CDKN1A

Gene Summary

Gene:CDKN1A; cyclin dependent kinase inhibitor 1A
Aliases: P21, CIP1, SDI1, WAF1, CAP20, CDKN1, MDA-6, p21CIP1
Location:6p21.2
Summary:This gene encodes a potent cyclin-dependent kinase inhibitor. The encoded protein binds to and inhibits the activity of cyclin-cyclin-dependent kinase2 or -cyclin-dependent kinase4 complexes, and thus functions as a regulator of cell cycle progression at G1. The expression of this gene is tightly controlled by the tumor suppressor protein p53, through which this protein mediates the p53-dependent cell cycle G1 phase arrest in response to a variety of stress stimuli. This protein can interact with proliferating cell nuclear antigen, a DNA polymerase accessory factor, and plays a regulatory role in S phase DNA replication and DNA damage repair. This protein was reported to be specifically cleaved by CASP3-like caspases, which thus leads to a dramatic activation of cyclin-dependent kinase2, and may be instrumental in the execution of apoptosis following caspase activation. Mice that lack this gene have the ability to regenerate damaged or missing tissue. Multiple alternatively spliced variants have been found for this gene. [provided by RefSeq, Sep 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cyclin-dependent kinase inhibitor 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (49)
Pathways:What pathways are this gene/protein implicaed in?
Show (10)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: CDKN1A (cancer-related)

Holzer K, Ori A, Cooke A, et al.
Nucleoporin Nup155 is part of the p53 network in liver cancer.
Nat Commun. 2019; 10(1):2147 [PubMed] Free Access to Full Article Related Publications
Cancer-relevant signalling pathways rely on bidirectional nucleocytoplasmic transport events through the nuclear pore complex (NPC). However, mechanisms by which individual NPC components (Nups) participate in the regulation of these pathways remain poorly understood. We discover by integrating large scale proteomics, polysome fractionation and a focused RNAi approach that Nup155 controls mRNA translation of p21 (CDKN1A), a key mediator of the p53 response. The underlying mechanism involves transcriptional regulation of the putative tRNA and rRNA methyltransferase FTSJ1 by Nup155. Furthermore, we observe that Nup155 and FTSJ1 are p53 repression targets and accordingly find a correlation between the p53 status, Nup155 and FTSJ1 expression in murine and human hepatocellular carcinoma. Our data suggest an unanticipated regulatory network linking translational control by and repression of a structural NPC component modulating the p53 pathway through its effectors.

Li X, Ding D, Yao J, et al.
Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells.
Life Sci. 2019; 229:225-232 [PubMed] Related Publications
AIMS: Cellular senescence is a well-known cancer prevention mechanism, inducing cancer cells to senescence can enhance cancer immunotherapy. However, how cellular senescence is regulated is not fully understood. Dynamic chromatin changes have been discovered during cellular senescence, while the causality remains elusive. BAZ1A, a gene coding the accessory subunit of ATP-dependent chromatin remodeling complex, showed decreased expression in multiple cellular senescence models. We aim to investigate the functional role of BAZ1A in regulating senescence in cancer and normal cells.
MATERIALS AND METHODS: Knockdown of BAZ1A was performed via lentivirus mediated short hairpin RNA (shRNA) in various cancer cell lines (A549 and U2OS) and normal cells (HUVEC, NIH3T3 and MEF). A series of senescence-associated phenotypes were quantified by CCK-8 assay, SA-β-Gal staining and EdU incorporation assay, etc. KEY FINDINGS: Knockdown (KD) of BAZ1A induced series of senescence-associated phenotypes in both cancer and normal cells. BAZ1A-KD caused the upregulated expression of SMAD3, which in turn activated the transcription of p21 coding gene CDKN1A and resulted in senescence-associated phenotypes in human cancer cells (A549 and U2OS).
SIGNIFICANCE: Our results revealed chromatin remodeling modulator BAZ1A acting as a novel regulator of cellular senescence in both normal and cancer cells, indicating a new target for potential cancer treatment.

Zhao G, Bae JY, Zheng Z, et al.
Overexpression and Implications of Melanoma-associated Antigen A12 in Pathogenesis of Human Cutaneous Squamous Cell Carcinoma.
Anticancer Res. 2019; 39(4):1849-1857 [PubMed] Related Publications
BACKGROUND/AIM: Melanoma-associated antigen A12 (MAGEA12) has recently been reported as a repressor of tumor-suppressor genes. This study aimed to investigate the implications of MAGEA12 expression in the pathogenesis of cutaneous squamous cell carcinoma (cSCC).
MATERIALS AND METHODS: MAGEA12 and p21 expression were investigated in 15 samples of normal skin and 111 of cSCC tissues by immunohistochemistry. The biological functions of MAGEA12 in cSCC were also investigated both in vitro and in vivo.
RESULTS: Expression of both MAGEA12 and p21 was significantly increased in cSCC. MAGEA12 expression showed a positive correlation, while p21 expression showed negative correlation with the recurrence-free survival of patients with cSCC. In addition, MAGEA12 knockdown significantly attenuated proliferative, migratory, invasive, and tumorigenic activities of cSCC cells and was negatively correlated with p21 expression both in vitro and in vivo.
CONCLUSION: MAGEA12-mediated down-regulation of p21 may be involved in cSCC pathogenesis and MAGEA12 may serve as a molecular biomarker in cSCC.

Son Y, An Y, Jung J, et al.
Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53.
Phytother Res. 2019; 33(6):1689-1696 [PubMed] Related Publications
The tumor suppressor p53 plays essential roles in cellular protection mechanisms against a variety of stress stimuli and its activation induces apoptosis or autophagy in certain cancer cells. Here, we identified protopine, an isoquinoline alkaloid isolated from Nandina domestica, as an activator of the p53 pathway from cell-based natural compound screening based on p53-responsive transcription. Protopine increased the p53-mediated transcriptional activity and promoted p53 phosphorylation at the Ser15 residue, resulting in stabilization of p53 protein. Moreover, protopine up-regulated the expression of p21

Tak J, Sabarwal A, Shyanti RK, Singh RP
Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt.
Mol Cell Biochem. 2019; 458(1-2):49-59 [PubMed] Related Publications
Berberine has shown anticancer properties and has potential for a chemopreventive and/or chemotherapeutic agent for breast cancer. Berberine showed cytotoxicity to breast cancer cells, with an increase in the levels of p21/cip1 and p27/kip1, cyclin-dependent kinase inhibitors (CDKI), but mechanisms involved in up-regulating these molecules are largely unknown. Herein, we studied the key regulatory mechanisms involved in berberine-mediated up-regulation of p21/cip1 and p27/kip1. Berberine treatment for 24 and 48 h decreased the number of cells by 44-84% (P < 0.0001) and 38-78% (P < 0.0001), and increased cell death by 12-17% (P < 0.005) and 38-78% (P < 0.0001) in MCF-7 and MDA-MB-231 cells, respectively. Cells were arrested in G1 phase by berberine which was accompanied with up-regulation of mRNA and protein level of both p21/cip1 and p27/kip1. Berberine decreased the expression of protein levels of cyclin D1, cyclin E, CDK2, CDK4, and CDK6 to cause G1 phase arrest. Berberine caused nuclear localization of p21/cip1 in both the cell lines. Our data for the first time showed that the post-translational stability of both the proteins was strongly increased by berberine as examined by cycloheximide chase assay. Inhibition of Akt was associated with berberine-mediated up-regulation of p21/cip1 and also led to a decrease in cell viability accompanied with significant G1 phase cell cycle arrest. Our study revealed that berberine not only up-regulates mRNA and protein levels of p21/cip1 and p27/kip1 but also increases their nuclear localization and post-translational protein stability. Further, Akt inhibition was found to mediate berberine-mediated up-regulation of p21/cip1 but not the p27/kip1.

Ibnat N, Kamaruzman NI, Ashaie M, Chowdhury EH
Transfection with p21 and p53 tumor suppressor plasmids suppressed breast tumor growth in syngeneic mouse model.
Gene. 2019; 701:32-40 [PubMed] Related Publications
Treatment of breast cancer by delivering important tumor suppressor plasmids is a promising approach in the field of clinical medicine. We transfected p21 and p53 tumor suppressor plasmids, into different breast cancer cell lines using inorganic nanoparticles (NPs) of carbonate apatite to evaluate the effect of gene expression on reducing breast cancer cell growth. In triple negative MDA-MB-231 breast cancer cell line, the cytotoxicity assay upon combined delivery of p21 and p53 plasmid loaded NPs showed significant decrease in cell growth compared to distinct p21 or p53 treatments. Also, in MCF-7 and 4T1 cell lines, significant reduction in cellular growth was observed following p21 or p53 plasmid transfection. The Western blot data showed that NP loaded p21 and p53 transgene delivery in MDA-MB-231 cell line resulted in a noteworthy decrease in phosphorylated form of MAPK protein of MAPK/ERK pathway. The in vivo studies in syngeneic breast cancer mouse model demonstrated that the rate of growth and final tumor volume were reduced to a greater extent in mice that received intravenous injection of p21 + NP and p53 + NP therapeutics.

Fu R, Yang P, Sajid A, Li Z
Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth.
J Agric Food Chem. 2019; 67(17):4808-4816 [PubMed] Related Publications
Cellular senescence is the state of irreversible cell cycle arrest that provides a blockade during oncogenic transformation and tumor development. Avenanthramide A (AVN A) is an active ingredient exclusively extracted from oats, which possesses antioxidant, anti-inflammatory, and anticancer activities. However, the underlying mechanism(s) of AVN A in the prevention of cancer progression remains unclear. In the current study, we revealed that AVN A notably attenuated tumor formation in an azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model. AVN A treatment triggered cellular senescence in human colon cancer cells, evidenced by enlarging cellular size, upregulating β-galactosidase activity, γ-H2AX positive staining, and G1 phase arrest. Moreover, AVN A treatment significantly increased the expression of miR-129-3p, which markedly repressed the E3 ubiquitin ligase Pirh2 and two other targets, IGF2BP3 and CDK6. The Pirh2 silencing by miR-129-3p led to a significant increase in protein levels of p53 and its downstream target p21, which subsequently induced cell senescence. Taken together, our data indicate that miR-129-3p/Pirh2/p53 is a critical signaling pathway in AVN A induced cellular senescence and AVN A could be a potential chemopreventive strategy for cancer treatment.

Wazir U, Orakzai MMAW, Martin TA, et al.
Correlation of
Cancer Genomics Proteomics. 2019 Mar-Apr; 16(2):121-127 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Telomerase reverse transcriptase (TERT) has a well-known role in carcinogenesis due to its functions in inducing cell immortality and preventing senescence. In this study, the relationships between TERT and a panel of known stem cell markers was examined in order to direct future enquiries into the role of 'stem-ness' in human breast cancer.
MATERIALS AND METHODS: Breast cancer tissues (n=124) and adjacent normal tissues (n=30) underwent reverse transcription and quantitative polymerase chain reaction. Transcript levels were analyzed for the correlation with that of TERT.
RESULTS: A significant direct correlation was found in cancerous tissue between TERT and BMI1 proto-oncogene polycomb ring finger 4 (BMI1; n=88, p<0.001), nestin (NES; n=88, p<0.001), POU domain, class 5, transcription factor 1 (POU5F1; n=88, p<0.001), aldehyde dehydrogenase 1 family member A2 (ALDH1A2; n=87, p=0.0298), cyclin-dependent kinase inhibitor 1A (CDKN1A; n=88, p<0.001), integrin subunit beta 1 (ITGNB1; n=88, p<0.001), integrin subunit alpha 6 (ITGA6; n=88, p<0.001), cluster of differentiation antigen 24 (CD24; n=88, p=0.0114), MET proto-oncogene (MET; n=78, p<0.001) and noggin (NOG; n=88, p<0.001).
CONCLUSION: The evidence presented in this article of possible interactions between TERT and a discrete subset of known stem cell markers would significantly contribute to further enquiries regarding clonal dynamics in the context of human breast cancer.

Gurung SK, Dana S, Mandal K, et al.
Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells.
Chem Biol Interact. 2019; 304:106-123 [PubMed] Related Publications
Naphthalene diimide (NDI) derivatives have been shown to exhibit promising antineoplastic properties. In the current study, we assessed the anticancer and anti-bacterial properties of di-substituted NDI derivative. The naphthalene-bis-hydrazimide, 1, negatively affected the cell viability of three cancer cell lines (AGS, HeLa and PC3) and induced S phase cell cycle arrest along with SubG0/G1 accumulation. Amongst three cell lines, gastric cancer cell line, AGS, showed the highest sensitivity towards the NDI derivative 1. Compound 1 induced extensive DNA double strand breaks causing p53 activation leading to transcription of p53 target gene p21 in AGS cells. Reduction in protein levels of p21 and BRCA1 suggested that 1 treated AGS cells underwent cell death due to accumulation of DNA damage as a result of impaired DNA damage repair. β-catenin downregulation and consequently decrease in levels of c-Myc may have led to 1 induced AGS cell proliferation inhibition.1 induced AGS cell S phase arrest was mediated through CylinA/CDK2 downregulation. The possible mechanisms involved in anticancer activity of 1 includes ROS upregulation, induction of DNA damage, disruption of mitochondrial membrane potential causing ATP depletion, inhibition of cell proliferation and downregulation of antiapoptotic factors ultimately leading to mitochondria mediated apoptosis. Further compound 1 also inhibited H. pylori proliferation as well as H. pylori induced morphological changes in AGS cells. These findings suggest that NDI derivative 1 exhibits two-pronged anticancer activity, one by directly inhibiting cancer cell growth and inducing apoptosis and the other by inhibiting H. pylori.

Hao T, Li CX, Ding XY, Xing XJ
MicroRNA-363-3p/p21(Cip1/Waf1) axis is regulated by HIF-2α in mediating stemness of melanoma cells.
Neoplasma. 2019; 2019(3):427-436 [PubMed] Related Publications
Melanoma is a malignant tumor. The acquisition of stemness of melanoma cells aggravates the malignant transformation, which can be regulated by microRNAs (miRNAs, miR). MiR-363-3p is a key tumor-related miRNA, but its role in stemness and melanoma cells is still unknown. Presently, miR-363-3p, induced by hypoxia inducible factor (HIF)-2α, played a positive role in the stemness of melanoma cells. The levels of miR-363-3p and HIF-2α were upregulated in melanoma cell lines. Overexpression of HIF-2α significantly increased the levels of miR-363-3p. However, both HIF-2α knockdown and miR-363-3p inhibition inhibited the levels of the stemness markers (CD133, CD271, Jarid1B, and Nanog). Furthermore, the levels of miR-363-3p and HIF-2α were upregulated in fluorescence activated cell sorting (FACS)-sorted CD271high/+ cells. Whereas miR-363-3p depletion reduced the proportion and the spheroidization of the CD271high/+ cells, decreased the levels of CD133, CD271, Jarid1B and Nanog with restrained proliferative activity of CD271high/+ cells. Additionally, miR-363-3p was confirmed a key downstream of HIF-2α. Intriguingly, cyclin-dependent kinase inhibitor 1A [CDKN1A, p21(Cip1/Waf1)], a key inhibitor of S-phase DNA synthesis and cell cycle progression, was confirmed a target gene of miR-363-3p by luciferase reporter gene assay. The protein levels of CD133, CD271, Jarid1B and Nanog were upregulated with enhanced proliferative activity of CD271high/+ cells by inhibition of p21 in melanoma cells. In conclusion, miR-363-3p is induced by HIF-2α to promote the stemness of melanoma cells via inhibiting p21. The present study provides novel insights that HIF-2α/miR-363-3p/p21 signaling may be a potential target of research and therapy of melanoma.

Sun X, Zhang L, Gao M, et al.
Nanoformulation of a Novel Pyrano[2,3-c] Pyrazole Heterocyclic Compound AMDPC Exhibits Anti-Cancer Activity via Blocking the Cell Cycle through a
Molecules. 2019; 24(3) [PubMed] Free Access to Full Article Related Publications
Pyrano[2,3-c]pyrazole derivatives have been reported as exerting various biological activities. One compound with potential anti-tumor activity was screened out by MTT assay from series of dihydropyrazopyrazole derivatives we had synthesized before using a one-pot, four-component reaction, and was named as 6-amino-4-(2-hydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (hereinafter abbreviated as AMDPC). The IC

Suh SS, Hong JM, Kim EJ, et al.
Antarctic freshwater microalga,
Int J Med Sci. 2019; 16(2):189-197 [PubMed] Free Access to Full Article Related Publications
Inflammation triggered by the innate immune system is a strategy to protect organisms from the risk of environmental infection. However, it has recently become clear that inflammation can cause a variety of human diseases, including cancer. In this study, we investigated the effects of an ethanol extract of the Antarctic freshwater microalgae,

Natarajan U, Venkatesan T, Radhakrishnan V, et al.
Cell Cycle Arrest and Cytotoxic Effects of SAHA and RG7388 Mediated through p21
Medicina (Kaunas). 2019; 55(2) [PubMed] Free Access to Full Article Related Publications
BACKGROUND AND OBJECTIVE: Alterations in gene expressions are often due to epigenetic modifications that can have a significant influence on cancer development, growth, and progression. Lately, histone deacetylase inhibitors (HDACi) such as suberoylanilide hydroxamic acid (SAHA, or vorinostat, MK0683) have been emerging as a new class of drugs with promising therapeutic benefits in controlling cancer growth and metastasis. The small molecule RG7388 (idasanutlin, R05503781) is a newly developed inhibitor that is specific for an oncogene-derived protein called MDM2, which is also in clinical trials for the treatment of various types of cancers. These two drugs have shown the ability to induce p21 expression through distinct mechanisms in MCF-7 and LNCaP cells, which are reported to have wild-type TP53. Our understanding of the molecular mechanism whereby SAHA and RG7388 can induce cell cycle arrest and trigger cell death is still evolving. In this study, we performed experiments to measure the cell cycle arrest effects of SAHA and RG7388 using MCF-7 and LNCaP cells.
MATERIALS AND METHODS: The cytotoxicity, cell cycle arrest, and apoptosis/necroptosis effects of the SAHA and RG7388 treatments were assessed using the Trypan Blue dye exclusion (TBDE) method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence assay with DEVD-amc substrate, and immunoblotting methods.
RESULTS: The RG7388 treatment was able to induce cell death by elevating p21
CONCLUSION: Our results from MCF-7 and LNCaP cells confirmed that SAHA and RG7388 treatments were able to induce cell death via a combination of cell cycle arrest and cytotoxic mechanisms. We speculate that our findings could lead to the development of newer treatments for breast and prostate cancers with drug combinations including HDACi.

Alcolea V, Karelia DN, Pandey MK, et al.
Identification of a Novel Quinoxaline-Isoselenourea Targeting the STAT3 Pathway as a Potential Melanoma Therapeutic.
Int J Mol Sci. 2019; 20(3) [PubMed] Free Access to Full Article Related Publications
The prognosis for patients with metastatic melanoma remains very poor. Constitutive signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis, poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032), suggesting its potential as a molecular target. We recently designed a series of isoseleno- and isothio-urea derivatives of several biologically active heterocyclic scaffolds. The cytotoxic effects of lead isoseleno- and isothio-urea derivatives (compounds 1 and 3) were studied in a panel of five melanoma cell lines, including B-RAF

Bollaert E, de Rocca Serra A, Demoulin JB
The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways.
Cell Mol Life Sci. 2019; 76(8):1529-1539 [PubMed] Related Publications
HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.

Guo Q, Xiong Y, Song Y, et al.
ARHGAP17 suppresses tumor progression and up-regulates P21 and P27 expression via inhibiting PI3K/AKT signaling pathway in cervical cancer.
Gene. 2019; 692:9-16 [PubMed] Related Publications
ARHGAP17 has long been thought to be involved in the maintenance of tight junction and epithelial barrier. Recently, a few Rho GTPase activating proteins (RhoGAPs) have been identified as tumor suppressors in some human cancers. The present study aimed to explore ARHGAP17 expression in cervical cancer and the possible function in tumor progression. ARHGAP17 expression in cervical cancer cell lines was assessed by RT-PCR and Western blotting. ARHGAP17 expression in cervical cancer tissues and normal tissues was assessed by immunohistochemistry. The cell proliferation was determined using CCK-8 in vitro and subcutaneous xenograft model in vivo. Here, we showed lower expression of ARHGAP17 in cell lines and human cervical cancer samples. Manipulation of ARHGAP17 affected cell proliferation in vitro and tumor growth in vivo. Furthermore, the phosphorylation of AKT was enhanced in ARHGAP17 silencing cervical cancer cells. ARHGAP17 can elevate P21 and P27 expression level through inhibiting PI3K/AKT signaling pathway. Stepwise investigations demonstrated that ARHGAP17 suppressed malignant phenotype of cervical cancer cells via inhibiting PI3K/AKT signaling pathway. These results reveal that ARHGAP17 functions as a tumor suppressor in cervical cancer that suppresses tumor growth, at least partly, through inhibition of PI3K/AKT signaling and up-regulation of P21 and P27 expression.

Li Z, Yu D, Li H, et al.
Long non‑coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway.
Int J Oncol. 2019; 54(3):1033-1042 [PubMed] Related Publications
Tamoxifen is the gold standard for breast cancer endocrinotherapy. However, drug resistance remains a major limiting factor of tamoxifen treatment. Long non‑coding (lnc) RNA serves an important role in drug resistance; however, the molecular mechanisms of tamoxifen resistance in breast cancer endocrinotherapy are largely unclear. lncRNA urothelial cancer associated 1 (lncRNA UCA1, UCA1) has been proven to be dysregulated in human breast cancer and promotes cancer progression. In the present study, it was demonstrated that UCA1 was significantly upregulated in breast cancer tissues compared with healthy tissues. Furthermore, the expression level of UCA1 was significantly greater in tamoxifen‑resistant breast cancer cells (LCC2 and LCC9) when compared with those in the tamoxifen‑sensitive breast cancer cells (MCF‑7 and T47D). UCA1 silencing in LLC2 and LLC9 cells increased tamoxifen drug sensitivity by promoting cell apoptosis and arresting the cell cycle at the G2/M phase. Notably, the induced overexpression of UCA1 in MCF‑7 and T47D cells decreased the drug sensitivity of tamoxifen. The molecular mechanism involved in UCA1‑induced tamoxifen‑resistance was also investigated. It was identified that UCA1 was physically associated with the enhancer of zeste homolog 2 (EZH2), which suppressed the expression of p21 through histone methylation (H3K27me3) on the p21 promoter. In addition, it was demonstrated that UCA1 expression was paralleled to the phosphorylation of CAMP responsive element binding protein (CREB) and AKT. When LCC2 cells were treated with the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway inhibitor LY294002, the phosphorylation levels of CREB and AKT were significantly downregulated. Taken together, it was concluded that UCA1 regulates the EZH2/p21 axis and the PI3K/AKT signaling pathway in breast cancer, and may be a potential therapeutic target for solving tamoxifen resistance.

Oh HN, Oh KB, Lee MH, et al.
JAK2 regulation by licochalcone H inhibits the cell growth and induces apoptosis in oral squamous cell carcinoma.
Phytomedicine. 2019; 52:60-69 [PubMed] Related Publications
BACKGROUND: Licochalconce (LC) H is an artificial compound in the course of synthesizing LCC in 2013. So far, few studies on the effects of LCH have been found in the literature. Despite progress in treatment modalities for oral cancer, the cure from cancer has still limitations.
PURPOSE: The effects of LCH were investigated on human oral squamous cell carcinoma (OSCC) cells to elucidate its mechanisms.
STUDY DESIGN: We explored the mechanism of action of LCH by which it could have effects on JAK2/STAT3 signaling pathway.
METHODS: To confirm LCH anti-cancer effect, analyzed were MTT assay, DAPI staining, soft agar, kinase assay, molecular docking simulation, flow cytometry and Western blotting analysis.
RESULTS: According to docking and molecular dynamics simulations, the predicted pose of the complex LCH and JAK2 seems reasonable and LCH is strongly bound to active JAK2 with opened activation loop. The LCH inhibitor is surrounded by specific ATP-binding pocket in which it is stabilized by forming hydrogen bonds and hydrophobic interactions. It is shown that LCH plays as a competitive inhibitor in an active state of JAK2. LCH caused a dose-dependent decrease in phosphorylation of JAK2 and STAT3. More interestingly, LCH suppressed JAK2 kinase activity in vitro by its direct binding to the JAK2. LCH significantly inhibited the JAK2/STAT3 signaling pathway, causing the down-regulation of target genes such as Bcl-2, survivin, cyclin D1, p21 and p27. In addition, LCH inhibited cell proliferation and colony formation of OSCC cells in a dose- and time-dependent manner, as well as induction of cell apoptosis through extrinsic and intrinsic pathway. The induction of apoptosis in OSCC cells by LCH was evident in the increased production of ROS, loss of mitochondrial membrane potential, release of cyto c, variation of apoptotic proteins and activation of caspase cascade.
CONCLUSION: LCH not only induces apoptosis in OSCC cells through the JAK/STAT3 signaling pathway but also inhibits cell growth. It is proposed that LCH has a promising use for the chemotherapeutic agent of oral cancer.

Li Q, Wang C, Cai L, et al.
miR‑34a derived from mesenchymal stem cells stimulates senescence in glioma cells by inducing DNA damage.
Mol Med Rep. 2019; 19(3):1849-1857 [PubMed] Related Publications
Insights into the roles of microRNAs (miRNAs/miRs) in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches in the treatment of glioma. miR‑34a, as a well‑known tumor suppressor miRNA, is closely related with cellular senescence. Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment and possess the ability to deliver exogenous miRs to glioma cells to exert anti‑tumor effects. The present study investigated whether modified MSCs with miR‑34a possess an anti‑tumor function in glioma cells. A Transwell system was used to co‑culture U87 glioma cells and MSCs overexpressing miR‑34a, and cell proliferation and senescence assessed. The expression of senescence‑related genes p53, Cdkn1a, and Cdkn2c were tested using reverse transcription‑quantitative polymerase chain reaction and protein expression levels of sirtuin 1 (SIRT1) and γ‑H2A histone family, member X were detected by western blotting. Telomerase activity of U87 cells was examined using the Telo TAGGG Telomerase PCR ELISA PLUS kit. The results demonstrated that the delivered exogenous miR‑34a from MSCs significantly decreased expression of the target gene SIRT1. In addition, the delivered miR‑34a decreased the proliferation of glioma cells and provoked the expression of senescence‑related genes p53, Cdkn1a, and Cdkn2c. In addition, upregulation of miR‑34a induced DNA damage, shortened telomere length and impaired telomerase activity. However, these pro‑senescent effects were reversed by forced SIRT1 upregulation. In conclusion, the results demonstrated a novel role for miR‑34a, inducing glioma cell senescence, whereas miR‑34a modulation of SIRT1, inducing DNA damage, is crucial for miRNA replacement therapy in glioma treatment.

Fujii R, Osaka E, Sato K, Tokuhashi Y
MiR-1 Suppresses Proliferation of Osteosarcoma Cells by Up-regulating p21
Cancer Genomics Proteomics. 2019 Jan-Feb; 16(1):71-79 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: miRNA-1(miR-1) is down-regulated in various cancer cells including osteosarcoma cells. This study was conducted to analyze the function of miR-1 in osteosarcoma cells.
MATERIALS AND METHODS: miR-1 expression in osteosarcoma cells was evaluated by qRT-PCR. Cell proliferation was evaluated after transfecting miR-1 by WST8 assay and FACS analysis, both in vitro and in vivo.
RESULTS: Overexpression of miR-1 suppressed cell proliferation and induced cell-cycle arrest in the G
CONCLUSION: Overexpression of miR-1 suppressed cell proliferation and induced arrest in the G

Bahnassy AA, Helal TE, El-Ghazawy IM, et al.
The role of E-cadherin and Runx3 in Helicobacter Pylori - Associated gastric carcinoma is achieved through regulating P21waf and P27 expression.
Cancer Genet. 2018; 228-229:64-72 [PubMed] Related Publications
BACKGROUND: We assessed the role of E-cadherin (CDH1), runt-related transcription factor 3, p21waf and p27 promoter methylation (PM) and protein expression in Helicobacter pylori (HP)-associated gastric carcinomas (GCs) and adjacent non-neoplastic tissues (ANNTs).
PATIENTS AND METHODS: 192 cases were assessed for PM and protein expression of CDH1, RUNX3, p21waf and p27 by methylation-specific PCR (MSP) and immunohistochemistry. The CagA gene was also assessed.
RESULTS: In GCs, 66 (34.4%) and 84 (43.8%) cases showed CDH1-PM and reduced expression. It is significantly affected in GCs rather than in non-neoplastic groups (p < 0.001). In ANNTs, 108 (56.3%) cases showed CDH1-PM and all cases revealed preserved protein expression. RUNX3-PM was detected in 78 GCs (40.6%) and 69 ANNTs (35.9%), whereas reduced protein expression was detected in 99 (51.65%) GC compared to ANNTs 90 (46.9%). p21WAF and p27 showed PM in (48.4% and 45.3%) GCs and ANNTs; respectively. p21waf protein was reduced in 90 (46.9%) cases and 91 ANNTs (47.4%). p27 was reduced in 86 (44.8%) cases and 87 ANNTs (45.3%). CDH1 aberrations correlated with HP in tumors and ANNTs and with diffuse/intestinal tumors (p = 0.014, p = 0.014 and p = 0.02). RUNX3 aberrations associated with HP (p = 0.04), high grade (p = 0.04), and advanced stage (p = 032). Tumor grade associated with RUNX3-PM, CDH, p21 and p27 protein (p < 0.05 for all). Tumor stage associated significantly with PM and reduced protein expression of all markers. Positive lymph nodes associated significantly with p27PM (p < 0.001).
CONCLUSIONS: HP plays an important role in the development and progression of GC through silencing of CDH1, RUNX3, p21WAF and p27 expression.

Lubecka K, Kaufman-Szymczyk A, Cebula-Obrzut B, et al.
Novel Clofarabine-Based Combinations with Polyphenols Epigenetically Reactivate Retinoic Acid Receptor Beta, Inhibit Cell Growth, and Induce Apoptosis of Breast Cancer Cells.
Int J Mol Sci. 2018; 19(12) [PubMed] Free Access to Full Article Related Publications
An epigenetic component, especially aberrant DNA methylation pattern, has been shown to be frequently involved in sporadic breast cancer development. A growing body of literature demonstrates that combination of agents, i.e. nucleoside analogues with dietary phytochemicals, may provide enhanced therapeutic effects in epigenetic reprogramming of cancer cells. Clofarabine (2-chloro-2'-fluoro-2'-deoxyarabinosyladenine, ClF), a second-generation 2'-deoxyadenosine analogue, has numerous anti-cancer effects, including potential capacity to regulate epigenetic processes. Our present study is the first to investigate the combinatorial effects of ClF (used at IC

Cao Q, Wang Y, Song X, Yang W
Association between MDM2 rs2279744, MDM2 rs937283, and p21 rs1801270 polymorphisms and retinoblastoma susceptibility.
Medicine (Baltimore). 2018; 97(49):e13547 [PubMed] Free Access to Full Article Related Publications
Retinoblastoma (Rb) is the most common intra-ocular malignancy in children. The association of rs2279744, and rs937283 in MDM2 gene, and p21 rs1801270 polymorphism and RB development have been demonstrated. To provide a comprehensive assessment of and to clarify associations between the 3 SNPs (MDM2 rs2279744, MDM2 rs937283, and p21 rs1801270) and the risk of RB, we performed a meta-analysis of all the eligible case-control studies. We searched English databases include PubMed, Embase, Google Scholar, and Cochrane Library, using an upper date limit of January 1, 2018. The association between MDM2 rs2279744, MDM2 rs937283, and p21 rs1801270 polymorphisms and the risk of RB were estimated by calculating a pooled OR and 95% CI under a homozygote comparison, heterozygote comparison, dominant model, and recessive model. The statistical power analysis was performed using G*Power. Our meta-analysis showed a significant association between RB susceptibility and MDM2 rs2279744 recessive model (OR = 1.427, 95%CI: 1.107-1.840, P = .006, I = 0%). Moreover, a significant link was observed between RB risk and MDM2 rs937283 homozygote comparison (OR = 0.471, 95%CI: 0.259-0.858, P = .014, I = 0%) and recessive model (OR = 0.587, 95%CI: 0.410-0.840, P = .004, I = 0%). However, no significant relationship between the p21 rs1801270 polymorphism and RB susceptibility was detected in any of the 4 models (P > .05). In conclusion, we found that significant association between the MDM2 rs2279744 polymorphism and increased RB risk, while MDM2 rs937283 polymorphism was associated with significantly decreased RB risk. However, as to the P21 rs1801270 polymorphism, a statistically significant association was not identified for RB.

Hou Z, Guo K, Sun X, et al.
TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling.
Mol Cancer. 2018; 17(1):172 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cellular senescence is a state of irreversible cell growth arrest and senescence cells permanently lose proliferation potential. Induction of cellular senescence might be a novel therapy for cancer cells. TRIB2 has been reported to participate in regulating proliferation and drug resistance of various cancer cells. However, the role of TRIB2 in cellular senescence of colorectal cancer (CRC) and its molecular mechanism remains unclear.
METHODS: The expression of TRIB2 in colorectal cancer tissues and adjacent tissues was detected by immunohistochemistry and RT-PCR. The growth, cell cycle distribution and cellular senescence of colorectal cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay, flow cytometry detection and senescence-associated β-galactosidase staining, respectively. Western blot, RT-PCR and luciferase assay were performed to determine how TRIB2 regulates p21. Immunoprecipitation (IP) and chromatin-immunoprecipitation (ChIP) were used to investigate the molecular mechanisms.
RESULTS: We found that TRIB2 expression was elevated in CRC tissues compared to normal adjacent tissues and high TRIB2 expression indicated poor prognosis of CRC patients. Functionally, depletion of TRIB2 inhibited cancer cells proliferation, induced cell cycle arrest and promoted cellular senescence, whereas overexpression of TRIB2 accelerated cell growth, cell cycle progression and blocked cellular senescence. Further studies showed that TRIB2 physically interacted with AP4 and inhibited p21 expression through enhancing transcription activities of AP4. The rescue experiments indicated that silencing of AP4 abrogated the inhibition of cellular senescence induced by TRIB2 overexpression.
CONCLUSION: These data demonstrate that TRIB2 suppresses cellular senescence through interaction with AP4 to down-regulate p21 expression. Therefore, TRIB2 could be a potential target for CRC treatment.

Aljabery F, Shabo I, Gimm O, et al.
The expression profile of p14, p53 and p21 in tumour cells is associated with disease-specific survival and the outcome of postoperative chemotherapy treatment in muscle-invasive bladder cancer.
Urol Oncol. 2018; 36(12):530.e7-530.e18 [PubMed] Related Publications
PURPOSE: We investigated the effects of alterations in the biological markers p14, p53, p21, and p16 in relation to tumour cell proliferation, T-category, N- category, lymphovascular invasion, and the ability to predict prognosis in patients with muscle-invasive bladder cancer (MIBC) treated with cystectomy and, if applicable, chemotherapy.
MATERIALS AND METHODS: We prospectively studied patients with urinary bladder cancer pathological stage pT1 to pT4 treated with cystectomy, pelvic lymph node dissection and postoperative chemotherapy. Tissue microarrays from paraffin-embedded cystectomy tumour samples were examined for expression of immunostaining of p14, p53, p21, p16 and Ki-67 in relation to other clinical and pathological factors as well as cancer-specific survival.
RESULTS: The median age of the 110 patients was 70 years (range 51-87 years), and 85 (77%) were male. Pathological staging was pT1 to pT2 (organ-confined) in 28 (25%) patients and pT3 to pT4 (non-organ-confined) in 82 (75%) patients. Lymph node metastases were found in 47 patients (43%). P14 expression was more common in tumours with higher T-stages (P = 0.05). The expression of p14 in p53 negative tumours was associated with a significantly shorter survival time (P=0.003). Independently of p53 expression, p14 expression was associated with an impaired response to chemotherapy (P=0.001). The expression of p21 in p53 negative tumours was associated with significantly decrease levels of tumour cell proliferation detected as Ki-67 expression (P=0.03).
CONCLUSIONS: The simultaneous expression of the senescence markers involved in the p53-pathway shows a more relevant correlation to the pathological outcome of MIBC than each protein separately. P14 expression in tumours with non-altered (p53-) tumours is associated with poor prognosis. P14 expression is associated with impaired response to chemotherapy. P21 expression is related to decreased tumour cell proliferation.

Zhang R, Li J, Yan X, et al.
Long non‑coding RNA MLK7‑AS1 promotes proliferation in human colorectal cancer via downregulation of p21 expression.
Mol Med Rep. 2019; 19(2):1210-1221 [PubMed] Related Publications
Current studies have highlighted long non‑coding RNAs (lncRNAs) as critical regulators in various cancers, including colorectal cancer (CRC). By utilizing publicly available data from The Cancer Genome Atlas dataset, MLK7 antisense RNA 1 (MLK7‑AS1) was identified as a novel lncRNA that correlated with CRC progression. The results of reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) revealed a significant upregulation of MLK7‑AS1 in both CRC tissue samples and cell lines. In addition, a positive correlation was observed between increased MLK7‑AS1 expression and several clinicopathological factors in patients with CRC. Importantly, MLK7‑AS1 knockdown suppressed CRC cell proliferation and promoted G1/G0 phase arrest and apoptosis in vitro, whereas MLK7‑AS1 overexpression exhibited opposite effects. Consistently, decreased MLK7‑AS1 expression inhibited tumor growth in vivo. Furthermore, RT‑qPCR and western blot assays revealed that p21 may be a potential downstream target of MLK7‑AS1. To the best of the authors' knowledge, this is the first study to report that MLK7‑AS1 has potential as a biomarker and may promote proliferation in CRC partially through downregulating p21 expression.

Shirai YT, Mizutani A, Nishijima S, et al.
CNOT3 targets negative cell cycle regulators in non-small cell lung cancer development.
Oncogene. 2019; 38(14):2580-2594 [PubMed] Related Publications
Lung cancer is one of the major causes of cancer death and clarification of its molecular pathology is highly prioritized. The physiological importance of mRNA degradation through the CCR4-NOT deadenylase has recently been highlighted. For example, mutation in CNOT3, a gene coding for CNOT3 subunit of the CCR4-NOT complex, is found to be associated with T-cell acute lymphoblastic leukemia, T-ALL, though its contribution to other cancers has not been reported. Here, we provide evidence suggesting that CNOT3 is required for the growth of non-small cell lung cancer. Depletion of CNOT3 suppresses proliferation of A549 human non-small cell lung cancer cells with enhanced mRNA stability and subsequent elevated expression of p21. In addition, we identified the mRNA for Krüppel-like factor 2 transcription factor, an inducer of p21, as a novel mRNA degradation target of CNOT3 in non-small cell lung cancer cells. Aberrant up-regulation of Krüppel-like factor 2 by CNOT3 depletion leads to impairment in the proliferation of A549 cells. Consistent with these findings, elevated mRNA expression of CNOT3 in non-small cell lung cancer in comparison with the paired normal lung epithelium was confirmed through scrutinization of the RNA-sequencing datasets from The Cancer Genome Atlas. Moreover, we found an inverse correlation between CNOT3 and CDKN1A (encoding p21) mRNA expression using the combined datasets of normal lung epithelium and non-small cell lung cancer. Thus, we propose that the up-regulation of CNOT3 facilitates the development of non-small cell lung cancer through down-regulation of Krüppel-like factor 2 and p21, contrary to tumor suppressive functions of CNOT3 in T-ALL.

Zhao L, Okhovat JP, Hong EK, et al.
Preclinical Studies Support Combined Inhibition of BET Family Proteins and Histone Deacetylases as Epigenetic Therapy for Cutaneous T-Cell Lymphoma.
Neoplasia. 2019; 21(1):82-92 [PubMed] Free Access to Full Article Related Publications
Advanced-stage cutaneous T-cell lymphoma (CTCL) is usually a fatal malignancy despite optimal use of currently available treatments. In this preclinical study of novel CTCL therapy, we performed in vitro and ex vivo experiments to determine the efficacy of combination treatment with a panel of BET bromodomain inhibitors (BETi) (JQ1, OTX015, CPI-0610, I-BET762) and HDAC inhibitors (HDACi) (SAHA/Vorinostat, Romidepsin). BETi/HDACi combinations were synergistic (combination index <1) against cell viability and induced G0/G1 cell cycle arrest. Apoptosis was uniformly enhanced. From a mechanistic standpoint, proliferative drivers c-Myc, Cyclin D1, NFkB, and IL-15Rα were reduced. Inhibitory CDKN1A was increased. CDKN1B, IL-7R, IL-17Rα, STAT3, and STAT5 alterations varied. There were significant increases in extrinsic apoptotic pathway death receptors and ligands (FasL, DR4, DR5, TRAIL, and TNFR1). At clinically tolerable levels of single agents, Romidepsin (1 nM) + OTX015 (125 nM) induced the greatest apoptosis (60%_80%) at 96 hours. Ex vivo studies of leukemic CTCL cells obtained from patients with Sezary syndrome also showed higher levels of apoptosis (about 60%-90%) in response to combination treatments relative to single agents. In contrast, combination treatment of normal CD4+ T cells induced only minimal apoptosis (<10%). Our findings show that the mechanism of action of BETi/HDACi therapy in CTCL involves induction of both cell cycle arrest and apoptosis with reduced proliferative drivers and enhanced expression of apoptotic extrinsic pathway death receptors and ligands. Relative to single agents, the superior anti-CTCL effects of BETi/HDACi combinations in vitro and ex vivo provide a rationale for clinical trials exploring their efficacy as therapy for CTCL.

Chen Z, Zuo X, Pu L, et al.
circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma.
Cancer Sci. 2019; 110(2):568-581 [PubMed] Free Access to Full Article Related Publications
Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as indispensable modulators in human malignancies. Aberrant cellular senescence is a phenotype observed in various cancers. The association of circRNAs with cellular senescence in tumors is yet to determined. Here, we investigated the role of circLARP4 in cellular senescence and cell proliferation in hepatocellular carcinoma (HCC). Downregulated circLARP4 level was observed in HCC tissues and cell lines. Low expression level of circLARP4 independently predicted poor survival outcome. Gain-of-function and loss-of-function assays demonstrated that circLARP4 suppressed HCC cell proliferation, mediated cell cycle arrest and induced senescence in vitro. Levels of p53 and p21, 2 key regulatory molecules in cellular senescence, were increased in circLARP4-overexpressed HCC cells and decreased in circLARP4-silenced HCC cells. In vivo experiments further confirmed the tumor-suppressing activity of circLARP4. Further mechanistic studies showed that circLARP4 dampened HCC progression by sponging miR-761, thereby promoting the expression level of RUNX3 and activating the downstream p53/p21 signaling. Our study revealed the role of circLARP4/miR-761/RUNX3/p53/p21 signaling in HCC progression, providing a potential survival predictor and therapeutic candidate for HCC.

Fujino T, Yokokawa R, Oshima T, Hayakawa M
SIRT1 knockdown up-regulates p53 and p21/Cip1 expression in renal adenocarcinoma cells but not in normal renal-derived cells in a deacetylase-independent manner.
J Toxicol Sci. 2018; 43(12):711-715 [PubMed] Related Publications
SIRT1, an NAD

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CDKN1A, Cancer Genetics Web: http://www.cancer-genetics.org/CDKN1A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999