles from 772 primary breast tumors from The Cancer Genome Atlas (TCGA) were used as a reference for comparing primary and mBC mutational profiles. Twelve genes (TP53, PIK3CA, GATA3, ESR1, MAP3K1, CDH1, AKT1, MAP2K4, RB1, PTEN, CBFB, and CDKN2A) were identified as significantly mutated in mBC (false discovery rate [FDR] < 0.1). Eight genes (ESR1, FSIP2, FRAS1, OSBPL3, EDC4, PALB2, IGFN1, and AGRN) were more frequently mutated in mBC as compared to eBC (FDR < 0.01). ESR1 was identified both as a driver and as a metastatic gene (n = 22, odds ratio = 29, 95% CI [9-155], p = 1.2e-12) and also presented with focal amplification (n = 9) for a total of 31 mBCs with either ESR1 mutation or amplification, including 27 hormone receptor positive (HR+) and HER2 negative (HER2-) mBCs (19%). HR+/HER2- mBC presented a high prevalence of mutations on genes located on the mechanistic target of rapamycin (mTOR) pathway (TSC1 and TSC2) as compared to HR+/HER2- eBC (respectively 6% and 0.7%, p = 0.0004). Other actionable genes were more frequently mutated in HR+ mBC, including ERBB4 (n = 8), NOTCH3 (n = 7), and ALK (n = 7). Analysis of mutational signatures revealed a significant increase in APOBEC-mediated mutagenesis in HR+/HER2- metastatic tumors as compared to primary TCGA samples (p < 2e-16). The main limitations of this study include the absence of bone metastases and the size of the cohort, which might not have allowed the identification of rare mutations and their effect on survival.
CONCLUSIONS: This work reports the results of the analysis of the first large-scale study on mutation profiles of mBC. This study revealed genomic alterations and mutational signatures involved in the resistance to therapies, including actionable mutations.

Pfarr N, Penzel R, Endris V, et al.
Targeted next-generation sequencing enables reliable detection of HER2 (ERBB2) status in breast cancer and provides ancillary information of clinical relevance.
Genes Chromosomes Cancer. 2017; 56(4):255-265 [PubMed] Related Publications
HER2-positive breast cancers are a heterogeneous group of tumors, which share amplification and overexpression of HER2. In routine diagnostics, the HER2 (ERBB2) status is currently assessed by immunohistochemistry (IHC) and in situ hybridization (ISH). Data on targeted next-generation sequencing (NGS) approaches that could be used to determine the HER2 status are sparse. Employing two breast cancer-related gene panels, we performed targeted NGS of 41 FFPE breast cancers for which full pathological work-up including ISH and IHC results was available. Selected cases were analyzed by qPCR. Of the 41 cases, the HER2 status of the 4 HER2-positive and 6 HER2-negative tumors was independently detected by our NGS approach achieving a concordance rate of 100%. The remaining 31 cases were equivocal HER2 cases by IHC of which 5 showed amplification of HER2 by ISH. Our NGS approach classified all non-amplified cases correctly as HER2 negative and corroborated all but one of the 5 cases with amplified HER2 as detected by ISH. For the overall cohort, concordance between the gold standard and NGS was 97.6% (sensitivity 88.9% and specificity 100%). Additionally, we observed mutations in PIK3CA (44%), HER2 (8%), and CDH1 (6%) among others. Amplifications were found in CCND1 (12%), followed by MYC (10%) and EGFR (2%) and deletions in CDKN2A (10%), MAP2K4 and PIK3R1 (2% each). We here show that targeted NGS data can be used to interrogate the HER2 status with high specificity and high concordance with gold standard methods. Moreover, this approach identifies additional genetic events that may be clinically exploitable. © 2016 Wiley Periodicals, Inc.

Wan X, Huang W, Yang S, et al.
Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression.
Int J Biochem Cell Biol. 2016; 79:249-260 [PubMed] Related Publications
Prostate cancer (PCa) is the most commonly diagnosed and secondly leading cause of cancer death among males. But the precise mechanism of prostate cancer progression, including microRNAs (miRNAs) functioning in it, is still needs further study. We found miR-27a to be down-regulated in prostate cancer, and we investigated the mechanism and role of miRNA-27a in prostate cancer. MiR-27a, a transcriptional target of AR, was an androgen-induced miRNA in LNCaP cells. In castration-resistant prostate cancer (CRPC) cells, we for the first time reported that miR-27a was downregulated by PI3K signaling. MiR-27a functioned as a tumor suppressor in prostate cancer. Over-expression of miR-27a decreased prostate cancer cell proliferation and migration, and induced prostate cancer cell cycle arrest and apoptosis. MAP2K4, miR-27a's direct target gene, functioned as an oncogene in prostate cancer by reducing G1-S phase arrest and inhibiting cell apoptosis of prostate cancer cells. In conclusion, miR-27a functions as a tumor suppressor by suppressing MAP2K4 which acts as an oncogene in prostate cancer cell lines; we also provided a new mechanism of castration-resistant prostate cancer mediated by miR-27a that downregulation of miR-27a caused by aberrant AR signaling and PI3K/Akt signaling after androgen deprivation therapy (ADT) would promote the progression of castration-resistant prostate cancer.

Iqbal B, Masood A, Lone MM, et al.
Polymorphism of Metastasis Suppressor Genes MKK4 and NME1 in Kashmiri Patients with Breast Cancer.
Breast J. 2016; 22(6):673-677 [PubMed] Related Publications
Genetic polymorphisms in metastatic suppressor genes like MKK4 and NME1 are not well studied in breast cancer. Hence, we analyzed the relationship between MKK4 and NME1 polymorphisms and breast cancer risk in Kashmir, India. The different genotypes of NME1 and MKK4 genes were analyzed by polymerase chain reaction and restriction fragment length polymorphism in 130 breast cancer cases and 200 age- and sex-matched controls. Conditional logistic regression models were used to assess the association of various genotypes with breast cancer. In this study, we found an inverse association between MKK4 promoter polymorphism and breast cancer risk. As compared to TT (wild) genotype, individuals with TG (heterozygous) (OR = 0.32; 95% CI = (0.17-0.58) and GG (mutant) (OR = 0.13; CI = 0.04-0.40) genotypes showed decreased risk of breast cancer. When participants were classified on the basis of lymph node involvement, a strong association between NME1 heterozygous genotype (OR = 3.82; CI = (1.54-9.44) and breast cancer was found.

Aherne ST, Smyth P, Freeley M, et al.
Altered expression of mir-222 and mir-25 influences diverse gene expression changes in transformed normal and anaplastic thyroid cells, and impacts on MEK and TRAIL protein expression.
Int J Mol Med. 2016; 38(2):433-45 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Thyroid cancer is the most common endocrine malignancy and accounts for the majority of endocrine cancer-related deaths each year. Our group and others have previously demonstrated dysfunctional microRNA (miRNA or miR) expression in the context of thyroid cancer. The objective of the present study was to investigate the impact of synthetic manipulation of expression of miR-25 and miR-222 in benign and malignant thyroid cells. miR-25 and miR-222 expression was upregulated in 8505C (an anaplastic thyroid cell line) and Nthy-ori (a SV40-immortalised thyroid cell line) cells, respectively. A transcriptomics-based approach was utilised to identify targets of the two miRNAs and real-time PCR and western blotting were used to validate a subset of the targets. Almost 100 mRNAs of diverse functions were found to be either directly or indirectly targeted by both miR-222 and miR-25 [fold change ≥2, false discovery rate (FDR) ≤0.05]. Gene ontology analysis showed the miR-25 gene target list to be significantly enriched for genes involved in cell adhesion. Fluidigm real-time PCR technologies were used to validate the downregulation of 23 and 22 genes in response to miR-25 and miR-222 overexpression, respectively. The reduction of the expression of two miR-25 protein targets, TNF-related apoptosis‑inducing ligand (TRAIL) and mitogen-activated protein kinase kinase 4 (MEK4), was also validated. Manipulating the expression of both miR-222 and miR-25 influenced diverse gene expression changes in thyroid cells. Increased expression of miR-25 reduced MEK4 and TRAIL protein expression, and cell adhesion and apoptosis are important aspects of miR-25 functioning in thyroid cells.

Bozdogan O, Vargel I, Cavusoglu T, et al.
Metastasis suppressor proteins in cutaneous squamous cell carcinoma.
Pathol Res Pract. 2016; 212(7):608-15 [PubMed] Related Publications
Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research.

Dieci MV, Smutná V, Scott V, et al.
Whole exome sequencing of rare aggressive breast cancer histologies.
Breast Cancer Res Treat. 2016; 156(1):21-32 [PubMed] Related Publications
Little is known about mutational landscape of rare breast cancer (BC) subtypes. The aim of the study was to apply next generation sequencing to three different subtypes of rare BCs in order to identify new genes related to cancer progression. We performed whole exome and targeted sequencing of 29 micropapillary, 23 metaplastic, and 27 pleomorphic lobular BCs. Micropapillary BCs exhibit a profile comparable to common BCs: PIK3CA, TP53, GATA3, and MAP2K4 were the most frequently mutated genes. Metaplastic BCs presented a high frequency of TP53 (78 %) and PIK3CA (48 %) mutations and were recurrently mutated on KDM6A (13 %), a gene involved in histone demethylation. Pleomorphic lobular carcinoma exhibited high mutation rate of PIK3CA (30 %), TP53 (22 %), and CDH1 (41 %) and also presented mutations in PYGM, a gene involved in glycogen metabolism, in 8 out of 27 samples (30 %). Further analyses of publicly available datasets showed that PYGM is dramatically underexpressed in common cancers as compared to normal tissues and that low expression in tumors is correlated with poor relapse-free survival. Immunohistochemical staining on formalin-fixed paraffin-embedded tissues available in our cohort of patients confirmed higher PYGM expression in normal breast tissue compared to equivalent tumoral zone. Next generation sequencing methods applied on rare cancer subtypes can serve as a useful tool in order to uncover new potential therapeutic targets. Sequencing of pleomorphic lobular carcinoma identified a high rate of alterations in PYGM. These findings emphasize the role of glycogen metabolism in cancer progression.

Hoang B, Shi Y, Frost PJ, et al.
SGK Kinase Activity in Multiple Myeloma Cells Protects against ER Stress Apoptosis via a SEK-Dependent Mechanism.
Mol Cancer Res. 2016; 14(4):397-407 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
UNLABELLED: To assess the role of the serum and glucocorticoid-regulated kinase (SGK) kinase in multiple myeloma, we ectopically expressed wild type or a phosphomimetic version of SGK into multiple myeloma cell lines. These cells were specifically resistant to the ER stress inducers tunicamycin, thapsigargin, and bortezomib. In contrast, there was no alteration of sensitivity to dexamethasone, serum starvation, or mTORC inhibitors. Mining of genomic data from a public database indicated that low baseline SGK expression in multiple myeloma patients correlated with enhanced ability to undergo a complete response to subsequent bortezomib treatment and a longer time to progression and overall survival following treatment. SGK overexpressing multiple myeloma cells were also relatively resistant to bortezomib in a murine xenograft model. Parental/control multiple myeloma cells demonstrated a rapid upregulation of SGK expression and activity (phosphorylation of NDRG-1) during exposure to bortezomib and an SGK inhibitor significantly enhanced bortezomib-induced apoptosis in cell lines and primary multiple myeloma cells. In addition, a multiple myeloma cell line selected for bortezomib resistance demonstrated enhanced SGK expression and SGK activity. Mechanistically, SGK overexpression constrained an ER stress-induced JNK proapoptotic pathway and experiments with a SEK mutant supported the notion that SGK's protection against bortezomib was mediated via its phosphorylation of SEK (MAP2K4) which abated SEK/JNK signaling. These data support a role for SGK inhibitors in the clinical setting for myeloma patients receiving treatment with ER stress inducers like bortezomib.
IMPLICATIONS: Enhanced SGK expression and activity in multiple myeloma cells contributes to resistance to ER stress, including bortezomib challenge.

He W, Wu Y, Tang X, et al.
HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells.
Oncotarget. 2016; 7(6):6727-47 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Activator protein 1 (AP-1) is a transcriptional factor composed of the dimeric members of bZIP proteins, which are frequently deregulated in human cancer cells. In this study, we aimed to identify an oncogenic AP-1 dimer critical for the proliferation of neuroblastoma cells and to investigate whether histone deacetylase inhibitors (HDACIs), a new generation of anticancer agents, could target the AP-1 dimer. We report here that HDACIs including trichostatin A, suberoylanilidehydroxamic acid, valproic acid and M344 can transcriptionally suppress both c-Jun and Fra-1, preceding their inhibition of cell growth. c-Jun preferentially interacting with Fra-1 as a heterodimer is responsible for AP-1 activity and critical for cell growth. Mechanistically, HDACIs suppress Fra-1 expression through transcriptionally downregulating Raf1 and subsequently decreasing MEK1/2-ERK1/2 activity. Unexpectedly, HDACI treatment caused MKK7 downregulation at both the protein and mRNA levels. Deletion analysis of the 5'-flanking sequence of the MKK7 gene revealed that a major element responsible for the downregulation by HDACI is located at -149 to -3 relative to the transcriptional start site. Knockdown of MKK7 but not MKK4 remarkably decreased JNK/c-Jun activity and proliferation, whereas ectopic MKK7-JNK1 reversed HDACI-induced c-Jun suppression. Furthermore, suppression of both MKK-7/c-Jun and Raf-1/Fra-1 activities was involved in the tumor growth inhibitory effects induced by SAHA in SH-SY5Y xenograft mice. Collectively, these findings demonstrated that c-Jun/Fra-1 dimer is critical for neuroblastoma cell growth and that HDACIs act as effective suppressors of the two oncogenes through transcriptionally downregulating MKK7 and Raf1.

Peng B, Chai Y, Li Y, et al.
CIP2A overexpression induces autoimmune response and enhances JNK signaling pathway in human lung cancer.
BMC Cancer. 2015; 15:895 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
BACKGROUND: Cancerous inhibitor of PP2A (CIP2A) is a recently characterized oncoprotein, which promotes cancer cell proliferation. But the role of CIP2A in lung cancer progression is still not well understood.
METHODS: The expression level of CIP2A in lung cancer tissues was examined by immunohistochemistry. CIP2A-associated cell proliferation was performed by knock down or overexpression of CIP2A in lung cancer cells. Phospho-array was used to screen kinase candidates related to expression change of CIP2A. Western-blot and luciferase reporter assay were used to validate phospho-array results.
RESULTS: Overexpression of CIP2A in lung cancer not only triggers immune response in lung cancer patients but also promotes lung cancer cell proliferation. By phospho-array, several kinase candidates were identified, one of which is c-Jun activated kinases (JNK). The knock down of CIP2A decreased JNK phosphorylation, and the phosphorylation of downstream transcriptional factors, ATF2 and c-Jun, whose transcriptional activity were decreased as well. Furthermore, the expression level of CIP2A also affected the phosphorylation of the upstream kinase of JNK, MKK4/MKK7. At last, treatment with JNK inhibitor partially abolished CIP2A-induced cell proliferation.
CONCLUSION: CIP2A is a tumor-associated autoantigen in lung cancer, which promote lung cancer proliferation partially through MKK4/7-JNK signaling pathway.

Geng P, Ou J, Xie G, et al.
Mitogen-Activated Protein Kinase Kinase 4 Gene Polymorphism and Cancer Risk.
Medicine (Baltimore). 2015; 94(44):e0938 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
A number of epidemiological studies have assessed the association of -1304T > G polymorphism in the MKK4 gene and risk of cancer, but the results lack of statistical power due to the limited subjects used in these studies. This study was devised to identify the genetic effects of the -1304T > G polymorphism on cancer risk in a large meta-analysis.Eligible studies were identified by searching both Chinese and English databases. General as well as subgroup analyses were performed for 8 independent case-control publications with a total of 4623 cases and 5256 cancer-free controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the association.Overall, this meta-analysis showed that the association between the -1304T > G polymorphism and cancer risk was statistically significant (GG vs TT: OR = 0.63, 95% CI, 0.52-0.75; GG + TG vs TT: OR = 0.85, 95% CI, 0.79-0.91; GG vs TG + TT: OR = 0.67, 95% CI, 0.56-0.80; G vs T: OR = 0.82, 95% CI, 0.77-0.88; TG vs TT: OR = 0.86, 95% CI, 0.79-0.93).Our meta-analysis reveals that the presence of the -1304T > G polymorphism is likely to decrease risk of cancer. Future larger studies are necessary to validate the current finding.

Chen Y, Lin C, Liu Y, Jiang Y
HMGB1 promotes HCC progression partly by downregulating p21 via ERK/c-Myc pathway and upregulating MMP-2.
Tumour Biol. 2016; 37(4):4399-408 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
High-mobility group box 1 (HMGB1) was found to be over-expressed in many kinds of human cancer, which binds with several receptors and activates RAGE-Ras-MAPK, Toll-like receptors, NF-κB, and Src family kinase signaling pathways and plays a crucial role in tumorigenesis and cancer progression. However, the function and mechanism of HMGB1 in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to investigate the effect of HMGB1 on HCC progression and explore new molecular mechanism. HMGB1 transient knockdown, stable knockdown, and re-expression were performed by transfection with specific siRNA, shRNA, or expression vector in HCCLM3 cells. Results showed that transient knockdown HMGB1 prevented cell proliferation, promoted apoptosis, induced S phase arrest, and inhibited migration and invasion in vitro, and stable knockdown HMGB1 inhibited xenograft growth in Balb/c athymic mice in vivo. Molecular mechanism investigation revealed that knockdown HMGB1 significantly reduced the activation of MAPKs, including ERK1/2, p38, SAPK/JNK, as well as MAPKKs (MEK1/2, SEK1) and its substrates (c-Jun, c-Myc); downregulated NF-κB/p65 expression and phosphorylation level; decreased MMP-2 expression and activity; and upregulated p21 expression. Interestingly, c-Myc was firstly found to be involved in the promoting function of HMGB1 on HCC progression, which provided a novel clue for the inhibitory effect of HMGB1 on p21 expression by a p53-independent pathway. Collectively, these findings indicated that HMGB1 promoted HCC progression partly by enhancing the ERK1/2 and NF-κB pathways, upregulating MMP-2, and downregulating p21 via an ERK/c-Myc pathway.

Kadakia KC, Tomlins SA, Sanghvi SK, et al.
Comprehensive serial molecular profiling of an "N of 1" exceptional non-responder with metastatic prostate cancer progressing to small cell carcinoma on treatment.
J Hematol Oncol. 2015; 8:109 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
IMPORTANCE: Small cell carcinoma/neuroendocrine prostate cancer (NePC) is a lethal, poorly understood prostate cancer (PCa) subtype. Controversy exists about the origin of NePC in this setting.
OBJECTIVE: To molecularly profile archived biopsy specimens from a case of early-onset PCa that rapidly progressed to NePC to identify drivers of the aggressive course and mechanisms of NePC origin and progression.
DESIGN, SETTING, AND PARTICIPANTS: A 47-year-old patient presented with metastatic prostatic adenocarcinoma (Gleason score 9). After a 6-month response to androgen deprivation therapy, the patient developed jaundice and liver biopsy revealed exclusively NePC. Targeted next generation sequencing (NGS) from formalin-fixed paraffin-embedded (FFPE)-isolated DNA was performed from the diagnostic prostate biopsy and the liver biopsy at progression.
INTERVENTION: Androgen deprivation therapy for adenocarcinoma followed by multiagent chemotherapy for NePC.
MAIN OUTCOMES AND MEASURES: Identification of the mutational landscape in primary adenocarcinoma and NePC liver metastasis. Whether the NePC arose independently or was derived from the primary adenocarcinoma was considered based on mutational profiles.
RESULTS: A deleterious somatic SMAD4 L535fs variant was present in both prostate and liver specimens; however, a TP53 R282W mutation was exclusively enriched in the liver specimen. Copy number analysis identified concordant, low-level alterations in both specimens, with focal MYCL amplification and homozygous PTEN, RB1, and MAP2K4 losses identified exclusively in the NePC specimen. Integration with published genomic profiles identified MYCL as a recurrently amplified in NePC.
CONCLUSIONS AND RELEVANCE: NGS of routine biopsy samples from an exceptional non-responder identified SMAD4 as a driver of the aggressive course and supports derivation of NePC from primary adenocarcinoma (transdifferentiation).

Jones CL, Gearheart CM, Fosmire S, et al.
MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia.
Blood. 2015; 126(19):2202-12 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease.

Abba MC, Gong T, Lu Y, et al.
A Molecular Portrait of High-Grade Ductal Carcinoma In Situ.
Cancer Res. 2015; 75(18):3980-90 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Ductal carcinoma in situ (DCIS) is a noninvasive precursor lesion to invasive breast carcinoma. We still have no understanding on why only some DCIS lesions evolve to invasive cancer whereas others appear not to do so during the life span of the patient. Here, we performed full exome (tumor vs. matching normal), transcriptome, and methylome analysis of 30 pure high-grade DCIS (HG-DCIS) and 10 normal breast epithelial samples. Sixty-two percent of HG-DCIS cases displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM, and ARID1A. Significantly, 83% of lesions displayed numerous large chromosomal copy number alterations, suggesting they might precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their tumor-intrinsic subtypes, proliferative, immune scores, and in the activity of specific signaling pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like, or ERBB2(+)) displayed signatures characteristic of activated Treg cells (CD4(+)/CD25(+)/FOXP3(+)) and CTLA4(+)/CD86(+) complexes indicative of a tumor-associated immunosuppressive phenotype. Strikingly, all lesions showed evidence of TP53 pathway inactivation. Similarly, ncRNA and methylation profiles reproduce changes observed postinvasion. Among the most significant findings, we observed upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and SOX genes. We conclude that most HG-DCIS lesions, in spite of representing a preinvasive stage of tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer.

Hildebrandt MA, Roth JA, Vaporciyan AA, et al.
Genetic variation in the TNF/TRAF2/ASK1/p38 kinase signaling pathway as markers for postoperative pulmonary complications in lung cancer patients.
Sci Rep. 2015; 5:12068 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Post-operative pulmonary complications are the most common morbidity associated with lung resection in non-small cell lung cancer (NSCLC) patients. The TNF/TRAF2/ASK1/p38 kinase pathway is activated by stress stimuli and inflammatory signals. We hypothesized that genetic polymorphisms within this pathway may contribute to risk of complications. In this case-only study, we genotyped 173 germline genetic variants in a discovery population of 264 NSCLC patients who underwent a lobectomy followed by genotyping of the top variants in a replication population of 264 patients. Complications data was obtained from a prospective database at MD Anderson. MAP2K4:rs12452497 was significantly associated with a decreased risk in both phases, resulting in a 40% reduction in the pooled population (95% CI:0.43-0.83, P = 0.0018). In total, seven variants were significant for risk in the pooled analysis. Gene-based analysis supported the involvement of TRAF2, MAP2K4, and MAP3K5 as mediating complications risk and a highly significant trend was identified between the number of risk genotypes and complications risk (P = 1.63 × 10(-8)). An inverse relationship was observed between association with clinical outcomes and complications for two variants. These results implicate the TNF/TRAF2/ASK1/p38 kinase pathway in modulating risk of pulmonary complications following lobectomy and may be useful biomarkers to identify patients at high risk.

Zhao HF, Wang J, Tony To SS
The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review).
Int J Oncol. 2015; 47(2):429-36 [PubMed] Related Publications
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and c-Jun N-terminal kinase (JNK) pathway are responsible for regulating a variety of cellular processes including cell growth, migration, invasion and apoptosis. These two pathways are essential to the development and progression of tumors. The dual roles of JNK signaling in apoptosis and tumor development determine the different interactions between the PI3K/Akt and JNK pathways. Activation of PI3K/Akt signaling can inhibit stress- and cytokine-induced JNK activation through Akt antagonizing and the formation of the JIP1-JNK module, as well as the activities of upstream kinases ASK1, MKK4/7 and MLK. On the other hand, hyperactivation of Akt and JNK is also found in cancers that harbor EGFR overexpression or loss of PTEN. Understanding the activation mechanism of PI3K/Akt and JNK pathways, as well as the interplays between these two pathways in cancer may contribute to the identification of novel therapeutic targets. In the present report, we summarized the current understanding of the PI3K/Akt and JNK signaling networks, as well as their biological roles in cancers. In addition, the interactions and regulatory network between PI3K/Akt and JNK pathways in cancer were discussed.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAP2K4, Cancer Genetics Web: http://www.cancer-genetics.org/MAP2K4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999